Stability, uniqueness and existence of solutions to McKean-Vlasov SDEs in arbitrary moments

Alexander Kalinin, LMU Munich
Joint work with Thilo Meyer-Brandis and Frank Proske

German Probability and Statistics Days
Essen, 2023

Introduction

Let us consider the McKean-Vlasov SDE

$$
\begin{equation*}
d X_{t}=b\left(t, X_{t}, P_{X_{t}}\right) d t+\sigma\left(t, X_{t}, P_{X_{t}}\right) d W_{t} \quad \text { for } t \geq 0 \tag{1}
\end{equation*}
$$

Thereby, b and σ are the respective measurable drift and diffusion coefficients taking values in \mathbb{R}^{m} and $\mathbb{R}^{m \times d}$ defined on

$$
\mathbb{R}_{+} \times \mathbb{R}^{m} \times \mathscr{P}_{p}\left(\mathbb{R}^{m}\right), \quad \text { where } p \geq 2
$$

$\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \geq 0}, P\right)$ is a filtered probability space satisfying the usual conditions and W is a standard d-dimensional $\left(\mathscr{F}_{t}\right)_{t \geq 0}$-Brownian motion.

Further, $\mathscr{P}_{p}\left(\mathbb{R}^{m}\right)$ denotes the Polish space of all Borel probability measures μ on \mathbb{R}^{m} with finite p-th moment

$$
\int_{\mathbb{R}^{m}}|x|^{p} \mu(d x)
$$

equipped with the p-th Wasserstein metric given by

$$
\vartheta_{p}(\mu, \nu):=\inf _{\theta \in \mathscr{P}(\mu, \nu)}\left(\int_{\mathbb{R}^{m} \times \mathbb{R}^{m}}|x-y|^{p} \theta(d x, d y)\right)^{\frac{1}{p}}
$$

where $\mathscr{P}(\mu, \nu)$ is the convex space of all Borel probability measures θ on $\mathbb{R}^{m} \times \mathbb{R}^{m}$ with

$$
\theta\left(B \times \mathbb{R}^{m}\right)=\mu(B) \quad \text { and } \quad \theta\left(\mathbb{R}^{m} \times B\right)=\nu(B)
$$

for all $B \in \mathscr{B}\left(\mathbb{R}^{m}\right)$.

For $q \geq 1$ and $n \in \mathbb{N}$ we let $\mathscr{L}_{\text {loc }}^{q}\left(\mathbb{R}^{n}\right)$ denote the linear space of all measurable maps $\eta: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}$ such that

$$
\int_{0}^{t}|\eta(s)|^{a} d s<\infty \quad \text { for all } t \geq 0
$$

and we write $\mathscr{L}_{\text {loc }}^{q}\left(\mathbb{R}_{+}^{n}\right)$ for the convex cone of all $\eta \in \mathscr{L}_{\text {loc }}^{q}\left(\mathbb{R}^{n}\right)$ with

$$
\eta_{1} \geq 0, \ldots, \eta_{n} \geq 0
$$

In the same spirit we define $\mathscr{L}_{\text {loc }}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\mathscr{L}_{\text {loc }}^{\infty}\left(\mathbb{R}_{+}^{n}\right)$.

Stability

First, let us allow for negative partial Lipschitz coefficients.
(C.1) (Hölder continuity conditions)

There are $\eta \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right), \hat{\eta} \in \mathscr{L}_{\text {loc }}^{2}\left(\mathbb{R}_{+}^{2}\right)$ and $\alpha, \beta \in(0,1]$ such that

$$
\begin{aligned}
(x-\tilde{x})^{\prime}(b(\cdot, x, \mu) & -b(\cdot, \tilde{x}, \tilde{\mu})) \\
& \leq|x-\tilde{x}|\left(\eta_{1}|x-\tilde{x}|^{\alpha}+\eta_{2} \vartheta_{p}(\mu, \tilde{\mu})^{\beta}\right)
\end{aligned}
$$

and

$$
|\sigma(\cdot, x, \mu)-\sigma(\cdot, \tilde{x}, \tilde{\mu})| \leq \hat{\eta}_{1}|x-\tilde{x}|^{\alpha}+\hat{\eta}_{2} \vartheta_{p}(\mu, \tilde{\mu})^{\beta}
$$

for any $x, \tilde{x} \in \mathbb{R}^{m}$ and $\mu, \tilde{\mu} \in \mathscr{P}_{p}\left(\mathbb{R}^{m}\right)$.

