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Abstract. We consider linear parabolic stochastic integro-PDE’s of Feynman-
Kac type associated to Lévy-Itô diffusions. The solution of such equations can
be represented as certain Feynman-Kac functionals of the associated diffusion
such that taking expectation yields the deterministic Feynamn-Kac formula. We
interpret the problem in the framework of white noise analysis and consider differ-
entiation in the sense of stochastic distributions. This concept allows for relaxed
assumptions on the equation coefficients, identically to those required in problems
of similar deterministic integro-PDE’s.

1. Introduction

We examine solutions u(t, x) = u(ω, t, x) of linear parabolic stochastic integro-
PDE’s of the following type

(1.1)


−du(t, y) = Lu(t, y)dt +

∫
R0
Bu(t, y)ν(dζ)dt + g(t, y)dt

+ {L′u(t, y) + f(t, y)} dBt +
∫

R0
{B′u(t, y) + k(t, y, ζ)} Ñ(dt, dζ),

u(T, y) = ϕ(y), (t, y) ∈ [0, T )× R,

where

Lu(t, y) =
1

2
(σ2(t, y) + σ̂2(t, y)) ∂yyu(t, y) + b(t, y) ∂yu(t, y) + c(t, y)u(t, y)

Bu(t, y) = u(t, y + γ(t, y, ζ)) + u(t, y + γ̂(t, y, ζ))− 2u(t, y)

L′u(t, y) = σ(t, y) ∂yu(t, y) + p(t, y)u(t, y)

B′u(t, y) = u(t, y + γ(t, y, ζ))− u(t, y) + q(t, y, ζ)u(t, y),

and where Bt is Brownian motion and Ñ(dt, dζ) = N(dt, dζ) − dtν(dζ) is the
compensated jump measure of a pure jump Lévy process Lt. Without the jump

parts
∫

R0
Bu(t, y)ν(dζ)dt and

∫
R0
{B′u(t, y) + k(t, y, ζ)} Ñ(dt, dζ) these equations

have been studied by many authors, see for example [K3], [Pa], [KR2]. Solutions of
such equations can be represented as Feynman-Kac functionals of certain associated
Itô diffusions such that taking expectation (which makes the stochastic integrals
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in equation (1.1) disappear) yields the usual deterministic Feynman-Kac formula.
However, if one only considered classical solutions of (1.1), the smoothness assump-
tions required on the coefficients would be much stronger than those which guar-
antee the existence of the corresponding Feynman-Kac solution candidate. In the
Gaussian case, existing Sobolev Lp theory and Hölder theory for stochastic PDE’s
closes this gap, and regularity conditions for uniformly non-degenerate SPDE’s (i.e.
σ̂2 ≥ δ > 0) are the same on L and g and higher by 1 on L′ and f as in similar
deterministic problems. In the work of [MR2] the authors introduce the notion of
so called soft solutions (see also [MR1]) which allows to further relax conditions
on L′ and σ̂2. This notion is an extended concept of solution to stochastic partial
differential equations and the main tool used here is the Cameron-Martin-Itô theory
of Wiener chaos (see [CM], [K1]).

In this paper we add an integro part to the equation and interpret equation (1.1)
in the white noise framework for Lévy processes developed in [ØP], [LP] and [LØP],
which is the analogue for Lévy processes of the white noise theory for Brownian
motion in [HØUZ]. Using white noise notations one can rewrite equation (1.1) as
equation (3.1) in Section 3. In the white noise framework the notion of a solution is
extended to the concept of generalized solutions that take values in the Kondratiev
distribution space (S)−1 (see Section 2 for definitions). To the best of our knowledge,
solution theory for stochastic integro-PDE’s is very little developed. The concept of
solutions in stochastic distribution spaces allows to assume regularity conditions on
the coefficients in equation (1.1) equal to those for classical solutions of similar deter-
ministic integro-PDE problems. In particular uniformly non-degeneracy is relaxed.
It is shown that the explicit solution can be represented as a Feynman-Kac type
functional of a certain associated Lévy-Itô diffusion (where however the integration
is with respect to a two parameter Lévy process).

Further, concerning the time direction in (1.1) the following has to be mentioned.
In the existing literature stochastic integration in (1.1) is Itô integration, which
requires that SPDE’s with terminal condition run backward in time (i.e. Brownian
motion starts in time T ). In our case, the white noise equation (3.1) together with
relation (2.12) allows us to consider forward running time, i.e. Brownian motion
and Poisson jump measure start in time 0. Stochastic integrals in (1.1) are then
Skorohod integrals, provided they exist.

