Derivation of unique stable solutions to McKean-Vlasov SDEs

Alexander Kalinin, LMU Munich
Joint work with Thilo Meyer-Brandis and Frank Proske

Finance and Stochastics Seminar Imperial College London, March 2023

Introduction

We seek to analyse the one-dimensional McKean-Vlasov SDE

$$
\begin{equation*}
d X_{t}=b\left(t, X_{t}, P_{X_{t}}\right) d t+\sigma\left(t, X_{t}\right) d W_{t} \quad \text { for } t \geq 0 \tag{1}
\end{equation*}
$$

Thereby,
$b: \mathbb{R}_{+} \times \mathbb{R} \times \mathscr{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}$ and $\sigma: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ are the measurable drift and diffusion coefficients, respectively, $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \geq 0}, P\right)$ is a filtered probability space satisfying the usual conditions and
W is a standard $\left(\mathscr{F}_{t}\right)_{t \geq 0}$-Brownian motion.

Further, $\mathscr{P}_{1}(\mathbb{R})$ stands for the Polish space of all Borel probability measures μ on \mathbb{R} with finite first moment

$$
\int_{\mathbb{R}}|x| \mu(d x)
$$

equipped with the first Wasserstein metric given by

$$
\vartheta_{1}(\mu, \nu):=\inf _{\theta \in \mathscr{P}(\mu, \nu)} \int_{\mathbb{R} \times \mathbb{R}}|x-y| \theta(d x, d y)
$$

where $\mathscr{P}(\mu, \nu)$ is the convex space of all Borel probability measures θ on $\mathbb{R} \times \mathbb{R}$ with

$$
\theta(B \times \mathbb{R})=\mu(B) \quad \text { and } \quad \theta(\mathbb{R} \times B)=\nu(B)
$$

for all $B \in \mathscr{B}(\mathbb{R})$.

We recall that a solution to the McKean-Vlasov SDE (1) is an adapted, continuous and integrable process X such that

$$
\int_{0}^{t}\left|b\left(s, X_{s}, P_{X_{s}}\right)\right|+\left|\sigma\left(s, X_{s}\right)\right|^{2} d s<\infty
$$

for all $t \geq 0$ and

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}, P_{X_{s}}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}
$$

for any $t \geq 0$ a.s. In our paper, we replace $\mathscr{P}_{1}(\mathbb{R})$ by a suitable metrisable topological space \mathscr{P}, to include SDEs.

For $p \geq 1$ and $I \in \mathbb{N}$ we let $\mathscr{L}_{\text {loc }}^{p}\left(\mathbb{R}^{\prime}\right)$ denote the linear space of all measurable maps $\eta: \mathbb{R}_{+} \rightarrow \mathbb{R}^{\prime}$ such that

$$
\int_{0}^{t}|\eta(s)|^{p} d s<\infty \quad \text { for all } t \geq 0
$$

and we write $\mathscr{L}_{\text {loc }}^{p}\left(\mathbb{R}_{+}^{\prime}\right)$ for the convex cone of all $\eta \in \mathscr{L}_{\text {loc }}^{p}\left(\mathbb{R}^{\prime}\right)$ with

$$
\eta_{1} \geq 0, \ldots, \eta_{I} \geq 0
$$

In the same spirit we define $\mathscr{L}_{\text {loc }}^{\infty}\left(\mathbb{R}^{\prime}\right)$ and $\mathscr{L}_{\text {loc }}^{\infty}\left(\mathbb{R}_{+}^{\prime}\right)$.

Pathwise uniqueness

First, let us consider two requirements:
(C.1) (Local Hölder continuity condition)

For any $n \in \mathbb{N}$ there is $\hat{\eta}_{n} \in \mathscr{L}_{\text {loc }}^{2}\left(\mathbb{R}_{+}\right)$such that

$$
|\sigma(\cdot, x)-\sigma(\cdot, \tilde{x})| \leq \hat{\eta}_{n}|x-\tilde{x}|^{\frac{1}{2}}
$$

for all $x, \tilde{x} \in[-n, n]$.