Under (C.1), we define $\gamma_{p} \in \mathscr{L}_{\text {loc }}^{1}(\mathbb{R})$ and $\delta_{p} \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$via

$$
\begin{aligned}
\gamma_{p}:= & (p-1+\alpha)\left(\eta_{1}^{+}-\eta_{1}^{-} \mathbb{1}_{\{1\}}(\alpha)\right)+(p-1+\beta) \eta_{2}^{+} \\
& +\frac{p-1}{2}(p-2(1-\alpha \vee \beta))\left(\hat{\eta}_{1}+\hat{\eta}_{2}\right)^{2}
\end{aligned}
$$

and

$$
\delta_{p}:=(1-\alpha) \eta_{1}^{+}+(1-\beta) \eta_{2}^{+}+\frac{p-1}{2}(1-\alpha \wedge \beta)\left(\hat{\eta}_{1}+\hat{\eta}_{2}\right)^{2} .
$$

Further, let $\Theta_{\beta}: \mathbb{R}_{+} \times \mathscr{P}_{p}\left(\mathbb{R}^{m}\right) \times \mathscr{P}_{p}\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}_{+}$be given by

$$
\Theta_{\beta}(\cdot, \mu, \tilde{\mu}):=\eta_{2}^{+} \vartheta_{p}(\mu, \tilde{\mu})^{\beta}+\hat{\eta}_{2}^{2} \vartheta_{p}(\mu, \tilde{\mu})^{2 \beta} .
$$

Explicit L^{p}-comparison estimate (Meyer-Brandis, Proske and K., 2022)

Let (C.1) hold and X and \tilde{X} be two solutions such that $\Theta_{\beta}\left(\cdot, P_{X}, P_{\tilde{X}}\right) \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$. Then $Y:=X-\tilde{X}$ satisfies

$$
E\left[\left|Y_{t}\right|^{p}\right] \leq e^{\int_{0}^{t} \gamma_{p}(s) d s} E\left[\left|Y_{0}\right|^{p}\right]+\int_{0}^{t} e^{\int_{s}^{t} \gamma_{p}(\tilde{s}) d \tilde{s}} \delta_{p}(s) d s
$$

for all $t \geq 0$. In particular, if γ_{p}^{+}and δ_{p} are integrable, then

$$
\sup _{t \geq 0} E\left[\left|Y_{t}\right|^{p}\right]<\infty
$$

If in addition $\int_{0}^{\infty} \gamma_{p}^{-}(s) d s=\infty$, then $\lim _{t \uparrow \infty} E\left[\left|Y_{t}\right|^{p}\right]=0$.

Derivation of strong solutions

Note that a Borel measurable map $\mu: \mathbb{R}_{+} \rightarrow \mathscr{P}_{p}\left(\mathbb{R}^{m}\right)$ induces the SDE

$$
\begin{equation*}
d X_{t}=b_{\mu}\left(t, X_{t}\right) d t+\sigma_{\mu}\left(t, X_{t}\right) d W_{t} \quad \text { for } t \geq 0 \tag{2}
\end{equation*}
$$

with the measurable maps b_{μ} and σ_{μ} given by

$$
b_{\mu}(t, x):=b(t, x, \mu(t)) \quad \text { and } \quad \sigma_{\mu}(t, x):=\sigma(t, x, \mu(t))
$$

for $t \geq 0$ and $x \in \mathbb{R}^{m}$. Additionally, assume that $\xi: \Omega \rightarrow \mathbb{R}^{m}$ is \mathscr{F}_{0}-measurable.

