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Abstract

In this paper we explicitly solve a non-linear filtering problem with mixed obser-
vations, modelled by a Brownian motion and a generalized Cox process, whose jump
intensity is given in terms of a Lévy measure. Motivated by empirical observations
of R. Cont and P. Tankov we propose a model for financial assets, which captures
the phenomenon of time-inhomogeneity of the jump size density. We apply the
explicit formula to obtain the optimal filter for the corresponding filtering problem.
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1. INTRODUCTION

In the present paper we derive an explicit solution for a non-linear filtering problem
for Lévy processes. We are interested in the following non-linear filtering model: We
consider a process X;, which follows the dynamic of the SDE

(1.1) dX; = b(X;)dt + o(X;)dB;",

where B is a standard Wiener process. Assume that X; is partially observed via
the process Y;, which is described by the the equation

(1.2) dY, = h(t, X,)dt +dB} —|—/ SN\(dt, ds),

Ro
where B} is a standard Wiener process and N, an integer valued random measure
with predictable compensator

(1.3) a(dt, ds,w) = A(t, Xy, ¢)dtv(ds)

for a Lévy measure v and a function \(¢,,5). It is assumed that (B, B)) is a
Wiener process independent of Ny. The process X; resp. Y; is called signal process
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2 NON-LINEAR FILTERING FOR LEVY PROCESSES

resp. observation process. The jump intensity of the random measure N, exhibits a
dependence on a hidden state variable, related to the signal process.

The non-linear filtering problem for our model is to find the least square estimate
to the (possibly transformed) signal process at time ¢, given the history of the
observation process up to time ¢, that is to determine the conditional expectation

E[f(Xe) |7 ],

where f is a given Borel function and where FY is the o—algebra, generated by
{Y,,0<s <t}

The object of this paper is to demonstrate how white noise methods for Lévy
processes, developed in [LOP] and [P], can be used to provide an explicit solution
of this problem. For this purpose we solve a Zakai equation for the unnormalized
conditional density explicitly. This equation is a linear stochastic partial differential
equation (SPDE), driven by a Lévy process. We show that the Zakai equation has a
unique strong LP—solution, which can be explicitly represented. As an application
we illustrate how this formula can be used in finance.

The theory of non-linear filtering is vastly treated in the literature. Linear filtering
theory was initiated by Kalman and Bucy in their pioneering works (see [KB] and
the references therein). The generalization of the latter authors’ ideas to the non-
linear setting was carried out in the sixties and early seventies. See e.g. Lipster and
Shiryaev [LS], Kallianpur [Ka], Fleming and Rishel [FRi] for an account of these
ideas. See also [D]. Using the innovation approach, Fujisaki, Kallianpur and Kunita
derived a SDE for the conditional density of the filter process (see [Ka]). However,
this type of equation has the drawback to be difficult to solve. To redress this
deficiency Duncan, Mortensen and Zakai (see [Z] and the references therein) derived
an equation for the evolution of the unnormalized conditional density, from which
the optimal filter can be constructed. This equation is a linear SPDE and reveals a
more simple analytical tractability than the above mentioned one.

Existence and uniqueness results for the Zakai equation were obtained by many
authors. See e.g. Gyongy, Krylov [GK1,2] and Grigelionis [Gr]. In the Gaussian case
explicit solutions of related Zakai equations to the filter problem (1.1), (1.2) were
determined by several authors: Pardoux [Pal,2] e.g. found an explicit solution,
employing Sobolev space techniques. Another contribution is due to Kunita [K],
who gave an explicit solution, using the theory of stochastic flows. Further [B]
and [BDPV] applied concepts of Gaussian white noise theory and derived a similar
formula to the latter ones.