The study of stochastic integro-PDE’s of the type (1.1) is as in the continuous case
motivated by its appearance in different applications. One important example is the
Zakai equation occurring in non-linear filtering problems for Cox processes. Assume
a partially observable two dimensional process (Xt, Yt), 0 ≤ t ≤ T . Xt stands for the
unobservable component of the process, referred to as the signal process, whereas Yt

is the observable part, called observation process. Suppose that the dynamics of the
process is described by the following SDE:

dXt = b(Xt)dt + σ(Xt)dBX
t
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dYt = h(t,Xt)dt + dBY
t +

∫
R0

ςNλ(dt, dς),

where (BX
t , BY

t ) is a Wiener process, and Nλ is an integer valued random measure
with predictable compensator

µ̂(dt, dς, ω) = λ(t,Xt, ς)dtν(dς)

for a Lévy measure ν and a function λ(t, x, ς), such that the increments of Nλ

are conditionally independent with respect to the filtration generated by BX
t . The

interest is now to estimate the (possibly transformed) signal f(Xt) for a function
f given the observations Yt, 0 ≤ s ≤ t. The filter theory proposes the least square
estimate of f(Xt) at time t given the history of the observation process up to time
t, that is the optimal filter is given through the conditional expectation

E[f(Xt)
∣∣FY

t

]
.

Given some smoothness conditions on the coefficients and that the initial condition
X0 has a density p0, one can then show that

E[f(Xt)
∣∣FY

t

]
=

∫
f(x)u(ω, t, x) dx∫

u(ω, t, x) dx
,

where the unnormalized conditional density u(t, x) = u(ω, t, x) is a solution of the
Zakai equation

du(t, x) = Lu(t, x)dt + h(t, x)u(t, x)dBt

+

∫
R0

(λ(t, x, ς)− 1)u(t, x)Ñ(dt, dς)

u(0, x) = p0(x).

Here L is the adjoint operator of the generator of Xt and Ñ(ds, dς) is the compen-
sated jump measure of a Lévy process. As can be seen, this equation is a special
case of equation (1.1) (modulo a time reversed terminal condition). For more details
regarding the Zakai equation for jump diffusions and its solution see for example
[G1], [G2] and [MP] and the references therein.

A second important example of equation (1.1) is referred to as backward diffusion
equation. The continuous version goes back to [Za] and is further treated in e.g.
[KR1], [K2] and [R]. It states that if Y t,y

s solves the Itô diffusion described by{
dYs = b(Ys)ds + σ(Ys)dBs

Yt = y, t ≤ s ≤ T,

then under appropriate smoothness conditions on the coefficients u(t, y) = Y T−t,y
T is

a solution of{
du(t, y) =

{
1
2
σ2(y) ∂yyu(t, y) + b(y) ∂yu(t, y)

}
dt + σ(y) ∂yu(t, y)d

←−
Bt

u(0, y) = y.
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Here
←−
Bt is the Brownian motion BT − BT−t. In Section 3 we derive for the jump

case the analogue backward diffusion equation for Lévy-Itô diffusions as a corollary.
In the remaining parts of the paper we recapitulate the essential concepts of white

noise theory for Lévy processes in Section 2 before these are used to state and solve
the stochastic Feynman-Kac problem in Section 3.

2. White Noise Framework

In this Section we provide a brief review of some concepts of a white noise theory
for Lévy processes, developed in [ØP], [LP] and [LØP]. In the next Section we will
use this theory as a basic tool to determine the solution of a SPDE in the Lévy-Hida
space. For general information about white noise theory the reader is referred to
the excellent accounts of [HKPS], [HØUZ], [Ku] and [O].

Let us recall that a Lévy process L(t) is a stochastic process on R+, which has
independent and stationary increments starting at zero, i.e. L(0) = 0. The process
L(t) is by its nature a càdlàg semimartingale, which is uniquely determined by the
characteristic triplet

(2.1) (Bt, Ct, µ̂) = (a · t, σ · t, ν(dζ)dt),

where a, σ are constants and where ν is the Lévy measure on R0 := R − {0}. For
more information about Lévy processes we refer to e.g. [B], [Sa] or [JS].

We will first concentrate on the less familiar white noise framework in the case of
a pure jump Lévy processes. i.e. L(t) has no Brownian motion part. At the end of
this section, we will then quickly recapitulate how to extend the setting to general
Lévy processes.

We denote by S(R2) the Schwartz space on R2. The space S p(R2) is the dual of
S(R2), that is the space of tempered distributions. Set Π := R × R0. We want to

work with a white noise measure, which is constructed on the nuclear algebra S̃ p(Π),

introduced in [LØP] as follows. The space S̃(Π) is defined as the quotient algebra

(2.1) S̃(Π) = S(Π)/Nπ,

where S(Π) is a subspace of S(R2), given by

(2.2) S(Π) :=

{
ϕ(t, ζ) ∈ S(R2) : ϕ(t, 0) = (

∂

∂ζ
ϕ)(t, 0) = 0

}
and where the closed ideal Nπ in S(Π) is defined as

(2.3) Nπ := {φ ∈ S(Π) : ‖φ‖L2(π) = 0}

with π = ν(dζ)dt. The space S̃(Π) is a (countably Hilbertian) nuclear algebra. We

indicate by S̃ p(Π) its dual.
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From the Bochner-Minlos theorem we deduce that there exists a unique probabil-

ity measure µ on the Borel sets of S̃ p(Π) such that

(2.4)

∫
eS p(Π)

ei〈ω,φ〉dµ(ω) = exp

(∫
Π

(eiφ − 1)dπ

)
for all φ ∈ S̃(Π), where 〈ω, φ〉 := ω(φ) denotes the action of ω ∈ S̃ p(Π) on φ ∈ S̃(Π).