For local weak solutions to (2) we need the following condition:
(C.2) (Space continuity and boundedness on bounded sets) b is continuous in $x \in \mathbb{R}$ and for each $n \in \mathbb{N}$ there is $c_{n} \geq 0$ such that

$$
|b(s, x, \mu)| \vee|\sigma(s, x, \mu)| \leq c_{n}
$$

for any $s \in[0, n], x \in \mathbb{R}^{m}$ and $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{m}\right)$ with

$$
|x| \vee\left(\int_{\mathbb{R}^{m}}|y|^{p} \mu(d y)\right)^{\frac{1}{p}} \leq n
$$

For an explicit L^{p}-growth estimate we assume the following:
(C.3) (Affine growth conditions)

There are $v \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}^{3}\right)$ and $\hat{v} \in \mathscr{L}_{\text {loc }}^{2}\left(\mathbb{R}_{+}^{3}\right)$ such that

$$
\begin{aligned}
& x^{\prime} b(\cdot, x, \mu) \leq|x|\left(\nu_{1}+\nu_{2}|x|+\nu_{3}\left(\int_{\mathbb{R}^{m}}|y| \mu^{p}(d y)\right)^{\frac{1}{p}}\right) \\
& |\sigma(\cdot, x, \mu)| \leq \hat{\nu}_{1}+\hat{\nu}_{2}|x|+\hat{\nu}_{3}\left(\int_{\mathbb{R}^{m}}|y| \mu^{p}(d y)\right)^{\frac{1}{p}}
\end{aligned}
$$

for each $x \in \mathbb{R}^{m}$ and $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{m}\right)$.

Existence of unique strong solutions (Meyer-Brandis, Proske and K., 2022)

Let (C.1)-(C.3) hold for $\alpha=\beta=1$ and $E\left[|\xi|^{p}\right]<\infty$. Then the following two assertions hold:
(i) There is pathwise uniqueness for (1) relative to Θ_{1}. That is, any two solutions X and \tilde{X} satisfying

$$
X_{0}=\tilde{X}_{0} \quad \text { a.s. }
$$

are indistinguishable if $\Theta_{1}\left(\cdot, P_{X}, P_{\tilde{X}}\right) \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$.
(ii) There is a unique strong solution X^{ξ} such that $X_{0}^{\xi}=\xi$ a.s. and $E\left[\left|X^{\xi}\right|^{p}\right]$ is locally bounded.

Example (sums of power functions and integral maps)
Let $n \in \mathbb{N}, \hat{b} \in \mathscr{L}_{\text {loc }}^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ and $\hat{c} \in \mathscr{L}_{\text {loc }}^{\infty}(\mathbb{R})$ and suppose that $a \in] 0, \infty\left[{ }^{n}\right.$ and

$$
f: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}
$$

is Lipschitz continuous such that $f(0, \cdot)=0$,

$$
\begin{aligned}
b(\cdot, x, \mu)= & -x\left(\hat{b}_{1}|x|^{a_{1}-1}+\cdots+\hat{b}_{n}|x|^{a_{n}-1}\right) \\
& +\hat{c} \int_{\mathbb{R}^{m}} f(x, y) \mu(d y)
\end{aligned}
$$

and $b(\cdot, 0, \mu)=0$ for all $x \in \mathbb{R}^{m} \backslash\{0\}$ and $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{m}\right)$. Then (C.1)-(C.3) are valid for b with $\alpha=\beta=1$.

References

[1] A. Kalinin, T. Meyer-Brandis, and F. Proske. Stability, uniqueness and existence of solutions to McKean-Vlasov SDEs in arbitrary moments.
arXiv:2205.02176, 2022.
[2] A. Kalinin, T. Meyer-Brandis, and F. Proske. Stability, uniqueness and existence of solutions to McKean-Vlasov SDEs: a multidimensional Yamada-Watanabe approach.
arXiv:2107.07838, 2021.

Thank you for your attention!

