Stability, uniqueness and existence of solutions to McKean-Vlasov SDEs

Alexander Kalinin

Joint work with Thilo Meyer-Brandis and Frank Proske

10th Austrian Stochastics Days

University of Vienna

8 September 2022

Introduction

In the sequel, we analyse the one-dimensional McKean-Vlasov SDE

$$dX_t = b(t, X_t, P_{X_t}) dt + \sigma(t, X_t) dW_t \quad ext{for } t \ge 0.$$
 (1)

Thereby,

 $b : \mathbb{R}_+ \times \mathbb{R} \times \mathscr{P}_1(\mathbb{R}) \to \mathbb{R}$ and $\sigma : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ are the measurable drift and diffusion coefficients, respectively, $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, P)$ is a filtered probability space satisfying the usual conditions and

W is a standard $(\mathscr{F}_t)_{t\geq 0}$ -Brownian motion.

Further, $\mathscr{P}_1(\mathbb{R})$ stands for the Polish space of all Borel probability measures μ on \mathbb{R} with finite first moment

$$\int_{\mathbb{R}}|x|\,\mu(dx),$$

equipped with the first Wasserstein metric given by

$$artheta_1(\mu,
u):=\inf_{ heta\in\mathscr{P}(\mu,
u)}\int_{\mathbb{R} imes\mathbb{R}}|x-y|\, heta(dx,dy),$$

where $\mathscr{P}(\mu, \nu)$ is the convex space of all Borel probability measures θ on $\mathbb{R} \times \mathbb{R}$ with

$$heta(B imes \mathbb{R})=\mu(B) \quad ext{and} \quad heta(\mathbb{R} imes B)=
u(B)$$

for all $B \in \mathscr{B}(\mathbb{R})$.

For $p \geq 1$ and $l \in \mathbb{N}$ we let $\mathscr{L}^{p}_{loc}(\mathbb{R}^{l})$ denote the linear space of all measurable maps $\eta : \mathbb{R}_{+} \to \mathbb{R}^{l}$ such that

$$\int_0^t |\eta(s)|^p \, ds < \infty \quad ext{for all } t \geq 0$$

and we write $\mathscr{L}^p_{\mathit{loc}}(\mathbb{R}^l_+)$ for the convex cone of all $\eta \in \mathscr{L}^p_{\mathit{loc}}(\mathbb{R}^l)$ with

$$\eta_k \geq 0$$
 for any $k = 1, \ldots, l$.

In the same spirit we define $\mathscr{L}^{\infty}_{loc}(\mathbb{R}^{l})$ and $\mathscr{L}^{\infty}_{loc}(\mathbb{R}^{l}_{+})$.

Pathwise uniqueness

First, let us consider two requirements:

(C.1) (Local Hölder continuity condition) For any $n \in \mathbb{N}$ there is $\hat{\eta}_n \in \mathscr{L}^2_{loc}(\mathbb{R}_+)$ such that $|\sigma(\cdot, x) - \sigma(\cdot, \tilde{x})| \leq \hat{\eta}_n |x - \tilde{x}|^{\frac{1}{2}}$

for any $x, \tilde{x} \in [-n, n]$.

Example (sums of power functions)

For $l \in \mathbb{N}$ let $\kappa : \mathbb{R}_+ \to \mathbb{R}$ and $\eta : \mathbb{R}_+ \to \mathbb{R}^l$ be measurable and $\alpha \in (0, \infty)^l$ be such that

$$\sigma(\cdot, x) = \kappa + \eta_1 |x|^{\alpha_1} + \dots + \eta_l |x|^{\alpha_l}$$

for any $x \in \mathbb{R}$. Then (C.1) holds as soon as

$$\eta \in \mathscr{L}^2_{loc}(\mathbb{R}^l)$$
 and $lpha \geq 1/2.$

(C.2) (Partial Osgood continuity condition)

There exist $\eta, \lambda \in \mathscr{L}^{1}_{loc}(\mathbb{R}_{+})$ and some increasing concave function $\rho \in C(\mathbb{R}_{+})$ such that

$$ho(0)=0, \quad
ho>0 \quad ext{on } (0,\infty)$$

and

$$\operatorname{sgn}(x - \tilde{x}) (b(\cdot, x, \mu) - b(\cdot, \tilde{x}, \tilde{\mu})) \\ \leq \eta \rho(|x - \tilde{x}|) + \lambda \rho(\vartheta_1(\mu, \tilde{\mu}))$$

for any $x, \tilde{x} \in \mathbb{R}$ and $\mu, \tilde{\mu} \in \mathscr{P}_1(\mathbb{R})$.