The measure µ on Ω = S̃ p(Π) is called (pure jump) Lévy white noise probability
measure.

In the sequel we consider the compensated Poisson random measure induced
through relation (2.4)

Ñ(dt, dζ) = N(dt, dζ)− ν(dζ)dt

associated with a Lévy process L(t), which is defined on the white noise probability
space

(Ω,F , P ) =
(
S̃ p(Π),B(S̃ p(Π)), µ

)
.

By using generalized Charlier polynomials Cn(ω) ∈
(
S̃(Π)b⊗n

)p
(dual of the n-th

completed symmetric tensor product of S̃(Π) with itself) it is possible to construct
an orthogonal L2(µ)−basis {Kα(ω)}α∈J defined by

(2.5) Kα(ω) =
〈
C|α|(ω), δ

b⊗α
〉

,

where J is the multiindex set of all α = (α1, α2, ...) with finitely many non-zero

components αi ∈ N0. The symbol δb⊗α denotes the symmetrization of δ⊗α1
1 ⊗...⊗δ

⊗αj

j ,

where {δj}j≥1 ⊂ S̃(Π) is an orthonormal basis of L2 (R× R0, dtν(dζ)). We assume

the basis elements δj to be of the form δj = ξlγk where (ξl)l∈N are the Hermite
functions and (γk)k∈N is an orthonormal basis of L2 (R0, ν(dζ)).

Then every X ∈ L2(µ) has the unique representation

X =
∑
α∈J

cαKα

with Fourier coefficients cα ∈ R. Moreover we have the isometry

(2.6) ‖X‖2L2(µ) =
∑
α∈J

α!c2
α

with α! := α1! α1!... for α ∈ J . The Kondratiev test function space (S)1 consists of
all f =

∑
α∈J cαKα ∈ L2(µ) such that

(2.7) ‖f‖21,k :=
∑

γ∈Jm

(α!)2 c2
α(2N)kα <∞

holds for all k ∈ N0 with weights (2N)kα = (2·1)kα1(2·2)kα2 ...(2·l)kαl , if Index(α) :=
l. The space (S)1 is given the projective topology, induced by the norms (‖·‖1,k)k∈N0
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in (2.7). The Kondratiev distribution space, denoted by (S)−1 is the topological dual
of (S)1. So we obtain the following Gel’fand triple

(2.8) (S)1 ↪→ L2(µ) ↪→ (S)−1.

We can endow (S)−1 with the structure of a topological algebra by introducing the
Wick product �, defined by

(2.9) (Kα � Kβ)(ω) = (Kα+β)(ω), α, β ∈ J .

The product is linearly extensible to (S)−1 × (S)−1 . It can be proven that

(2.10) 〈Cn(ω), fn〉 � 〈Cm(ω), gm〉 =
〈
Cn+m(ω), fn⊗̂gm

〉
for fn ∈ S̃(Π)b⊗nand gm ∈ S̃(Π)b⊗m (see [LØP]).

A nice feature of the Lévy-Hida distribution space is that it carries the white noise
•

Ñ(t, ζ) of the compensated Poisson random measure Ñ(dt, dζ). That is the formal

Radon-Nikodym derivative of Ñ(dt, dζ) defined as

(2.11)
•

Ñ(t, ζ) =
∑
k≥1

δk(t, ζ)Kεk
(ω)

is in (S)−1 dtν(dζ)−a.e.. Here εk is the multiindex with 1 on its k’th place and zero

otherwise. The Wick product relates to Skorohod integrals with respect to Ñ(dt, dζ)
(see for example [ØP] for the definition of the Skorohod integral) in the following
way: If Y (t, ζ, ω) is a Skorohod integrable process, fulfilling the condition

E

[∫ T

0

∫
R0

Y 2(t, ζ, ω)dtν(dζ)

]
<∞,

then Y (t, ζ, ω)�
•

Ñ(t, ζ) is λ×ν-Bochner integrable in (S)−1 and (see [LØP] or [ØP])

(2.12)

∫ T

0

∫
R0

Y (t, ζ, ω) Ñ(δt, dζ) =

∫ T

0

∫
R0

(
Y (t, ζ, ω) �

•

Ñ(t, ζ)

)
dtν(dζ),

where the left hand side denotes the Skorohod integral.
One of our main tools in the study of Lévy-Itô diffusions is the Lévy Hermite

transform H, which is used to give a characterization of distributions in (S)−1 (see
characterization Theorem 2.3.8 in [LØP]). Similar to the Gaussian case the definition
ofH rests on the basis {Kα(ω)}α∈J in (2.6). The Lévy Hermite transform of X(ω) =∑

α cαKα(ω) ∈ (S)−1, denoted by HX or shorter by X̃, is defined by

(2.13) HX(z) = X̃(z) =
∑

α

cαzα ∈ C ,



2. White Noise Framework 7

where z = (z1, z2, ...) ∈ CN, i.e. in the space of C−valued sequences, and where
zα = zα1

1 zα2
2 .... We have that HX(z) in (2.13) is absolutely convergent on the

infinite dimensional neighborhood

(2.14) Kq(R) :=

{
(z1, z2, ...) ∈ CN :

∑
α 6=0

|zα|2 (2N)qα < R2

}

for some 0 < q ≤ R < ∞. For example, the Hermite transform of
•

Ñ(t, ζ) can be
evaluated as

(2.15) H(
•

Ñ(t, ζ))(z) =
∑
k≥1

δk(t, ζ)zk.