Example (sums of power functions)

For $I \in \mathbb{N}$ let $\kappa: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and $\eta: \mathbb{R}_{+} \rightarrow \mathbb{R}^{\prime}$ be measurable and $\alpha \in] 0, \infty{ }^{\prime}$ be such that

$$
\sigma(\cdot, x)=\kappa+\eta_{1}|x|^{\alpha_{1}}+\cdots+\eta_{l}|x|^{\alpha_{l}}
$$

for any $x \in \mathbb{R}$. Then (C.1) holds if

$$
\eta \in \mathscr{L}_{l o c}^{2}\left(\mathbb{R}^{\prime}\right) \quad \text { and } \quad \alpha_{1} \geq \frac{1}{2}, \ldots, \alpha_{l} \geq \frac{1}{2}
$$

(C.2) (Partial Osgood continuity condition)

There exist $\eta, \lambda \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$and some increasing concave function $\rho \in C\left(\mathbb{R}_{+}\right)$such that

$$
\rho(0)=0, \quad \rho>0 \quad \text { on }] 0, \infty[
$$

and

$$
\begin{aligned}
\operatorname{sgn}(x-\tilde{x})(b(\cdot, x, \mu)- & b(\cdot, \tilde{x}, \tilde{\mu})) \\
& \leq \eta \rho(|x-\tilde{x}|)+\lambda \rho\left(\vartheta_{1}(\mu, \tilde{\mu})\right)
\end{aligned}
$$

for all $x, \tilde{x} \in \mathbb{R}$ and $\mu, \tilde{\mu} \in \mathscr{P}_{1}(\mathbb{R})$.

Example (sums involving decreasing functions)
For $I \in \mathbb{N}$ let $\kappa, \lambda: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and $\eta: \mathbb{R}_{+} \rightarrow \mathbb{R}^{\prime}$ be measurable maps and $f: \mathbb{R} \rightarrow \mathbb{R}^{\prime}$ be increasing such that

$$
b(\cdot, x, \mu)=\kappa-\eta_{1} f_{1}(x)-\cdots-\eta_{I} f_{l}(x)+\lambda \int_{\mathbb{R}} y \mu(d y)
$$

for any $x \in \mathbb{R}$ and $\mu \in \mathscr{P}_{1}(\mathbb{R})$. In this case, (C.2) holds for the choice

$$
\rho(x)=x \quad \text { for all } x \geq 0
$$

if $\eta \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}^{\prime}\right)$ and $\lambda \in \mathscr{L}_{\text {loc }}^{1}(\mathbb{R})$.

Pathwise uniqueness (Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.2) hold such that $\int_{0}^{1} \rho(x)^{-1} d x=\infty$ and define $\Theta: \mathbb{R}_{+} \times \mathscr{P}_{1}(\mathbb{R}) \times \mathscr{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}_{+}$by

$$
\Theta(\cdot, \mu, \tilde{\mu}):=\lambda \rho\left(\vartheta_{1}(\mu, \tilde{\mu})\right)
$$

Then pathwise uniqueness for (1) relative to Θ holds. That is, any two solutions X and \tilde{X} satisfying

$$
X_{0}=\tilde{X}_{0} \quad \text { a.s. }
$$

are indistinguishable if $\Theta\left(\cdot, P_{X}, P_{\tilde{X}}\right) \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$.

To allow for negative partial Lipschitz coefficients, we replace (C.2) by the following hypothesis:
(C.3) (Partial mixed Hölder continuity condition)

There are $I \in \mathbb{N}$,

$$
\eta \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}^{\prime}\right), \quad \lambda \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}^{\prime}\right)
$$

and $\alpha, \beta \in] 0,1]^{\prime}$ such that

$$
\begin{aligned}
\operatorname{sgn}(x-\tilde{x})(b(\cdot, x, \mu)- & b(\cdot, \tilde{x}, \tilde{\mu})) \\
& \leq \sum_{k=1}^{l} \eta_{k}|x-\tilde{x}|^{\alpha_{k}}+\lambda_{k} \vartheta_{1}(\mu, \tilde{\mu})^{\beta_{k}}
\end{aligned}
$$

for any $x, \tilde{x} \in \mathbb{R}$ and $\mu, \tilde{\mu} \in \mathscr{P}_{1}(\mathbb{R})$.

