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Introduction

We seek to analyse the one-dimensional McKean-Vlasov SDE

dXt = b(t, Xt , PXt ) dt + σ(t, Xt) dWt for t ≥ 0. (1)

Thereby,
b : R+ × R × P1(R) → R and σ : R+ × R → R are the
measurable drift and diffusion coefficients, respectively,
(Ω, F , (Ft)t≥0, P) is a filtered probability space satisfying the
usual conditions and
W is a standard (Ft)t≥0-Brownian motion.
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Further, P1(R) stands for the Polish space of all Borel probability
measures µ on R with finite first moment∫

R
|x | µ(dx),

equipped with the first Wasserstein metric given by

ϑ1(µ, ν) := inf
θ∈P(µ,ν)

∫
R×R

|x − y | θ(dx , dy),

where P(µ, ν) is the convex space of all Borel probability measures
θ on R × R with

θ(B × R) = µ(B) and θ(R × B) = ν(B)

for all B ∈ B(R).
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We recall that a solution to the McKean-Vlasov SDE (1) is an
adapted, continuous and integrable process X such that∫ t

0
|b(s, Xs , PXs )| + |σ(s, Xs)|2 ds < ∞

for all t ≥ 0 and

Xt = X0 +
∫ t

0
b(s, Xs , PXs ) ds +

∫ t

0
σ(s, Xs) dWs

for any t ≥ 0 a.s. In our paper, we replace P1(R) by a suitable
metrisable topological space P, to include SDEs.
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For p ≥ 1 and l ∈ N we let L p
loc(Rl) denote the linear space of all

measurable maps η : R+ → Rl such that∫ t

0
|η(s)|p ds < ∞ for all t ≥ 0

and we write L p
loc(Rl

+) for the convex cone of all η ∈ L p
loc(Rl) with

η1 ≥ 0, . . . , ηl ≥ 0.

In the same spirit we define L ∞
loc(Rl) and L ∞

loc(Rl
+).
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Pathwise uniqueness

First, let us consider two requirements:

(C.1) (Local Hölder continuity condition)
For any n ∈ N there is η̂n ∈ L 2

loc(R+) such that

|σ(·, x) − σ(·, x̃)| ≤ η̂n|x − x̃ |
1
2

for all x , x̃ ∈ [−n, n].
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Example (sums of power functions)
For l ∈ N let κ : R+ → R and η : R+ → Rl be measurable and
α ∈]0, ∞[l be such that

σ(·, x) = κ + η1|x |α1 + · · · + ηl |x |αl

for any x ∈ R. Then (C.1) holds if

η ∈ L 2
loc(Rl) and α1 ≥ 1

2 , . . . , αl ≥ 1
2 .
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(C.2) (Partial Osgood continuity condition)
There exist η, λ ∈ L 1

loc(R+) and some increasing concave
function ρ ∈ C(R+) such that

ρ(0) = 0, ρ > 0 on ]0, ∞[

and

sgn(x − x̃)
(
b(·, x , µ) − b(·, x̃ , µ̃)

)
≤ ηρ(|x − x̃ |) + λρ

(
ϑ1(µ, µ̃)

)
for all x , x̃ ∈ R and µ, µ̃ ∈ P1(R).
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Example (sums involving decreasing functions)
For l ∈ N let κ, λ : R+ → R and η : R+ → Rl be measurable maps
and f : R → Rl be increasing such that

b(·, x , µ) = κ − η1f1(x) − · · · − ηl fl(x) + λ

∫
R

y µ(dy)

for any x ∈ R and µ ∈ P1(R). In this case, (C.2) holds for the
choice

ρ(x) = x for all x ≥ 0

if η ∈ L 1
loc(Rl

+) and λ ∈ L 1
loc(R).
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Pathwise uniqueness
(Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.2) hold such that
∫ 1

0 ρ(x)−1 dx = ∞ and define
Θ : R+ × P1(R) × P1(R) → R+ by

Θ(·, µ, µ̃) := λρ
(
ϑ1(µ, µ̃)

)
.