The Hermite transform translates the Wick product into an ordinary (complex)
product, that is

(2.16) H(X � Y )(z) = H(X)(z) · H(Y )(z).

As a consequence of Theorem 2.3.8 in [LØP] the last relation can be generalized to
Wick versions of complex analytical functions g: If the function g : C −→ C can be
expanded into a Taylor series around ξ0 = H(X)(0) with real valued coefficients,
then there exists a unique distribution Y ∈ (S)−1 such that

(2.17) H(Y )(z) = g (H(X)(z))

on Kq(R) for some 0 < q ≤ R <∞. We set g�(X) = Y.
For example, the Wick version of the exponential function can be written as

(2.18) exp� X =
∑
n≥0

1

n!
X�n.

Let us now shortly outline how the preceding concepts and results can be gener-
alized to capture the case of Lévy processes with Brownian motion and pure jump
part (see [P]). Indicate by µG the Gaussian white noise measure on the measurable
space

(ΩG,FG) = (S p(R),B(S p(R))).

Further recall the construction of the orthogonal L2(µG) basis {Hα(ω)}α∈J , given
by

Hα(ω) =
∏
j≥1

hαj
(〈ω, ξj〉),

where 〈ω, ·〉 = ω(·) and where ξj (respectively hj), j = 1, 2, ... are the Hermite
functions (respectively Hermite polynomials). Using µJ to denote the pure jump

white noise measure on (ΩJ ,FJ) = (S̃ p(Π),B(S̃ p(Π))) as introduced above, we can
define the Lévy white noise measure µ as the product measure µG × µJ on

(2.19) (Ω,F) = (ΩG × ΩJ ,FG ⊗FJ).
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Set

(2.20) Lγ(ω) = Lγ(ω1, ω2) = Hα(ω1)Kβ(ω2),

if γ = (α, β) ∈ I : = J 2. Thus (Lγ(ω))γ∈I constitutes an L2(µ)−basis with norm
expression

‖Lγ‖2L2(µ) = γ!,

where γ! := α!β! for γ = (α, β) ∈ I.
As in the pure jump setting, we employ the basis (Lγ(ω))γ∈I to establish the

concepts of Hida space, Wick product and Hermite transform to the mixture of

Gaussian and pure jump Lévy noise. As in [HØUZ], the white noise
•
Bt of Brownian

motion is defined as an element in the Hida distribution space

(2.19)
•
Bt :=

∑
k

ξk(t)Hεk
.

In particular, the analogous relation of (2.12) is also valid for Brownian motion and
its white noise.

We conclude this Section with two remarks.

Remark 2.1. Note that by choosing an appropriate basis the above described white
noise theory can be established on any time interval [0, T ] instead of the complete
time line R (which is used in the next section).

Remark 2.2. Due to notational convenience we have chosen to present the white
noise framework only for Lévy processes with one dimensional time parameter. The
generalization to d-parameter Lévy processes (d-dimensional time parameter), which
are used in the beginning of the next Section, is straight forward and can be found
in [P].

3. Generalized Solutions of Stochastic Feynman-Kac Equations
associated to Lévy-Itô Diffusions

Let (Ω,F , µ) be a white noise space corresponding to a two dimensional fixed
time interval [0, T ]× [0, U ] with associated Brownian motion Bt and 2-parameter
pure jump Lévy process P (t, u) with Lévy measure ν ′(dζ). For convenience we
suppose that P (t, u) is a square integrable 2-parameter martingale, i.e. we have the
representation

P (t, u) =

∫ t

0

∫ u

0

∫
R0

ζ M̃(dt, du, dζ),

where M̃(dt, du, dζ) = M(dt, du, dζ)−dtduν ′(dζ) is the compensated jump measure
of P (t, u). The image measure of M(dt, du, dζ) under the projection

pr : [0, T ]× [0, U ]× R0 −→ [0, T ]× R0,
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denoted by N(dt, dζ), is the jump measure of a square integrable Lévy process Lt

with Lévy measure ν(dζ) = U · ν ′(dζ). This is easily seen from the characteristic
function of µ. We have the Lévy-Itô representation

Lt =

∫ t

0

∫
R0

ζ Ñ(dt, dζ),

where Ñ(dt, dζ) = N(dt, dζ) − dtν(dζ) is the compensated Poisson random mea-
sure of Lt. Let {Ft}0≤t≤T be the completion of the filtration generated by Bt and
the Poisson random measure N(dt, dζ). Restriction to FT -functionals in the white
noise setting on (Ω,F , µ) leads in a natural way to a white noise space (Ω,FT , µ)
corresponding to the time interval [0, T ] with associated Brownian motion Bt and
pure jump Lévy process Lt. In the sequel this will be our underlying white noise
probability space.