A generalization of the Gaussian setting to the filtering problem (1.1), (1.2) in the
case of a doubly stochastic Poisson process, i.e. in the case, when the Lévy measure
v is a Dirac measure, was investigated by [DR]. In this work the authors discuss
approximations of the filtering problem, by invoking finite-state Markov chains. Our
model contains [DR] as a special case and we are able to give an explicit solution to
this problem. Furthermore, our solution formula comprises both the Gaussian case
(i.e. the filtering problem without N,) and the pure jump case (i.e. without the



2. WHITE NOISE FRAMEWORK 3

observation function i and the Brownian motion). Thus our result can be regarded
as a generalization of the above solutions in the Gaussian case. Let us mention that
a related model to [DR], which captures the description of high frequency data, was
studied in [FR]. However, as far as we can see, our methods do not apply here to
solve the corresponding non-linear filtering problem explicitly.

Our main tool for solving the non-linear filtering problem are white noise concepts
for Lévy processes, introduced in [LOP|. Our work is inspired by [B] and [BDPV],
where the Gaussian case is treated.

Section 2 passes in review some basic elements of a white noise theory for Lévy
processes. In Section 3 the non-linear filtering problem with mixed observations is
set up. Further it is sketched how to derive the Zakai equation for the unnormalized
conditional density. Finally, an explicit solution of this equation is given. Section
4 deals with the application of the closed form solution to finance. It has been
observed (e.g. [CT]) that time homogeneity of the Lévy measure in exponential
Lévy models for financial assets is not appropriate. More precisely, their results
indicate that while the intensity (mass of the Lévy measure) stays quite stable over
time, the shape of the density changes. Taking into consideration these observations,
we set up a model that is able to capture this phenomenon and we apply the results
of the previous sections to solve the corresponding filtering problem.

2. WHITE NOISE FRAMEWORK

This section gives a brief outline of some concepts of a white noise theory for Lévy
processes, developed in [LOP] and [P]. In Section 3.2 we will apply this approach
to solve the Zakai equation (3.1.5), explicitly. For general background information
about white noise theory the reader is encouraged to resort to the books of [HKPS],
[Ku] and [O].

Let us recapitulate that a Lévy process can be defined to be a stochastic process
n(t) on R, which has independent and stationary increments starting at zero, i.e.
n(0) = 0. Such processes form a prototype of semimartingales with the characteristic
triplet

(2.1) (B, Cy, 1) = (a-t,o-t,dtr(dz)),

where a, o are constants and where v denotes a compensating measure on Ry :=
R — {0}, called Lévy measure, that integrates the function 1 A 22. See e.g. [B], [Sa
or [JS] for details.

In order to build a white noise theory for combinations of Gaussian and Poisson
(random measure) noise, we first confine ourselves to pure jump Lévy processes,
that is we assume a = 0 = 0 in (2.1).

We recall the construction of the white noise space S (X) in [LOP] in the case of
the space-time dimension d = 1. Let S(R?) be the Schwartz space on R? and denote
by S'(R?) its dual, i.e. the space of tempered distribution. It is well-known that the
topology of S(R?) can be induced by increasing, compatible pre-Hilbertian norms
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[, , » € N. We set X =R x Ry and we define a closed nuclear subalgebra of S(R?)
(w.r.t. the restrictions of the norms [|-[| ) by

(22) S0 1= { € S 10,0 = (L )(0,0) =0

The space Si (X) is defined as the quotient algebra
(23) S(X) = S(X)/Nx,
where N, is the closed ideal in S(X), given by

(2.4) Nri={d € 8(X) : |9l 2ry = 0}

with 7 = A X v for A the Lebesgue measure. The space S(X) forms a (countably
Hilbertian) nuclear algebra and we denote by S'(X) its dual.

Then the Bochner-Minlos theorem implies the existence of a unique probability
measure 4 on the Borel sets of §'(X), satisfying

(2.5) /g ) = e < /X (¢4 — 1)d7r)

for all ¢ € S(X), where (w, ¢) = w(¢) is the action of w € §'(X) on ¢ € S(X). The
measure g on ) = S'(X) is referred to as (pure jump) Lévy white noise probability
measure. This measure turns out to fulfill the first condition of analyticity and to
be non-degenerate (see [LOP]). Let us point out that these properties ensure the
existence of generalized Charlier polynomials C,,(w) (see [KDS] for the definition),
which have the following generating property: Define the function a via a(¢) =

log(1 + ¢)mod N, if ¢ = pmodN,; for p(z) > —1. Then « is holomorphic at

exp(w,a(¢))

By eleato)] CaN be expanded into

zero and invertible and the exponential (¢, w) :=

a power series around zero in S(X), i.e.