Under (C.3), we define $\gamma_{\mathscr{P}_{1}} \in \mathscr{L}_{\text {loc }}^{1}(\mathbb{R})$ and $\delta_{\mathscr{P}_{1}} \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$via

$$
\gamma_{\mathscr{P}_{1}}:=\sum_{k=1}^{\prime} \alpha_{k}\left(\eta_{k}^{+}-\eta_{k}^{-} \mathbb{1}_{\{1\}}\left(\alpha_{k}\right)\right)+\beta_{k} \lambda_{k}
$$

and

$$
\delta_{\mathscr{P}_{1}}:=\sum_{k=1}^{\prime}\left(1-\alpha_{k}\right) \eta_{k}^{+}+\left(1-\beta_{k}\right) \lambda_{k} .
$$

Further, let $\Theta: \mathbb{R}_{+} \times \mathscr{P}_{1}(\mathbb{R}) \times \mathscr{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}_{+}$be given by

$$
\Theta(\cdot, \mu, \tilde{\mu}):=\sum_{k=1}^{\prime} \lambda_{k} \vartheta_{1}(\mu, \tilde{\mu})^{\beta_{k}}
$$

Explicit L^{1}-comparison estimate (Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.3) hold and X and \tilde{X} be two solutions such that $\Theta\left(\cdot, P_{X}, P_{\tilde{X}}\right) \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$. Then $Y:=X-\tilde{X}$ satisfies

$$
E\left[\left|Y_{t}\right|\right] \leq e^{\int_{0}^{t} \gamma_{\mathscr{P}_{1}}(s) d s} E\left[\left|Y_{0}\right|\right]+\int_{0}^{t} e^{\int_{s}^{t} \gamma_{\mathscr{P}_{1}}(\tilde{s}) d \tilde{s}} \delta_{\mathscr{P}_{1}}(s) d s
$$

for all $t \geq 0$. In particular, if $\gamma_{\mathscr{P}_{1}}^{+}$and $\delta_{\mathscr{P}_{1}}$ are integrable, then

$$
\sup _{t \geq 0} E\left[\left|Y_{t}\right|\right]<\infty
$$

If additionally $\int_{0}^{\infty} \gamma_{\mathscr{P}_{1}}^{-}(s) d s=\infty$, then $\lim _{t \uparrow \infty} E\left[\left|Y_{t}\right|\right]=0$.

First moment stability

We restrict (C.3) as follows:
(C.4) (Partial Lipschitz condition)

There are $\eta \in \mathscr{L}_{\text {loc }}^{1}(\mathbb{R})$ and $\lambda \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$such that

$$
\operatorname{sgn}(x-\tilde{x})(b(\cdot, x, \mu)-b(\cdot, \tilde{x}, \tilde{\mu})) \leq \eta|x-\tilde{x}|+\lambda \vartheta_{1}(\mu, \tilde{\mu})
$$

for every $x, \tilde{x} \in \mathbb{R}$ and $\mu, \tilde{\mu} \in \mathscr{P}_{1}(\mathbb{R})$.
Under this requirement,

$$
\delta_{\mathscr{P}_{1}}=0, \quad \gamma_{\mathscr{P}_{1}}=\eta+\lambda \quad \text { and } \quad \Theta(\cdot, \mu, \tilde{\mu})=\lambda \vartheta_{1}(\mu, \tilde{\mu})
$$

for all $\mu, \tilde{\mu} \in \mathscr{P}_{1}(\mathbb{R})$.

Exponential first moment stability (Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.4) hold. Further, let $\alpha>0$ and $\hat{\lambda}<0$ satisfy

$$
\gamma_{\mathscr{P}_{1}}(s) \leq \hat{\lambda} \alpha s^{\alpha-1} \quad \text { for a.e. } s \geq 0 .
$$

Then (1) is α-exponentially stable in moment relative to Θ and $\hat{\lambda}$ is a Lyapunov exponent. That is, there is $c \geq 0$ such that

$$
E\left[\left|X_{t}-\tilde{X}_{t}\right|\right] \leq c e^{\hat{\lambda} t^{\alpha}} E\left[\left|X_{0}-\tilde{X}_{0}\right|\right]
$$

for all $t \geq 0$ whenever X and \tilde{X} are two solutions satisfying $\Theta\left(\cdot, P_{X}, P_{\tilde{X}}\right) \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$.