On this space, we now consider the following linear parabolic stochastic integro-
PDE in (S)−1 which is the interpretation of equation (1.1) in the white noise frame-
work

(3.1)


0 = ∂tu(t, y) + Lu(t, y) +

∫
R0
Bu(t, y)ν(dζ) + g(t, y)

+ {L′u(t, y) + f(t, y)} �
•
Bt +

∫
R0
{B′u(t, y) + k(t, y, ζ)} �

•

Ñ(t, ζ)ν(dζ)

u(T, y) = ϕ(y), (t, y) ∈ [0, T ]× R,

where

Lu(t, y) =
1

2
(σ2(t, y) + σ̂2(t, y)) ∂yyu(t, y) + b(t, y) ∂yu(t, y) + c(t, y)u(t, y)

Bu(t, y) = u(t, y + γ(t, y, ζ)) + u(t, y + γ̂(t, y, ζ))− 2u(t, y)

L′u(t, y) = σ(t, y) ∂yu(t, y) + p(t, y)u(t, y)

B′u(t, y) = u(t, y + γ(t, y, ζ))− u(t, y) + q(t, y, ζ)u(t, y).

The aim of the paper is to identify and represent a generalized solution of (3.1) in
the stochastic distribution space (S)−1. A generalized solution of (3.1) is defined
as a process u(t, y) such that equation (3.1) is fulfilled with differentiation and
integration taken in (S)−1. One main tool in achieving this aim will be the Hermite
transform that enables the transformation of the stochastic problem to a similar
deterministic problem. Also, as already mentioned in the introduction, even if we
impose a terminal condition we can consider forward running time in the white
noise framework, i.e. Brownian motion and Poisson jump measure start in time 0.
Integrating equation (3.1) in t then leads by relation (2.12) to Skorohod integrals
with respect to Brownian motion and Poisson jump measure, provided they exist.
Further, for notational convenience we focus in this paper on the one-dimensional
case of equation (3.1), but note that the analog techniques and results go through
in the n-dimensional case.
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Concerning the coefficients in equation (3.1) we impose three sets of conditions
ensuring the three essential requirements for our solution concept.

The first set regards the stochastic differential equation (3.15), and we suppose
the following boundedness and Lipschitz conditions. We assume that there exist
K > 0 and β : R −→R+ with

∫
R0

β(ζ)ν(dζ) < +∞ such that for all s ∈ [0, T ] and
v, y ∈ R

|b(s, y)|+ |σ(s, y)|+ |σ̂(s, y)|+ |c(s, y)|(3.2)

+ |p(s, y)|+ |g(s, y)|+ |f(s, y)| ≤ K

|γ(s, y, ζ)|+ |γ̂(s, y, ζ)|+ |q(s, y, ζ)|+ |k(s, y, ζ)| ≤ β(ζ) ·K(3.3)

and

|b(s, v)− b(s, y)|+ |σ(s, v)− σ(s, y)|+ |σ̂(s, v)− σ̂(s, y)|
+ |p(s, v)− p(s, y)|+ |g(s, v)− g(s, y)|(3.4)

+ |f(s, v)− f(s, y)|+ |ϕ(v)− ϕ(y)| ≤ K |v − y|
|γ(s, v, ζ)− γ(s, y, ζ)|+ |γ̂(s, v, ζ)− γ̂(s, y, ζ)|(3.5)

+ |q(s, v, ζ)− q(s, y, ζ)|+ |k(s, v, ζ)− k(s, y, ζ)| ≤ β(ζ) |v − y| .
In addition we set 0 ≤ q(s, y, ζ) for all (s, y, ζ) ∈ [0, T ]× R× R0.

The second set regards the solution of a deterministic integro-PDE problem. More
precisely, we assume the coefficients in equation (3.1) to be such that with

φ′z(t) = H(
•
B(t))(z) =

∑
k

zkξk(t)

and

φ′′z(t, ζ) = H(
•

Ñ(t, ζ))(z) =
∑

k

zkδk(t, ζ)

for a given z ∈ Kq(R) ∩ RN the deterministic integro-PDE

(3.6)


0 = ∂tu(t, y) + Lu(t, y) +

∫
R0
Bu(t, y)ν(dζ) + g(t, y)

+ {L′u(t, y) + f(t, y)}φ′z(t) +
∫

R0
{B′u(t, y) + k(t, y, ζ)}φ′′z(t, ζ)ν(dζ)

u(T, y) = ϕ(y), (t, y) ∈ [0, T ]× R,

has a solution u∗ in C1,2([0, T ], R). For example, one sufficient set of conditions on
the coefficients additionally to (3.2)-(3.5) would be as follows (see [PH], Section 5.2).
For β(ζ) as before and β′ : R −→R+ such that

∫
R0

(β′)2(ζ)ν(dζ) < +∞ we require

The diffusion coefficient (σ̂2 + σ2) is bounded away from zero.(3.7)

The coefficients b(s, y), σ(s, y), σ̂(s, y), γ(s, y, ζ)β′−1(ζ), γ̂(s, y, ζ)β−1(ζ)(3.8)

are locally Lipschitz continuous in (s, y) uniformly in ζ.