(2.6) 26.w) = 3 (Calw), 6°7)

n>0

where ¢®" € Si (X )®" denotes the n-th completed symmetric tensor product of S (X)
with itself.

Our approach to solve the Zakai equation necessitates the definition of the Lévy-
Hida test function and distribution space. These spaces are constructed by means
of a certain orthogonal basis of L?(u), given in terms of the generalized Charlier
polynomials in (2.6). We persue a short review of this concepts. In the following
we shall denote by J the set of all multi-indices o = (ay, g, ...) with finitely many
non-zero entries oy; € Ng. Let Index(a) = max{i : oy # 0} and |a| = ), oy for



2. WHITE NOISE FRAMEWORK 5

« € J. Then let us choose an orthonormal basis {0 (z, 2) }r>1 € S(X) of L*(X). In
assuming that Index(a) = j and |a| = m for a € J we define the function 6 by

(27) 6®a((x1721)7“'7(xm72m)) =
6;8a1 R...&® 5?%((1;1, Zl), ceny (Im, Zm>> - 61($1, Zl) Teeet 51($a17 Zal)

Teeet 5j(xa1+..-+a171+17 2’/011+~~-+04j71+1) Tt 5j(xm7 Zm)a

where (5?0 := 1. The symmetrized tensor product of the ‘s, indicated by 5&’“, is
the symmetrization of §%* with respect to the variables (x1,21), ..., (Zm, Zm). Then
the family { K, (w)}aes of random variables, given by

(238) Kalw) = (Clai(),5%).

constitutes an orthogonal basis of L?(u). So every F' € L?(u) can be written as
(2.9) F= Z co K,
acJ
for a unique sequence of real numbers (¢, )qe7, Where
(2.10) 1F I = D aled,
aced

with al :== ajlag!l..., if & = (a1, a9,...) € J . The Lévy-Hida test function space (S)
is characterized as the space of all f =37 _ coKq € L*(u) such that the growth
condition

(2.11) 725 = 3 @l (2N < oo
yeT™

holds for all k € Ny with weight (2N)* = (2-1)ke1(2.2)ka2_ (2.1)* if Index(a) = 1.
The space (S) is equipped with projective topology, based on the family of norms
([[[lo x)xemo in (2.11). The Lévy-Hida distribution space, denoted by (S)* is defined
as the topological dual of (S). Thus we just constructed the following Gel’fand triple

(2.12) (S) — L*(u) — (S)*.

We introduce on (S)* a multiplication of distributions by means of the Wick product
o, given by

(2.13) (Koo Kp)(w) = (Kasp)(w), .0 €T

The product is linearly extended to the whole space. It can be shown e.g. that

(2.14) (Cr(w); fn) 0 (Crn(w), gm) = <Cn+m<w)afn®gm>
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for symmetric functions f,, € L?(7*") and g, € L*(7*™) (see [LOP]). Since (S)*
forms a topological algebra with respect to the Wick product, it is possible e.g. to
introduce the Wick version of the exponential function exp by

1 n
(2.15) exp® X = ZEXO

n>0
for X € (S)*, where the Wick powers in (2.15) are defined as
X"=XoXo..0X (n times).

The Wick product elicits an interesting relation to [to integration: Let

N(dt,dz) = N(dt,dz) — dtv(dz)
denote the compensated Poisson random measure associated with the Lévy process

n(t) and let N(t,z) be the white noise of N(dt,dz), which takes values in (S)*
A x v—a.e. If Y(t, z,w) is a predictable process, satisfying the condition

T
E/ / Y3(t, z,w)dtv(dz) < oo,
0o Jro
then Y (¢, z,w) © overseteN(t, z) is A x v-Bochner ntegrable in (S)* and

(2.16) /0 ' /R Yt 2, w) N(dt, dz) = /O ' /R Y(t, 2. w) 0 N(t, 2)dtw(dz).