Example (sums involving decreasing functions) For $l \in \mathbb{N}$ let $\kappa, \lambda : \mathbb{R}_+ \to \mathbb{R}$ and $\eta : \mathbb{R}_+ \to \mathbb{R}'$ be measurable maps and $f : \mathbb{R} \to \mathbb{R}'$ be decreasing such that

$$egin{aligned} b(\cdot,x,\mu) &= \kappa + \eta_1 f_1(x) + \cdots + \eta_l f_l(x) \ &+ \lambda \int_{\mathbb{R}} |y| \, \mu(dy) \end{aligned}$$

for any $x \in \mathbb{R}$ and $\mu \in \mathscr{P}_1(\mathbb{R})$. In this case, (C.2) is satisfied for the choice

$$ho(v) = v$$
 for all $v \ge 0$

if $\eta \in \mathscr{L}^{1}_{loc}(\mathbb{R}^{l}_{+})$ and $\lambda \in \mathscr{L}^{1}_{loc}(\mathbb{R})$.

Pathwise uniqueness (Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.2) hold such that $\int_0^1 \rho(v)^{-1} dv = \infty$ and define $\Theta : \mathbb{R}_+ \times \mathscr{P}_1(\mathbb{R}) \times \mathscr{P}_1(\mathbb{R}) \to \mathbb{R}_+$ by

$$\Theta(\cdot, \mu, \tilde{\mu}) := \lambda \rho \big(\vartheta_1(\mu, \tilde{\mu}) \big).$$

Then pathwise uniqueness for (1) relative to Θ holds. That is, any two solutions X and \tilde{X} satisfying

$$X_0 = ilde{X}_0$$
 a.s.

are indistinguishable if $\Theta(\cdot, P_X, P_{\tilde{X}}) \in \mathscr{L}^1_{loc}(\mathbb{R}_+).$

To allow for negative partial Lipschitz coefficients, we replace (C.2) by the following hypothesis:

(C.3) (Partial mixed Hölder continuity condition)

There are $I \in \mathbb{N}$,

$$\eta \in \mathscr{L}^{1}_{loc}(\mathbb{R}^{l}), \quad \lambda \in \mathscr{L}^{1}_{loc}(\mathbb{R}^{l}_{+})$$

and $\alpha, \beta \in (0,1]^{\prime}$ such that

$$\begin{split} \mathrm{sgn}(x- ilde{x})ig(b(\cdot,x,\mu)-b(\cdot, ilde{x}, ilde{\mu})ig) \ &\leq \sum_{k=1}^l \eta_k |x- ilde{x}|^{lpha_k} + \lambda_k artheta_1(\mu, ilde{\mu})^{eta_k} \end{split}$$

for any $x, \tilde{x} \in \mathbb{R}$ and $\mu, \tilde{\mu} \in \mathscr{P}_1(\mathbb{R})$.

Under (C.3), we define $\gamma_{\mathscr{P}_1} \in \mathscr{L}^1_{loc}(\mathbb{R})$ and $\delta_{\mathscr{P}_1} \in \mathscr{L}^1_{loc}(\mathbb{R}_+)$ via

$$\gamma_{\mathscr{P}_1} := \sum_{k=1}^{l} \alpha_k \big(\eta_k^+ - \eta_k^- \mathbb{1}_{\{1\}}(\alpha_k) \big) + \beta_k \lambda_k$$

and

$$\delta_{\mathscr{P}_1} := \sum_{k=1}^l (1-lpha_k)\eta_k^+ + (1-eta_k)\lambda_k.$$

Further, let $\Theta: \mathbb{R}_+ \times \mathscr{P}_1(\mathbb{R}) \times \mathscr{P}_1(\mathbb{R}) \to \mathbb{R}_+$ be given by

$$\Theta(\cdot,\mu,\tilde{\mu}) := \sum_{k=1}^{l} \lambda_k \vartheta_1(\mu,\tilde{\mu})^{\beta_k}.$$