The coefficients f(s, y), g(s, y), k(s, y, ζ)β′−1(ζ) are globally Lipschitz(3.9)

continuous in (s, y) uniformly in ζ.
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The coefficients c(s, y), p(s, y), q(s, y, ζ)β′−1(ζ) are locally Hölder(3.10)

continuous in (s, y) uniformly in ζ.

The Lévy measure ν is finite.(3.11)

Note that for example for k(s, y, ζ) condition (3.9) together with the nature of
φ′′z(t, ζ) and Hölder’s inequality imply the Lipschitz continuity in (s, y) of the function∫

R0

k(s, y, ζ)φ′′z(s, ζ)ν(dζ).

Analogue implications are valid for γ(s, y, ζ), γ̂(s, y, ζ) and q(s, y, ζ). Also, we stress
that by condition (3.7) uniformly non-degeneracy is relaxed.

Note further that other sets of sufficient conditions including infinite Lévy mea-
sures are possible (see for example [GS]).

Finally, in order to apply Hermite transform techniques as will be seen below, we
suppose for a γ ∈ (0, 1) the following Hölder regularities. Let C0,n+γ (respectively
Cn+γ), n ∈ N, denote functions who are bounded and continuous in t and whose
partial derivatives in y up to order n are γ-Hölder continuous (respectively whose
partial derivatives up to order n are γ-Hölder continuous). Then we assume with β′

as above uniformly in ζ:

The coefficients g(t, y), f(t, y), p(t, y), c(t, y), q(s, y, ζ)β′−1(ζ),(3.12)

k(s, y, ζ)β′−1(ζ) are elements of C0,0+γ([0, T ]× R).

The coefficient ϕ(y) is element of C2+γ(R).(3.13)

Then it follows from (3.12) and (3.13) together with (3.7) as in [MPr1] that

(3.14) ||u∗||C0,2+γ([0,T ]×R) ≤ C ,

where C is a constant depending on of the coefficients in (3.12) and (3.13).

We now want to specify the dynamics of a jump diffusion that can be associated
with a stochastic Feynman-Kac solution of equation (3.1). For this purpose, define

a copy (Ω̂, F̂T , µ̂) of our underlying white noise space with corresponding Brownian

motion B̂s and independent pure jump Lévy process L̂t, also with Lévy measure
ν(dζ) and jump measure denoted by N̂(dt, dζ). Then, consider the following SDE

on the stochastic basis (Ω× Ω̂,FT ⊗ F̂T , µ× µ̂)

dYs = [b(s, Ys−)− σ(s, Ys−)p(t, Ys−)] ds + σ(s, Ys−)dBs + σ̂(s, Ys−)dB̂s

+

∫
[0,U ]

∫
R0

γ(s, Ys− , ζ)1n
u≤ U

1+q(s,Ys−,ζ)

o M(ds, du, dζ)(3.15)

+

∫
R0

γ̂(s, Ys− , ζ) N̂(ds, dζ),

Yt = y, t ≤ s ≤ T.
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By conditions (3.2)-(3.5) it can be proven similar to Proposition 1.1 in [F] that there
exists a (unique) càdlàg square integrable solution of (3.15) for all 0 ≤ t ≤ s ≤ T ,
which we denote by Y t,y

s ∈ L2. Using this solution we define the following Feynman-
Kac functional

u(t, y, ω) = E

[
ϕ(Y t,y

T )ρ(t, T ) +

∫ T

t

g(s, Y t,y
s )ρ(t, s)ds

+

∫ T

t

f(s, Y t,y
s )ρ(t, s)dBs(3.16)

+

∫ T

t

∫
R0

k(s, Y t,y
s , ζ)ρ(t, s) Ñ(ds, dζ)

∣∣∣∣FT

]
,

where

ρ(t, s) = exp

{∫ s

t

c(r, Y t,y
r )dr +

∫ s

t

p(r, Y t,y
r )dBr −

1

2

∫ s

t

p2(r, Y t,y
r )dr

+

∫ s

t

∫
R0

log
(
1 + q(r, Y t,y

r , ζ)
)
Ñ(ds, dζ)

+

∫ s

t

∫
R0

(
log

(
1 + q(r, Y t,y

r , ζ)
)
− q(r, Y t,y

r , ζ)
)
ν(dζ)dr

}
.

Our main result in this paper is then:

Theorem 3.1. Under the conditions formulated in (3.2)-(3.13) we have that u(t, y, ω)
as defined in (3.16) solves uniquely the stochastic integro-PDE (3.1) in (S)−1.

Before we give the proof of Theorem 3.1 we state the following help lemma as
given in [P].

Lemma 3.2. Let G be a bounded open subset of R+×R. Assume a process U : G→
(S)−1 with HU = u such that u and its partial derivatives ∂u

∂t
, ∂u

∂y
, ∂2u

∂y2 are bounded

on G×Kq(R), continuous with respect to (t, y) ∈ G for all z ∈ Kq(R), and analytic
in z ∈ Kq(R) for all (t, y) ∈ G, q <∞, R > 0. Then on Kq(R)

H
(

∂U

∂t

)
=

∂u

∂t
, H

(
∂U

∂y

)
=

∂u

∂y
, H

(
∂2U

∂y2

)
=

∂u

∂y2
.