See [LOP] or [OP] for definitions. We are coming to the Lévy Hermite transform
‘H as an important tool for the study of SPDE’s. Just as in the Gaussian case, the
construction of H employs the use of the expansion along the basis { K, (w)}acs in
(2.8). The Lévy Hermite transform of X(w) = ), calo(w) € (S)*, indicated by
HX or X , is defined by

(2.17) HX(z2) = X(2) = Z coz® € C  (when convergent),

where 2z = (21, 29, ...) € CY | i.e. in the space of C—valued sequences, and where 2® =
21" 2z9%... Let us mention that HX(z) in (2.17) converges in the space of sequences
with compact support, CI. Since the Hermite transform maps the algebra (S)* into
the algebra of power series in infinitely many complex variables, homomorphically,
we find above all that

(2.18) H(X oY) (2) =H(X)(2) - H(Y)(2)

holds. Finally we remark that any distribution in (S)* is uniquely characterized by
its H-transform (see characterization theorem 2.3.8 in [LOP]).

We conclude this Section with a short description of how the methods, elaborated
above, can be generalized to cover the case of Lévy processes with Brownian motion
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and pure jump part (see [P]). Denote by p the Gaussian white noise measure on
the measurable space

(Qc, Fa) = (S'(R), B(S'(R))).
Further recollect the construction of the orthogonal L?(u) basis { Hy(w)}aes, given
by
Ha(w> = H haj(<w7 £j>)>
i>1

where (w,-) = w(-) and where §; resp. h;,j = 1,2,... are the Hermite functions
resp. Hermite polynomials. Using j;, to denote the pure jump white noise measure
on (Qp,Fr) = (S'(X),B(S'(X))), we can define the Lévy white noise measure u as
the product measure po X p; on

(219) (Q,f) = (QG X QL,fG ®JTL)
Define
(2.20) Ly(w) = Ly (w1,ws2) = Ho(w1)Kp(w2),

if y=(a,8) € T:=J? Then (L,(w) ez forms an L?(y)—basis with norm expres-
sion
2
HL’YHLQ(“) =,
where ! := a!f! for v = («, 5) € Z.
Just as in the pure jump case, we can use the basis (L, (w) ez to extend the con-

cepts of Hida space, Wick product or Hermite transform to the mixture of Gaussian
and pure jump Lévy noise.

3. EXPLICIT SOLUTION OF THE ZAKAI EQUATION

In this Section we specify the set-up of our non-linear filtering problem, based on
a Lévy process as driving noise. Further we outline how to derive the corresponding
Zakai equation, yielding a (linear) SPDE for the unnormalized conditional density
of the filter process. Then we demonstrate how the framework in Section 2 can be
applied to provide an explicit strong LP”—solution of the Zakai equation.

3.1. Non-linear filtering with respect to Lévy processes, Zakai equation.
We wish to investigate a nonlinear filtering problem of the following type: Assume
a partially observable process (X;,Y;) € R*™™ (0 <t < T, defined on a probability
space (€2, F, 7). X; stands for the unobservable component of the process, referred
to as the signal process, whereas Y; is the observable part, called observation process.
Suppose that the dynamics of the process is described by the following SDE:

(3.1) dX; = b(X;)dt + o(X;)dB)
dy, = h(t,Xt)dterBtYJr/ SNy (dt, ds),

Ro
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where (B;X, B)) is a Wiener process, being independent of the integer valued random
measure Ny, which has the predictable compensator

/l(dta dga w) - )\(ta Xta §)dtV(d§)

for a Lévy measure v and a function A\(¢,z,<). The initial condition X, is assumed
to be a random variable independent of B/, BY . In particular, the case h(t,z) = 0,
when B} is omitted, corresponds to the pure jump observation process

dYt:/ ¢N\(dt, ds).
Ro

In the following we restrict the Lévy measure v to be finite. Our main theorem
(Theorem 3.3) will be proven under this assumption. However, we stress that a
corresponding result for general Lévy measures can be obtained by using similar
arguments and conditions.