Derivation of strong solutions

We recall that a Borel measurable map $\mu: \mathbb{R}_{+} \rightarrow \mathscr{P}_{1}(\mathbb{R})$ induces the SDE

$$
\begin{equation*}
d X_{t}=b_{\mu}\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t} \quad \text { for } t \geq 0 \tag{2}
\end{equation*}
$$

with the measurable map $b_{\mu}: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
b_{\mu}(t, x):=b(t, x, \mu(t))
$$

and let ξ denote an \mathscr{F}_{0}-measurable random variable.

Now we specify (C.1) as follows:
(C.5) (Local Hölder continuity condition and the origin as zero) For every $n \in \mathbb{N}$ there is $\hat{\eta}_{n} \in \mathscr{L}_{\text {loc }}^{\infty}\left(\mathbb{R}_{+}\right)$such that

$$
|\sigma(\cdot, x)-\sigma(\cdot, \tilde{x})| \leq \hat{\eta}_{n}|x-\tilde{x}|^{\frac{1}{2}}
$$

for any $x, \tilde{x} \in[-n, n]$ and

$$
\sigma(\cdot, 0)=0
$$

Example (sums of power functions)
The case in which there are $I \in \mathbb{N}, \eta \in \mathscr{L}_{\text {loc }}^{\infty}\left(\mathbb{R}^{\prime}\right)$ and $\alpha \in\left[1 / 2, \infty\left[{ }^{\prime}\right.\right.$ such that

$$
\sigma(\cdot, x)=\eta_{1}|x|^{\alpha_{1}}+\cdots+\eta_{l}|x|^{\alpha_{l}}
$$

for all $x \in \mathbb{R}$ is included, even though $\alpha_{k}>1$ may hold for some $k=1, \ldots, l$.

For local weak solutions to (2) we need the following condition:
(C.6) (Space continuity and boundedness on bounded sets) b is continuous in $x \in \mathbb{R}$ and for each $n \in \mathbb{N}$ there is $c_{n} \geq 0$ such that

$$
|b(s, x, \mu)| \leq c_{n}
$$

for any $s \in[0, n], x \in[-n, n]$ and $\mu \in \mathscr{P}_{1}(\mathbb{R})$ with

$$
\int_{\mathbb{R}}|y| \mu(d y) \leq n
$$

Thereby, we recall that $\vartheta_{1}\left(\mu, \delta_{0}\right)=\int_{\mathbb{R}}|y| \mu(d y)$.

The subsequent assumption leads to an explicit L^{1}-growth estimate:
(C.7) (Partial affine growth condition)

There are $\kappa, \chi \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$and $v \in \mathscr{L}_{\text {loc }}^{1}(\mathbb{R})$ such that

$$
\operatorname{sgn}(x) b(\cdot, x, \mu) \leq \kappa+v|x|+\chi \int_{\mathbb{R}}|y| \mu(d y)
$$

for each $x \in \mathbb{R}$ and $\mu \in \mathscr{P}_{1}(\mathbb{R})$.

Example (sums involving polynomials and integral functions) For $I \in \mathbb{N}$ let $\kappa, \eta_{0}, \lambda \in \mathscr{L}_{\text {loc }}^{\infty}(\mathbb{R})$ and

$$
\eta \in \mathscr{L}_{\text {loc }}^{\infty}\left(\mathbb{R}_{+}^{\prime}\right)
$$

as well as $n \in \mathbb{N}^{l}$ be such that

$$
b(\cdot, x, \mu)=\kappa+\eta_{0} x-\eta_{1} x^{n_{1}}-\cdots-\eta_{I} x^{n_{1}}+\lambda \int_{\mathbb{R}}|y| \mu(d y)
$$

for all $x \in \mathbb{R}$ and $\mu \in \mathscr{P}_{1}(\mathbb{R})$. Then (C.4), (C.6) and (C.7) are valid if the coordinates of n are odd.