Proof. (Theorem 3.1) In this proof we only focus on the pure jump part of the
problem, i.e. we set σ(t, y), σ̂(t, y)), b(t, y), f(t, y) and p(t, y) identically to 0. The
proof of the general case follows the same principle and doesn’t add anything new
to the existing literature. First note (see Theorem 2.7.10 in [HØUZ]) that since
u(t, y, ω) is an L2(µ) functional of Lt the Hermite transform can be expressed as
(3.17)

ũ(t, y, z) := H (u(t, y, ω)) (z) = E

[
u(t, y, ω) · E

(∫ T

0

∫
R0

φ′′z(t, ζ)Ñ(dt, dζ)

)]
,
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where φ′′z(t, ζ) =
∑

k zkδk(t, ζ) is as in (3.6) for z in an infinite dimensional neigh-
borhood Kq(R). Here, the exponential martingale is given by

E
(∫ T

0

∫
R0

φ′′z(t, ζ)Ñ(dt, dζ)

)
(3.18)

= exp

{∫ T

0

∫
R0

log(1 + φ′′z(t, ζ))N(dt, dζ)−
∫ T

0

∫
R0

φ′′z(t, ζ)ν(dζ)dt

}
.

In the following it is sufficient (see for example [P]) to consider the real part of
(3.17), that is we assume z ∈ Kq(R) ∩ RN. Further we observe that we can rewrite
(3.18) in terms of integration with respect to M(dt, du, dζ)− dtduν ′(dζ):

E
(∫ T

0

∫
R0

φ′′z(t, ζ)Ñ(dt, dζ)

)
= exp

{∫ T

0

∫ U

0

∫
R0

log(1 + φ′′z(t, ζ))M(dt, du, dζ)

−
∫ T

0

∫ U

0

∫
R0

φ′′z(t, ζ)dtduν ′(dζ)

}
.

If we now make a measure change to a measure Q induced by the Radon-Nikodym
derivative given through the exponential martingale (3.18) then, by means of Gir-
sanov’s theorem for random measures (see for example [JS]), the jump measure
M(dt, du, dζ) (respectively N(dt, dζ)) has (1+φ′′z(s, ζ))dsduν ′(dζ) (respectively (1+
φ′′z(s, ζ))dsν(dζ) as predictable compensator under Q. We thus get from the defini-
tion of u(t, y, z) that the Hermite transform (3.17) can be written as

ũ(t, y, z) = E

[{
ϕ(Y t,y

T )ρ(t, T ) +

∫ T

t

g(s, Y t,y
s )ρ(t, s)ds

+

∫ T

t

∫
R0

k(s, Y t,y
s , ζ)ρ(t, s) Ñ(ds, dζ)

}
E

(∫ T

0

∫
R0

φ′′z(t, ζ)Ñ(dt, dζ)

)]
= EQ

[
ϕ(Y t,y

T )ρ(t, T ) +

∫ T

t

g(s, Y t,y
s )ρ(t, s)ds

+

∫ T

t

∫
R0

k(s, Y t,y
s , ζ)ρ(t, s) φ′′z(s, ζ) dsν(dζ)

]
.

Now factorize ρ(t, s) as

ρ(t, s) = E
(∫ s

t

∫
R0

q(r, Y t,y
r , ζ) {N(dr, dζ)− (1 + φ′′z(r, ζ)) drν(dζ)}

)
· ρ′(t, s),
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where

ρ′(t, s) = exp

{∫ s

t

(
c(r, Y t,y

r ) +

∫
R0

q(r, Y t,y
r , ζ)φ′′z(r, ζ)ν(dζ)

)
dr

}
.

Carrying out a second measure change to a measure Q′ induced by the density
process

E
(∫ .

t

∫
R0

q(r, y, ζ) (N(dr, dζ)− (1 + φ′′z(r, ζ))drν(dζ))

)
,

we get

ũ(t, y, z) = EQ′

[
ϕ(Y t,y

T )ρ′(t, T ) +

∫ T

t

g(s, Y t,y
s )ρ′(t, s)ds

+

∫ T

t

∫
R0

k(s, Y t,y
s , ζ)ρ′(t, s) φ′′z(s, ζ)dsν(dζ)

]
,

where now, again by means of Girsanov’s theorem for random measures, the jump
measure M(dt, du, dζ) has the predictable compensator

(1 + q(s, y, ζ)) (1 + φ′′z(s, ζ))dsduν ′(dζ)

under Q′. Therefore the infinitesimal generator of Y t,y
s as diffusion under Q′ applied

to θ ∈ C1
b (R) is given by

Ksθ(y) =

∫
R0

{θ(y + γ̂(s, y, ζ))− θ(y)} ν(dζ)

+

∫
[0,U ]

∫
R0

{θ(y + γ(s, y, ζ))− θ(y)}1{u≤ U
1+q(s,y,ζ)}

(1 + q(s, y, ζ)) (1 + φ′′z(s, ζ))duν ′(dζ)

=

∫
R0

{θ(y + γ(s, y, ζ))− θ(y)}φ′′z(s, ζ)ν(dζ)

+

∫
R0

{θ(y + γ̂(s, y, ζ)) + θ(y + γ(s, y, ζ))− 2θ(y)} ν(dζ).