For the sake of argument we limit ourselves to the case n = m = 1. To guarantee
a unique (strong) solution of system (3.1) we require that the coefficients b and o
are Lipschitz continuous and satisfy the linear growth condition. Further conditions
on b, o, the observation function h and the intensity rate A\ are listed in C1-C8 in
Section 3.2.

Given a Borel measurable function f, the non-linear filtering problem comes down
to determine the least square estimate of f(X;), given the observations up to time
t. In other words the problem consists in evaluating the optimal filter

E[f(X) |7 ],

where F} is the o—algebra, generated by {Y;,0 < s < t}.
If the conditional distribution P[X} ‘Fty } is absolutely continuous with respect to
the Lebesgue measure with conditional density p(¢, z,w), i.e.

P[X; € dz|F)] (w) = p(t, z,w)dz,

it will be conceivable to solve the so-called Fujisaki-Kallianpur-Kunita equation (see
e.g. [Kal). In the purely Gaussian case (i.e. (3.1) with A = 0) this equation is a sto-
chastic partial differential equation for p(¢, x,w), which involves the adjoint of the in-
finitesimal generator of X; and the innovation process dv; = dY; — E[h(t, X;) ‘]—"ty] dt
as the driving process. However it is not easy to cope with finding a solution of this
equation. In order to overcome this difficulty, M. Zakai (see [Z]) introduced the
unnormalized conditional density, i.e. a process ®, which is related to p(t,z,w) in
the following way:

(3.2) plte) = 7 z% & ‘:;dx.

Thus the solution of the original problem can be retrieved by using ®, which fulfills
a linear SPDE, called Zakai equation. It turns out that this equation is less difficult
to tackle than the above mentioned one.
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Following a line of reasoning similar to the paper of Zakai [Z], by exploiting the
Markov property of processes and the change of measure method in (3.1), one shows
that a corresponding Zakai equation for @ in (3.2) can be established (see also [Gr]
or [DR]). To be more precise, let us first define the equivalent measure p on (€2, F)
via dm = Ardp with Radon-Nikodym density

1 t
A = exp{/ (5, X,)dBY — 2/h2(sX)d

(3.3) / /RO log A(s, X, )Ny (ds, ds) + / /RO (1 — A(s, Xs,¢))dsv(ds)}.

Using the Girsanov theorem for random measures and the uniqueness of semimar-
tigale characteristics (see e.g. [JS]), one sees that the processes (3.1) get decoupled
under the measure p in the sense that system (3.1) transforms to

dX, = b(X,)dt+o(X;)dB;*
dY; - Bt"‘Lt

where Y; is a Lévy process independent of X; under y with

t
Bt:BtY—/ h(s, Xs)ds
0

the Brownian motion part and

¢
Lt://qN(ds,dg)
0 Jro

is the jump component, driven by the Poisson random measure N (ds, ds) := N, (ds, d<)
with compensation dsv(ds).
The unnormalized conditional density ® is defined as

(3.4) O(t,r,w) = JHF] (wp(t, 2, w).

Just as in the purely Gaussian setting (see [DM]), it can be proven that ®, provided
it exists and fulfills certain regularity assumptions, necessarily solves the following
Zakai equation:

t
O(t,z) — /L’*Q)(s,x)ds—l—
0

(3.5) /0h(s,a:)(b(s,x)stJr/O/R()\(s,x,g)—l)é(s,m)ﬁ(ds,dg)
(I)(()?I) = pO(‘I)7

where £* is the adjoint operator of the generator £ of X, N(ds,d<) := N(ds,dr) —
dsv(ds) and where po(z) is the density function of the initial condition Xy. One
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observes that £* can be written as
(3.6) L'=A—-c
for a function c(t,z), where A is the generator of a diffusion.

3.2. Explicit solution. In the following we denote by C;""(R; x R) the space of
continuously differentiable functions (n times in ¢, m times in z) with all partial
derivatives bounded. Further C™*# stands for the space of functions whose partial
derivatives up to order n are Holder continuous of order 0 < 5 < 1.