Then pathwise uniqueness for (1) relative to Θ holds. That is,
any two solutions X and X̃ satisfying

X0 = X̃0 a.s.

are indistinguishable if Θ(·, PX , PX̃ ) ∈ L 1
loc(R+).
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To allow for negative partial Lipschitz coefficients, we replace (C.2)
by the following hypothesis:

(C.3) (Partial mixed Hölder continuity condition)
There are l ∈ N,

η ∈ L 1
loc(Rl), λ ∈ L 1

loc(Rl
+)

and α, β ∈]0, 1]l such that

sgn(x − x̃)
(
b(·, x , µ) − b(·, x̃ , µ̃)

)
≤

l∑
k=1

ηk |x − x̃ |αk + λkϑ1(µ, µ̃)βk

for any x , x̃ ∈ R and µ, µ̃ ∈ P1(R).
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Under (C.3), we define γP1 ∈ L 1
loc(R) and δP1 ∈ L 1

loc(R+) via

γP1 :=
l∑

k=1
αk

(
η+

k − η−
k 1{1}(αk)

)
+βkλk

and

δP1 :=
l∑

k=1
(1 − αk)η+

k + (1 − βk)λk .

Further, let Θ : R+ × P1(R) × P1(R) → R+ be given by

Θ(·, µ, µ̃) :=
l∑

k=1
λkϑ1(µ, µ̃)βk .
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Explicit L1-comparison estimate
(Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.3) hold and X and X̃ be two solutions such
that Θ(·, PX , PX̃ ) ∈ L 1

loc(R+). Then Y := X − X̃ satisfies

E
[
|Yt |

]
≤ e

∫ t
0 γP1 (s) dsE

[
|Y0|

]
+
∫ t

0
e
∫ t

s γP1 (s̃) ds̃δP1(s) ds

for all t ≥ 0. In particular, if γ+
P1

and δP1 are integrable, then

sup
t≥0

E
[
|Yt |

]
< ∞.

If additionally
∫ ∞

0 γ−
P1

(s) ds = ∞, then limt↑∞ E [|Yt |] = 0.
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First moment stability

We restrict (C.3) as follows:

(C.4) (Partial Lipschitz condition)
There are η ∈ L 1

loc(R) and λ ∈ L 1
loc(R+) such that

sgn(x − x̃)
(
b(·, x , µ) − b(·, x̃ , µ̃)

)
≤ η|x − x̃ | + λϑ1(µ, µ̃)

for every x , x̃ ∈ R and µ, µ̃ ∈ P1(R).
Under this requirement,

δP1 = 0, γP1 = η + λ and Θ(·, µ, µ̃) = λϑ1(µ, µ̃)

for all µ, µ̃ ∈ P1(R).
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Exponential first moment stability
(Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.4) hold. Further, let α > 0 and λ̂ < 0 satisfy

γP1(s) ≤ λ̂αsα−1 for a.e. s ≥ 0.

Then (1) is α-exponentially stable in moment relative to Θ and
λ̂ is a Lyapunov exponent. That is, there is c ≥ 0 such that

E
[
|Xt − X̃t |

]
≤ ceλ̂tαE

[
|X0 − X̃0|

]
for all t ≥ 0 whenever X and X̃ are two solutions satisfying
Θ(·, PX , PX̃ ) ∈ L 1

loc(R+).