So by our assumptions on the coefficients, the Feynman-Kac formula is applicable
(see [PH]) and yields that ũ(t, y, z) is the solution of (3.6).

The last step is to show that we can extract the Hermite transform in equation
(3.6), that is to interchange Hermite transform and integration, and in this way end
up with equation (3.1). To this end it is sufficient to show that on a neighborhood
Kq(R)

(3.19)

∫
R0

sup
z∈Kq(R)

{ũ(t, y + γ(s, y, ζ), z) + ũ(t, y + γ̂(s, y, ζ), z)− 2ũ(t, y, z)} ν(dζ)

+

∫
R0

sup
z∈Kq(R)

{ũ(t, y + γ(s, y, ζ), z)− ũ(t, y, z)}φ′′z(s, ζ)ν(dζ) <∞.
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It is not difficult to see with the help of conditions (3.4)-(3.5) and estimates like for
example in ([PH], Lemma 3.1) that ũ(t, y, z) is Lipschitz continuous in y uniformly
on a neighborhood Kq(R), i.e. for all t ∈ [0, T ]

sup
z∈Kq(R)

|ũ(t, y, z)− ũ(t, v, z)| ≤ const · |y − v| .

This together with the property of φ′′z(s, ζ) as the Hermite transform of
•

Ñ(t, ζ) easily
yields relation (3.19) which completes the proof. Note that in the presence of the
diffusive parts in our operators one would at this point employ (3.14)) and Lemma
3.2 in order to exchange Hermite transform and differentiation as for example done
in [P]. �

Remark 3.3. Note that in the diffusion equation (3.20) we integrate with respect
to the jump measures only and not with respect to the compensated jump measures.
As will be done in the Corollary 3.4, one can also set up an analogue problem where
we integrate with respect to compensated jump measures, which would allow to
relax conditions (3.3) and (3.5). In turn, we would have to sharpen the conditions
on q(t, y, ζ), which would appear in some additional drift term in equation (3.1). In
Corollary 3.4, however, we have q(t, y, ζ) = 0 which thus doesn’t create any further
problems.

As a corollary we now get the backward jump diffusion equation for Lévy-Itô
diffusions whose Brownian motion version has its origin in [Za]. Let Y t,y

s denote the
solution of

dYs = b(Ys−)ds + σ(Ys−)dBs + γ(Ys−)dLs(3.20)

= b(Ys−)ds + σ(Ys−)dBs +

∫
R0

γ(Ys−) ζ Ñ(ds, dζ),

Yt = y, t ≤ s ≤ T.

Then we get the correspondence of Y t,y
s to the following SIPDE:

Corollary 3.4. If we set u(t, y, ω) := Y T−t,y
T then, under the assumptions on the

coefficients specified in (3.2)-(3.13), u(t, y, ω) uniquely solves the following stochastic
integro-PDE in (S)−1

(3.21)

∂tu(t, y) = 1
2
σ2(y) ∂yyu(t, y) + b(y) ∂yu(t, y) + σ(y) ∂yu(t, y) �

•
BT−t

+
∫

R0
{u(t, y + γ(y)ζ)− u(t, y)− ∂yu(t, y)γ(y)ζ} ν(dζ)

+
∫

R0
{u(t, y + γ(y)ζ)− u(t, y)} �

•

Ñ(T − t, ζ)ν(dζ),

u(0, y) = y, (t, y) ∈ [0, T ]× R.

Proof. The result is just a special case of Theorem 3.1 except for the following two
modifications. First note that in (3.20) the jump integration is with respect to the
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compensated jump measure Ñ(ds, dζ) in contrast to the integration with respect to
the jump measure M(ds, du, dζ) only in (3.15). As can be seen from the proof of
Theorem 3.1 this doesn’t yield any problem as long as q(t, y, ζ) = 0 and just causes
the extra term ∂yu(t, y)γ(y)ζ under the integral with respect to ν(dζ) in (3.21).
Further, in order to obtain an initial condition rather than a terminal condition of
the corresponding SIPDE one has to revert the time which leads to the time reverted
white noises. �

Note that under the appropriate smoothness conditions on the coefficients one
can integrate equation (3.21) from 0 to t and interpret it in the Itô sense:

du(t, y) =
{

1
2
σ2(y) ∂yyu(t, y) + b(y) ∂yu(t, y)

}
dt + σ(y) ∂yu(t, y)d

←−
Bt

+
∫

R0
{u(t, y + γ(y)ζ)− u(t, y)− ∂yu(t, y)} ν(dζ)dt

+
∫

R0
(u(t−, y + γ(y)ζ)− u(t−, y))

←−̃
N (dζ, dt),

u(0, y) = y, (t, y) ∈ [0, T )× R,

where
←−
B t is the Brownian motion BT − BT−t and

←−̃
N (dζ, dt) is the compensated

jump measure associated to the pure jump Lévy process
←−
L t = LT− − L(T−t)− for

0 ≤ t < T .
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