Explicit L¹-comparison estimate (Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.3) hold and X and \tilde{X} be two solutions such that $\Theta(\cdot, P_X, P_{\tilde{X}}) \in \mathscr{L}^1_{loc}(\mathbb{R}_+)$. Then $Y := X - \tilde{X}$ satisfies

$$E\big[|Y_t|\big] \le e^{\int_0^t \gamma_{\mathscr{P}_1}(s) \, ds} E\big[|Y_0|\big] + \int_0^t e^{\int_s^t \gamma_{\mathscr{P}_1}(\tilde{s}) \, d\tilde{s}} \delta_{\mathscr{P}_1}(s) \, ds$$

for all $t \geq 0$. In particular, if $\gamma^+_{\mathscr{P}_1}$ and $\delta_{\mathscr{P}_1}$ are integrable, then

$$\sup_{t\geq 0} E\big[|Y_t|\big] < \infty.$$

If additionally $\int_0^{\infty} \gamma_{\mathscr{P}_1}^{-}(s) ds = \infty$, then $\lim_{t\uparrow\infty} E[|Y_t|] = 0$.

First moment stability

We restrict (C.3) as follows:

(C.4) (Partial Lipschitz condition) There are $\eta \in \mathscr{L}^{1}_{loc}(\mathbb{R})$ and $\lambda \in \mathscr{L}^{1}_{loc}(\mathbb{R}_{+})$ such that $\operatorname{sgn}(x - \tilde{x})(b(\cdot, x, \mu) - b(\cdot, \tilde{x}, \tilde{\mu})) \leq \eta |x - \tilde{x}| + \lambda \vartheta_{1}(\mu, \tilde{\mu})$ for every $x, \tilde{x} \in \mathbb{R}$ and $\mu, \tilde{\mu} \in \mathscr{P}_{1}(\mathbb{R})$. Under this requirement,

 $\delta_{\mathscr{P}_1} = 0, \quad \gamma_{\mathscr{P}_1} = \eta + \lambda \quad \text{and} \quad \Theta(\cdot, \mu, \tilde{\mu}) = \lambda \vartheta_1(\mu, \tilde{\mu})$ for all $\mu, \tilde{\mu} \in \mathscr{P}_1(\mathbb{R})$.

Exponential first moment stability (Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.4) hold. Further, let $\alpha > 0$ and $\hat{\lambda} < 0$ satisfy

$$\gamma_{\mathscr{P}_1}(s) \leq \hat{\lambda} lpha s^{lpha - 1} \quad ext{for a.e. } s \geq 0.$$

Then (1) is α -exponentially stable in moment relative to Θ and $\hat{\lambda}$ is a Lyapunov exponent. That is, there is $c \ge 0$ such that

$$E[|X_t - \tilde{X}_t|] \le c e^{\hat{\lambda} t^{lpha}} E[|X_0 - \tilde{X}_0|]$$

for all $t \geq 0$ whenever X and \tilde{X} are two solutions satisfying $\Theta(\cdot, P_X, P_{\tilde{X}}) \in \mathscr{L}^1_{loc}(\mathbb{R}_+).$

Derivation of strong solutions

We recall that any Borel measurable map $\mu:\mathbb{R}_+\to\mathscr{P}_1(\mathbb{R})$ induces the SDE

$$dX_t = b_{\mu}(t, X_t) dt + \sigma(t, X_t) dW_t \quad \text{for } t \ge 0$$
(2)

with the measurable function $b_{\mu}: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ given by

 $b_{\mu}(t,x) := b(t,x,\mu(t))$

and let ξ denote an \mathscr{F}_0 -measurable random variable.

Now we specify (C.1) as follows:

(C.5) (Local Hölder continuity condition and the origin as zero) For every $n \in \mathbb{N}$ there is $\hat{\eta}_n \in \mathscr{L}^{\infty}_{loc}(\mathbb{R}_+)$ such that

$$|\sigma(\cdot, x) - \sigma(\cdot, \tilde{x})| \leq \hat{\eta}_n |x - \tilde{x}|^{\frac{1}{2}}$$

for any $x, \tilde{x} \in [-n, n]$ and $\sigma(\cdot, 0) = 0$.

Example (sums of power functions)

The case in which there are $l \in \mathbb{N}$, $\eta \in \mathscr{L}^{\infty}_{loc}(\mathbb{R}^{l})$ and $\alpha \in [1/2, \infty)^{l}$ such that

$$\sigma(\cdot, x) = \eta_1 |x|^{\alpha_1} + \dots + \eta_l |x|^{\alpha_l}$$

for each $x \in \mathbb{R}$ is included, even though $\alpha_k > 1$ may hold for some $k = 1, \ldots, l$.