An explicit L^{1}-growth estimate (Meyer-Brandis, Proske and K., 2021)

Let (C.5) and (C.7) be valid and X be a solution to (1) such that $\chi E[|X|] \in \mathscr{L}_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$. Then

$$
E\left[\left|X_{t}\right|\right] \leq e^{\int_{0}^{t}(v+\chi)(s) d s} E\left[\left|X_{0}\right|\right]+\int_{0}^{t} e^{\int_{s}^{t}(v+\chi)(\tilde{s}) d \tilde{s}} \kappa(s) d s
$$

for all $t \geq 0$. In particular, if $(v+\chi)^{+}$and κ are integrable, then $\sup _{t \geq 0} E\left[\left|X_{t}\right|\right]<\infty$. In this case,

$$
\lim _{t \uparrow \infty} E\left[\left|X_{t}\right|\right]=0
$$

follows from $\int_{0}^{\infty}(v+\chi)^{-}(s) d s=\infty$.

Existence of unique strong solutions (Meyer-Brandis, Proske and K., 2021)

Let (C.4)-(C.7) be satisfied and $E[|\xi|]<\infty$. Moreover, define $\Theta: \mathbb{R}_{+} \times \mathscr{P}_{1}(\mathbb{R}) \times \mathscr{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}_{+}$by

$$
\Theta(\cdot, \mu, \tilde{\mu}):=\lambda \vartheta_{1}(\mu, \tilde{\mu})
$$

Then pathwise uniqueness for (1) relative to Θ holds and there exists a unique strong solution X^{ξ} such that

$$
X_{0}^{\xi}=\xi \quad \text { a.s. }
$$

and $E\left[\left|X^{\xi}\right|\right]$ is locally bounded.

Proof ideas.

For any Borel measurable map $\mu: \mathbb{R}_{+} \rightarrow \mathscr{P}_{1}(\mathbb{R})$ we show that the SDE (2) admits a unique strong solution $X^{\xi, \mu}$ such that

$$
X_{0}^{\xi, \mu}=\xi \quad \text { a.s. }
$$

and $E\left[\left|X^{\xi, \mu}\right|\right]$ is locally bounded as soon as the function $\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, $t \mapsto \int_{\mathbb{R}}|x| \mu(t)(d x)$ is locally bounded.
Then we prove that the sequence $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ of $\mathscr{P}_{1}(\mathbb{R})$-valued Borel measurable maps on \mathbb{R}_{+}recursively given by

$$
\mu_{n}:=P_{X^{\xi}, \mu_{n-1}} \quad \text { with } \quad \mu_{0}:=\mu
$$

converges locally uniformly to the law of the strong solution to (1).

An Application in Mathematical Finance Joint work with Damiano Brigo and Federico Graceffa

A stochastic volatility model

Let us consider a financial market model with time horizon $T>0$ consisting of only one riskless and one risky asset that are traded. In this setting, the measurable integrable function $r:[0, T] \rightarrow \mathbb{R}$ is the instantaneous risk-free interest rate and

$$
D_{t}(r):=\exp \left(-\int_{0}^{t} r(s) d s\right)
$$

is the discount factor from the initial time to $t \in[0, T]$.
Similarly as before, let $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \in[0, T]}, P\right)$ be a filtered probability space satisfying the usual conditions.

We suppose that \hat{W} and \tilde{W} are two $\left(\mathscr{F}_{t}\right)_{t \in[0, T]}$-Brownian motions with covariation

$$
\langle\hat{W}, \tilde{W}\rangle=\int_{0}^{\cdot} \rho(s) d s \quad \text { a.s. }
$$

and impose the following dynamics on the price process S of the only risky asset and its squared volatility process V :

$$
\begin{align*}
d S_{t} & =b(t) S_{t} d t+\theta(t) \sqrt{V_{t}} S_{t} d \hat{W}_{t} \\
d V_{t} & =\left(k(t)-I_{0}(t) V_{t}+I(t) V_{t}^{\alpha}\right) d t+\lambda(t) V_{t}^{\beta} d \tilde{W}_{t} \tag{3}
\end{align*}
$$

for $t \in[0, T]$ with $\alpha \geq 1$ and $\beta \geq 1 / 2$.

From the pathwise uniqueness and strong existence results in [1] and a positivity condition we draw the following conclusion.