14 / 30



Derivation of strong solutions

We recall that a Borel measurable map µ : R+ → P1(R) induces
the SDE

dXt = bµ(t, Xt) dt + σ(t, Xt) dWt for t ≥ 0 (2)

with the measurable map bµ : R+ × R → R given by

bµ(t, x) := b(t, x , µ(t))

and let ξ denote an F0-measurable random variable.
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Now we specify (C.1) as follows:

(C.5) (Local Hölder continuity condition and the origin as zero)
For every n ∈ N there is η̂n ∈ L ∞

loc(R+) such that

|σ(·, x) − σ(·, x̃)| ≤ η̂n|x − x̃ |
1
2

for any x , x̃ ∈ [−n, n] and

σ(·, 0) = 0.
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Example (sums of power functions)
The case in which there are l ∈ N, η ∈ L ∞

loc(Rl) and α ∈ [1/2, ∞[l
such that

σ(·, x) = η1|x |α1 + · · · + ηl |x |αl

for all x ∈ R is included, even though αk > 1 may hold for some
k = 1, . . . , l .
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For local weak solutions to (2) we need the following condition:

(C.6) (Space continuity and boundedness on bounded sets)
b is continuous in x ∈ R and for each n ∈ N there is cn ≥ 0
such that

|b(s, x , µ)| ≤ cn

for any s ∈ [0, n], x ∈ [−n, n] and µ ∈ P1(R) with∫
R

|y | µ(dy) ≤ n.

Thereby, we recall that ϑ1(µ, δ0) =
∫
R |y | µ(dy).
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The subsequent assumption leads to an explicit L1-growth estimate:

(C.7) (Partial affine growth condition)
There are κ, χ ∈ L 1

loc(R+) and υ ∈ L 1
loc(R) such that

sgn(x)b(·, x , µ) ≤ κ + υ|x | + χ

∫
R

|y | µ(dy)

for each x ∈ R and µ ∈ P1(R).
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Example (sums involving polynomials and integral functions)
For l ∈ N let κ, η0, λ ∈ L ∞

loc(R) and

η ∈ L ∞
loc(Rl

+)

as well as n ∈ Nl be such that

b(·, x , µ) = κ + η0x − η1xn1 − · · · − ηlxnl + λ

∫
R

|y | µ(dy)

for all x ∈ R and µ ∈ P1(R). Then (C.4), (C.6) and (C.7) are valid
if the coordinates of n are odd.
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An explicit L1-growth estimate
(Meyer-Brandis, Proske and K., 2021)

Let (C.5) and (C.7) be valid and X be a solution to (1) such that
χE [|X |] ∈ L 1

loc(R+). Then

E
[
|Xt |

]
≤ e

∫ t
0 (υ+χ)(s) dsE

[
|X0|

]
+
∫ t

0
e
∫ t

s (υ+χ)(s̃) ds̃κ(s) ds

for all t ≥ 0. In particular, if (υ + χ)+ and κ are integrable, then
supt≥0 E

[
|Xt |

]
< ∞. In this case,

lim
t↑∞

E [|Xt |] = 0

follows from
∫ ∞

0 (υ + χ)−(s) ds = ∞.
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Existence of unique strong solutions
(Meyer-Brandis, Proske and K., 2021)

Let (C.4)-(C.7) be satisfied and E [|ξ|] < ∞. Moreover, define
Θ : R+ × P1(R) × P1(R) → R+ by

Θ(·, µ, µ̃) := λϑ1(µ, µ̃).

Then pathwise uniqueness for (1) relative to Θ holds and there
exists a unique strong solution X ξ such that

X ξ
0 = ξ a.s.

and E [|X ξ|] is locally bounded.
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Proof ideas.
For any Borel measurable map µ : R+ → P1(R) we show that the
SDE (2) admits a unique strong solution X ξ,µ such that

X ξ,µ
0 = ξ a.s.

and E [|X ξ,µ|] is locally bounded as soon as the function R+ → R+,
t 7→

∫
R |x | µ(t)(dx) is locally bounded.

Then we prove that the sequence (µn)n∈N of P1(R)-valued Borel
measurable maps on R+ recursively given by

µn := PXξ,µn−1 with µ0 := µ

converges locally uniformly to the law of the strong solution to (1).

23 / 30



An Application in Mathematical Finance
Joint work with Damiano Brigo and Federico Graceffa



A stochastic volatility model

Let us consider a financial market model with time horizon T > 0
consisting of only one riskless and one risky asset that are traded.