For convenience we sum up all the conditions, which are imposed on our filtering
model throughout this Section:

C1 : The Lévy measure v is finite.

C2 : The generator A in (3.6) is uniformly elliptic.

C3 : The coefficients b and ¢ are Holder continuous and belong to
C°(Ry x R).

C4 : The initial condition py in (3.5) is positive and element of
G (R).

C5 : The intensity rate A is strictly positive and (-, <) €
Oy (R x R) N C*MP (R, x R) uniformly in .
C6 : The function ¢ in (3.6) is in
Cp*(Ry x R) N C*H (R, x R).
C7 : The observation function A is contained in
Cr*(Ry x R)NC*A (R, x R).
C8 : A;in (3.3) is a martingale.
In order to derive an explicit solution of the Zakai equation (3.5 ), we will invoke

the Feynman-Kac representation formula. For the sake of completeness we recall
here a version of this formula, which is suitable for our purposes (see e.g. [F]).

Theorem 3.1. Suppose that k : [0,T7] x R — R is continuous and bounded and
that po : R — R is continuous and positive. Let u : [0,T] x R — R be of class
C12([0,T) x R) solving the Cauchy-problem

0

8_1; +ku = Au

uw(0,2) = po(x),

where A is the infinitesimal generator of a unique weak solution X, of an Ito-
diffusion with coefficients of linear growth. Further assume that u satisfies the poly-
nomial growth condition

< 2u
Orgg;\U(W)! < M(1+ [z[™)
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for some M > 0, > 1. Then u can be represented as
T

u(t,x) = ET-4" {pO(XT) exp{— k(T —t,X,)ds}

T—t
on [0, T] x R. Therefore such a solution is unique.
Remark 3.2. Sufficient conditions for the validity of this formula are: The generator

A is uniformly elliptic. The coefficients b, ¢ and k are Holder continuous and
bounded. The function py is of polynomial growth. See e.g. [F].

Assume that an It6 integrable solution ®(¢, z) in (3.5) exists. Then by (2.16) and
a similar relation for the Brownian motion, the Zakai equation can be equivalently
reformulated as

O(t,x) = / AD(s,z) — c(s,z)P(s, x)ds—i—/ h(s,z)P(s,x) o Wids

/ /R (s,z,6) — 1)P(s, x)oN(s ¢)dsv(ds)
¢(0,z) =

where W resp. N(t,g) is the white noise of B, resp. N(t,<) in (3.5).
By applying (formally) the Hermite transform to (3.7) we deduce that

%:I;(t,x,z) = AD(t,x,2) — k(t,x,2)®(t,z, 2)

EIS(O,JJ,Z) = po(x),

(3.7)

where

k(t,,2) = (c(t.x) — h(t,)Wi(z) - / (A(t ) — RN (t,))(2))v(de)

and where ®(t, z, z) = H(®(t,2))(z) and W,(z) = H(W,)(z) for z € CL (see (2.17)).
Using the inverse Hermite transform we obtain by means of the Feynman-Kac
formula a solution candidate for the Zakai equation (3.5).

Theorem 3.3. Suppose that conditions C1 — C8 hold. Then equation (3.7) has a
unique strong solution in (S)*. Moreover its solution takes the explicit form

(3.8) ®(t,x)
= E"[po(X(0) exp(— / c(s, Xy—s(0)ds)

expO{/oth(s,Xt X / /R (5, Xo_y )—1>N(ds,d<,w)}],

where X(0) = XZ(0) is a diffusion process associated with A, which starts at time
zero in x and which is defined on an auxialiary probability space (0,G, V). E* is
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the expectation with respect to the measure ¥ of X = X7 and the Wick eponential
exp® is defined as in (2.15).

Proof. By assumption we can apply the Feynman-Kac formula to the Cauchy prob-
lem (3.8) to obtain the stochastic representation of the solution as

(t,z,2) = Em[po(Xt(H))exp(—/O k(s, Xi—s(0), z)ds)].