Power diffusion as squared volatility (Brigo, Graceffa and K., 2021)

Let $b, \theta, k, l_{0}, l, \lambda$ be bounded, $l \leq 0$ and $\lambda^{2} / 2 \leq k$. Then pathwise uniqueness for (3) holds and there is a unique strong solution (S, V) satisfying

$$
S>0, \quad V>0 \quad \text { and } \quad\left(S_{0}, V_{0}\right)=\left(s_{0}, v_{0}\right) \quad \text { a.s. }
$$

where $s_{0}, v_{0}>0$. Furthermore, $\sup _{t \in[0, T]}\left|\log \left(S_{t}\right)\right|$ and V are integrable.

Example (Established models in the literature)

For $I=0$ and $I_{0}>0$ we recover the dynamics

$$
d V_{t}=\left(k(t)-I_{0}(t) V_{t}\right) d t+\lambda(t) V_{t}^{\beta} d \tilde{W}_{t}, \quad \text { for } t \in[0, T]
$$

in time-dependent versions of the following option pricing models:
(i) The Heston model for $\beta=1 / 2$. There, I_{0} is the mean reversion speed, k / l_{0} is the mean reversion level and the same positivity condition $\lambda \leq 2 k$ applies.
(ii) The Garch diffusion model for $\beta=1$. Similarly, I_{0} is the mean reversion speed and k / l_{0} the mean reversion level.

Market prices of risk

The model allows for an equivalent local martingale measure.
That is, there is a probability measure \tilde{P} on (Ω, \mathscr{F}) such that $\tilde{P} \sim P$ and the discounted price process

$$
[0, T] \times \Omega \rightarrow] 0, \infty\left[, \quad(t, \omega) \mapsto D_{t}(r) S_{t}(\omega)\right.
$$

is a local martingale under \tilde{P}.
Indeed, let us define a continuous local martingale Z via

$$
Z=\exp \left(-\int_{0} \kappa_{s} d W_{s}-\int_{0} \tilde{\kappa}_{s} d \tilde{W}_{s}-\frac{1}{2} \int_{0} \kappa_{s}^{2}+\tilde{\kappa}_{s}^{2} d s\right) \quad \text { a.s. }
$$

where W is an $\left(\mathscr{F}_{t}\right)_{t \in[0, T]^{-}}$-Brownian motion independent of \tilde{W}.

If $E\left[Z_{T}\right]=1$, then Z induces an equivalent local martingale measure via Girsanov's theorem if and only if

$$
(b-r)(t)=\theta(t) \sqrt{V_{t}}\left(\kappa_{t} \sqrt{1-\rho(t)^{2}}+\tilde{\kappa}_{t} \rho(t)\right)
$$

for a.e. $t \in[0, T]$ a.s. If in addition $\theta>0$, then we propose to take the market prices of risk

$$
\tilde{\kappa}_{t}=\gamma \theta(t) \sqrt{V_{t}} \quad \text { and } \quad \kappa_{t}=\left(\frac{(b-r)(t)}{\theta(t) \sqrt{V_{t}}}-\tilde{\kappa}_{t} \rho(t)\right) \frac{1}{\sqrt{1-\rho(t)^{2}}}
$$

for all $t \in[0, T]$ and fixed $\gamma \geq 0$.

In this case, Novikov's condition implies that $E\left[Z_{T}\right]=1$ as soon as

$$
E\left[\exp \left(\frac{\gamma^{2}}{2} \int_{0}^{T} \theta(t)^{2} V_{t} d t\right)\right]<\infty
$$

In particular, the choice $\gamma=0$ is feasible and V satisfies the same SDE

$$
d V_{t}=\left(k(t)-I_{0}(t) V_{t}+I(t) V_{t}^{\alpha}\right) d t+\lambda(t) V_{t}^{\beta} d \tilde{W}_{t}
$$

under the resulting risk-neutral measure.
By also considering the dynamics of $\log (S)$, we can turn to the evaluation of contingent claims in a subsequent analysis.

References

[1] A. Kalinin, T. Meyer-Brandis, and F. Proske. Stability, uniqueness and existence of solutions to McKean-Vlasov SDEs: a multidimensional Yamada-Watanabe approach.
arXiv:2107.07838, 2021.
[2] D. Brigo, F. Graceffa, and A. Kalinin.
Mild to classical solutions for XVA equations under stochastic volatility. arXiv:2112.11808, 2021.

Thank you for your attention!