In this setting, the measurable integrable function r : [0, T ] → R is
the instantaneous risk-free interest rate and

Dt(r) := exp
(

−
∫ t

0
r(s) ds

)
is the discount factor from the initial time to t ∈ [0, T ].

Similarly as before, let (Ω, F , (Ft)t∈[0,T ], P) be a filtered probability
space satisfying the usual conditions.
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We suppose that Ŵ and W̃ are two (Ft)t∈[0,T ]-Brownian motions
with covariation

⟨Ŵ , W̃ ⟩ =
∫ ·

0
ρ(s) ds a.s.

and impose the following dynamics on the price process S of the
only risky asset and its squared volatility process V :

dSt = b(t)St dt + θ(t)
√

VtSt dŴt

dVt =
(
k(t) − l0(t)Vt + l(t)V α

t
)

dt + λ(t)V β
t dW̃t

(3)

for t ∈ [0, T ] with α ≥ 1 and β ≥ 1/2.
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From the pathwise uniqueness and strong existence results in [1] and
a positivity condition we draw the following conclusion.

Power diffusion as squared volatility
(Brigo, Graceffa and K., 2021)

Let b, θ, k, l0, l , λ be bounded, l ≤ 0 and λ2/2 ≤ k. Then
pathwise uniqueness for (3) holds and there is a unique strong
solution (S, V ) satisfying

S > 0, V > 0 and (S0, V0) = (s0, v0) a.s.,

where s0, v0 > 0. Furthermore, supt∈[0,T ] | log(St)| and V are
integrable.
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Example (Established models in the literature)
For l = 0 and l0 > 0 we recover the dynamics

dVt =
(
k(t) − l0(t)Vt

)
dt + λ(t)V β

t dW̃t , for t ∈ [0, T ]

in time-dependent versions of the following option pricing models:

(i) The Heston model for β = 1/2. There, l0 is the mean reversion
speed, k/l0 is the mean reversion level and the same positivity
condition λ ≤ 2k applies.

(ii) The Garch diffusion model for β = 1. Similarly, l0 is the mean
reversion speed and k/l0 the mean reversion level.
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Market prices of risk

The model allows for an equivalent local martingale measure.

That is, there is a probability measure P̃ on (Ω, F ) such that P̃ ∼ P
and the discounted price process

[0, T ] × Ω →]0, ∞[, (t, ω) 7→ Dt(r)St(ω)

is a local martingale under P̃.

Indeed, let us define a continuous local martingale Z via

Z = exp
(

−
∫ ·

0
κs dWs −

∫ ·

0
κ̃s dW̃s − 1

2

∫ ·

0
κ2

s + κ̃2
s ds

)
a.s.,

where W is an (Ft)t∈[0,T ]-Brownian motion independent of W̃ .
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If E [ZT ] = 1, then Z induces an equivalent local martingale measure
via Girsanov’s theorem if and only if

(b − r)(t) = θ(t)
√

Vt
(
κt

√
1 − ρ(t)2 + κ̃tρ(t)

)
for a.e. t ∈ [0, T ] a.s. If in addition θ > 0, then we propose to take
the market prices of risk

κ̃t = γθ(t)
√

Vt and κt =
(

(b − r)(t)
θ(t)

√
Vt

− κ̃tρ(t)
)

1√
1 − ρ(t)2

for all t ∈ [0, T ] and fixed γ ≥ 0.
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In this case, Novikov’s condition implies that E [ZT ] = 1 as soon as

E
[

exp
(

γ2

2

∫ T

0
θ(t)2Vt dt

)]
< ∞.

In particular, the choice γ = 0 is feasible and V satisfies the same
SDE

dVt =
(
k(t) − l0(t)Vt + l(t)V α

t
)

dt + λ(t)V β
t dW̃t

under the resulting risk-neutral measure.

By also considering the dynamics of log(S), we can turn to the
evaluation of contingent claims in a subsequent analysis.
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Thank you for your attention!
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