By taking (2.15) and (2.17) into account, i.e.
H(exp®(F)) = exp(H(F)), I € (S)7,

we can extract the H transform from the left hand side of the last relation and get

&)(t,x,z) = ﬁ(t,x,z),
where U denotes the expression on the right hand side of (3.9). Then the charac-
terization theorem in [LOP] entails that

O(t,z) = U(t,x).

In order to confirm that U actually solves (3.7), one has to show that the H-transform
and the derivatives in (3.7) can be interchanged. The general theory of parabolic
partial differential equations applied to (3.8) (see Theorem 2.78 in [ES]) shows that
for every open set G = (0,7) x D relatively compact in R, x R there exists a
constant C' such that

|

<z

: + [1poll ¢z~ o) -

C1.24+7(G) cL2+v (@

where L is the partial differential operator defined by

Du(t,2) = 00— Aut kit 2, 2

The last inequality in connection with a Lévy version of Theorem 4.1.1 in [HOUZ]
implies that this commutation of operators can be performed. Compare e.g. with
[B] or [P]. &

We can verify that the solution ®(¢, ) in Theorem 3.3 takes values in a consider-
ably smaller subspace of (S)*.
Lemma 3.4. The solution ®(t,x) in (3.9) belongs to LP(u), p > 1.

Proof. Since B; and N (t,¢) are independent we give the proof w.l.o.g. for the jump
case, that is we consider the case h = 0 without B} in (3.9). We conclude from
(2.14) that

(Culw), ") = (C1(w), )™,

where

«MW@ZKAfmwkm.
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Therefore, in virtue of (2.6 ) and (2.15) the relation

(3.9) expo{/ /RO ©N (ds, ds,w)}

= exp{/o /RO log(1 4 @) N(ds, ds,w) + /Ot /RO (log(1 + ) — @)dsv(ds)}

holds. So using Tonelli we find the estimate
EMH(D(ta :E) |p]

t
< poll?, eIl B2 B, fexp{p / / log(A(s, Xiu(60), <)) N (ds, ds, )
0 Ro

. / t / N5 X06),6) ~ ()]

< |lpollZ, eIt exp{(p + D (Ro)t([|A[l, + 1)} < oo.
Thus the result follows. 1
We are coming to our main result.

Theorem 3.5. Under assumptions C1 — C8 there exists a unique strong solution
O(t,x) in LP(u),p > 1, of the Zakai equation, which is twice continuously differen-
tiable in x. The solution is explicitly given by

(3.10) O(t, )

= E%[po(X4(0) exp(—/otc(s,Xt_s(H)ds)
e [ hls. Xo-s@)aB) = 5 [ (his, X))
[ om0t X)) Vs, s
# [ Qom0 Xi0).0) = (6K (0).) = D))

Proof. One checks that ®(-,z) is a cadlag adapted process. By the independence
of Band N and by (3.10) and a similar relation for B we get the representation
n (3.11). Following the same arguments as in [BDPV], based on Kolmogorov’s
continuity theorem for random fields (see also [K] for the use of stochastic flow
arguments), one verifies with the help of Lemma 3.4 that ® is twice continuously
differentiable w.r.t. z. §

Remark 3.6. Theorem 3.5 can be extended e.g. to signal processes, which are mod-
elled by a Lévy-Ito diffusion, i.e. by diffusions involving a Poisson random measure
as additional term. In a more sophisticated way, using flow property arguments, the
above proofs carry over to such processes under modified conditions.
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4. APPLICATION TO FINANCE: CALIBRATION OF JUMP DIFFUSION MODELS

In financial markets, one important issue in pricing and risk analysis is to es-
timate the dynamics of the underlying assets. Traditionally, financial assets have
been described by diffusions, the Black-Scholes model being the classical one. How-
ever, diffusion models have been shown to be insufficient to explain certain empirical
properties of asset returns and option prices. This has led to a development of a
variety of jump diffusion models, of which one widely studied class is that of ex-
ponential Lévy processes. In this natural generalization of the Black-Scholes model
one assumes the asset to be of the form

St = eXp(Y;f%

where Y} is a Lévy process defined by its characteristics (a, o, ). Then, if one assumes
the Lévy measure v = vy to be parametrized by 6, parameter estimation methods
can be employed to optimally fit (a,o,v) to market data. Information about o is
quite rich in the market (e.g implied volatility), and there also exist methods based
on quadratic variation to calculate o. The evaluation of the drift a and the Lévy
measure vg, however, is more delicate. A possible estimation procedure could be
filtering.