For local weak solutions to (2) we need the following condition: (C.6) (Space continuity and boundedness on bounded sets) *b* is continuous in $x \in \mathbb{R}$ and for each $n \in \mathbb{N}$ there exists $c_n \in \mathscr{L}^{\infty}_{loc}(\mathbb{R}_+)$ such that

 $|b(s,x,\mu)|\leq c_n(s)$ for any $s\in [0,n],\,x\in [-n,n]$ and $\mu\in \mathscr{P}_1(\mathbb{R})$ with $\int_{\mathbb{T}}|y|\,\mu(dy)\leq n.$

The subsequent assumption leads to an explicit L^1 -growth estimate: (C.7) (Partial affine growth condition) There are $\kappa, \chi \in \mathscr{L}^1_{loc}(\mathbb{R}_+)$ and $v \in \mathscr{L}^1_{loc}(\mathbb{R})$ such that

$$\operatorname{sgn}(x)b(\cdot, x, \mu) \leq \kappa + \upsilon |x| + \chi \int_{\mathbb{R}} |y| \, \mu(dy)$$

for each $x \in \mathbb{R}$ and $\mu \in \mathscr{P}_1(\mathbb{R})$.

Example (sums involving polynomials) For $I \in \mathbb{N}$ let $\kappa, \eta_0, \lambda \in \mathscr{L}^{\infty}_{loc}(\mathbb{R})$ and

 $\eta \in \mathscr{L}^{\infty}_{loc}(\mathbb{R}'_+)$

as well as $n \in \mathbb{N}^{l}$ be such that

$$egin{aligned} b(\cdot,x,\mu) &= \kappa + \eta_0 x - \eta_1 x^{n_1} - \cdots - \eta_l x^{n_l} \ &+ \lambda \int_{\mathbb{R}} |y| \, \mu(dy) \end{aligned}$$

for each $x \in \mathbb{R}$ and $\mu \in \mathscr{P}_1(\mathbb{R})$. Then (C.4), (C.6) and (C.7) are valid if the coordinates of *n* are odd.

Existence of unique strong solutions (Meyer-Brandis, Proske and K., 2021)

Let (C.4)-(C.7) be satisfied and $E[|\xi|] < \infty$. Moreover, define $\Theta : \mathbb{R}_+ \times \mathscr{P}_1(\mathbb{R}) \times \mathscr{P}_1(\mathbb{R}) \to \mathbb{R}_+$ by

 $\Theta(\cdot,\mu,\tilde{\mu}) := \lambda \vartheta_1(\mu,\tilde{\mu}).$

Then pathwise uniqueness for (1) relative to Θ holds and there exists a unique strong solution X^{ξ} such that

$$X_0^\xi=\xi$$
 a.s.

and $E[|X^{\xi}|]$ is locally bounded.

Proof ideas.

For any Borel measurable map $\mu : \mathbb{R}_+ \to \mathscr{P}_1(\mathbb{R})$ we show that the SDE (2) admits a unique strong solution $X^{\xi,\mu}$ such that

$$X_0^{\xi,\mu}=\xi$$
 a.s.

and $E[|X^{\xi,\mu}|]$ is locally bounded as soon as the function $\mathbb{R}_+ \to \mathbb{R}_+$, $t \mapsto \int_{\mathbb{R}} |x| \, \mu(t)(dx)$ is locally bounded.

Then we prove that the sequence $(\mu_n)_{n \in \mathbb{N}}$ of $\mathscr{P}_1(\mathbb{R})$ -valued Borel measurable maps on \mathbb{R}_+ recursively given by

$$\mu_n := P_{X^{\xi,\mu_{n-1}}}$$
 with $\mu_0 := \mu$

converges locally uniformly to the law of the strong solution to (1).

References

[1] A. Kalinin, T. Meyer-Brandis, and F. Proske.

Stability, uniqueness and existence of solutions to McKean-Vlasov SDEs: a multidimensional Yamada-Watanabe approach. *arXiv:2107.07838*, 2021.

- [2] D. Brigo, F. Graceffa, and A. Kalinin. Mild to classical solutions for XVA equations under stochastic volatility. arXiv:2112.11808, 2021.
- [3] A. Kalinin, T. Meyer-Brandis, and F. Proske. Stability, uniqueness and existence of solutions to McKean-Vlasov SDEs in arbitrary moments. arXiv:2205.02176, 2022.

Thank you for your attention!