In [CT] a non-parametric calibration method to fit the risk neutral Lévy measure
to market data has been developed. Their empirical results show that already a
small Lévy intensity (the total mass of the Lévy measure) is sufficient to account for
observed implied volatility patterns. However, the assumption of time homogenous
Lévy measures seems not to be appropriate. Actually, the Lévy intensity appears
constant over time, but the shape of the density (the weight on different jumps)
changes over time.

Motivated by these empirical findings we will in the following set up a filter
problem in the framework of this paper, that takes this time dependence pattern
into account. Here, the power of filtering becomes evident since this method is able
to capture the dynamics of the estimate, constantly updated by the observations.

We choose to model an observed asset price process S; by

t
(4.1) Y; =log(S;) = at + oB; + / / ¢N(ds, ds),
0 JRo

where a, o is supposed to be known, w.l.o.g. we assume ¢ = 1, B, is the Brownian
motion and N, (ds, d¢) is the jump measure with compensating measure (¢, X;, ¢)dtv(ds)
in (3.1) of the form

A[((Mtu Pt)
Ne(m, s)
v(ds) = X N.(m,s)ds,

where NV (u, p) is the Gaussian density with mean p and standard deviation p and
where X; is the multidimensional signal process (4.3). Here, N'(m, s) is just an alibi

(4.2) A(t, X4, 9)
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density to induce a Lévy measure v. In other words, we assume the compensated
jump measure at time ¢ to be of Gaussian type with mean p,, standard deviation p,
and given constant intensity \. Further we suppose that y, is described by an mean-
reverting Ornstein-Uhlenbeck process and that p, is constant over time. Then the
problem of estimating the dynamic of the financial asset comes down to estimating
u, and p,. We remark that this model does not reflect reality very well, but we have
chosen this setting for notational simplicity. Including the other model parameters
in the estimation or choosing a more realistic parametrized compensated measure
than of Gaussian type would follow the same principle.
Setting up the corresponding filter problem, results in the following five-dimensional

signal process

d,ut = dt(Ct — H’t)dt + btdBt

ddt = 0
(4.3) X, ={ de,=0
dbt - O
dp, =0

and the observation process Y;, given by (4.1) (with o = 1).

We suppose that a prior distribution for (u,, do, co, bo, py) is given by the joint
density po(p, d, ¢, b, p). The dual of the infinitesimal generator of the signal process
is here

L 1,0 )
L=y s —dle— g +d

which can be written as A — ¢, where A is the generator of the system

(4.4) dp, = _Jf:(gt — [i)dt +gtdBt
dd, = 0
de = 0
dgt - O
dp, = 0
The observation process is given by the log-price
(4.5) dY; = adt + dB; + / Ny (ds, ds).
Ro

Theorem 3.5 cannot be directly applied to this problem, since e.g. the drift in (4.4)
and the intensity A(t, X;,<) appear to be unbounded. However, since (4.4) is a
Gausssian driven diffusion of linear type one checks that the proof of the Feynman-
Kac formula as recalled in Theorem 3.1 carries over to this case. The linearity
of (4.4) together with dominated convergence finally gives the desired regularity
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of the unnormalized conditional density. Therefore we get as a solution for the
unnormalized conditional density of pu,, dy, ct, by, py -

(4.6)

<I>(ta M, d7 &) ba p)
1
= B0 o E(9), . b, p) expltd + taBy(w) — 5ta?)

o[ [ (M)
A ) Kl

where the above expectation is taken w.r.t. the measure ¥(d6).
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