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Introduction

We seek to analyse the one-dimensional McKean-Vlasov SDE
dXt: b(t,Xt,th)dt+O—(t,Xt) th for t> 0. (1)

Thereby,

b:Ry xR x Z1(R) - Rand 0 : Rp xR — R are the
measurable drift and diffusion coefficients, respectively,

(Q,.7,(F+t)e>0, P) is a filtered probability space satisfying the
usual conditions and

W is a standard (.%;)¢>0-Brownian motion.
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Further, 271(R) stands for the Polish space of all Borel probability
measures 1 on R with finite first moment

| et

equipped with the first Wasserstein metric given by

0 = inf —yl|0(dx, d
)= inf [ x—yl0(aedn).

where & (u,v) is the convex space of all Borel probability measures
f on R x R with

0(BxR) =u(B) and O(R x B) = v(B)

for all B € #A(R).
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We recall that a solution to the McKean-Vlasov SDE (1) is an
adapted, continuous and integrable process X such that

t
/ |b(s, Xs, Px,)| + |o(s, Xs)|* ds < o0
0
for all t > 0 and
t t
X, = Xo +/ b(s, X, Px.) ds +/ o (5, Xs) dW,s
0 0

for any t > 0 a.s. In our paper, we replace Z71(R) by a suitable
metrisable topological space &2, to include SDEs.
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For p>1 and | € N we let £ _(IR') denote the linear space of all

measurable maps 77 : R, — R/ such that
t
/ In(s)|Pds < oo forallt>0
0

and we write ./ (R!.) for the convex cone of all n € .Z7_(R') with

In the same spirit we define Z2°(R') and .Z22(R/,).
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Pathwise uniqueness

First, let us consider two requirements:

(C.1) (Local Holder continuity condition)
For any n € N there is 1), € £2_.(R4) such that

. ol
|0 x) = o (-, X)| < nlx — X[2

for all x,% € [—n, n].
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Example (sums of power functions)

For /€ Nlet K : Ry — R and : R, — R/ be measurable and
a €]0, o[ be such that

o x) = K+ mlx|™ 4+ mlx]Y

for any x € R. Then (C.1) holds if

neL2(R) and a; >

6/30



(C.2) (Partial Osgood continuity condition)

There exist n,A € £ (R;) and some increasing concave
function p € C(Ry) such that

p(0)=0, p>0 on ]0,o0
and

sgn(x — %) (b(-, x, p) — b(-, %, fi))
<np(|x = X|) + )\p(ﬁl(ﬂa /1))

for all x,% € R and p, fi € Z1(R).
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Example (sums involving decreasing functions)

For / € Nlet k,A: R; — R and n: R, — R/ be measurable maps
and f : R — R/ be increasing such that

b x, 1) = & — mAi(x) —'--—mﬁ(X)Jr)\/Ryu(dy)

for any x € R and p € Z1(R). In this case, (C.2) holds for the
choice
p(x)=x forall x>0

if ne ZL(R)) and X € ZL (R).

loc
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Pathwise uniqueness

(Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.2) hold such that fol p(x)~! dx = co and define
O : R+ X yl(R) X LgZ]_(IR) —)RJ,_ by

@(-, s /'1) = )‘p(ﬁl(:u’ ﬁ)) 0

Then pathwise uniqueness for (1) relative to © holds. That is,
any two solutions X and X satisfying

Xo = )N<o a.s.

are indistinguishable if ©(-, Px, Pg) € LL.(R4).
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To allow for negative partial Lipschitz coefficients, we replace (C.2)
by the following hypothesis:

(C.3) (Partial mixed Holder continuity condition)
There are | € N,

neLp(R), Ae L (Ry)
and o, 3 €]0, 1]’ such that
sgn(x—)?)(b(~,x,u)—b(- aﬂ))

, X
/
<kl = K[ 4 A (s i)
k=1
for any x,x € R and pu, fi € 21(R).
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Under (C.3), we define v, € ZL (R) and 6., € £ (R4) via

/

Yo = Sl — i Ly () B
k=1

and
I

S = (1= a)ni + (1= Bi) e
k=1

Further, let © : Ry x 21(R) x Z1(R) — R be given by

i
O, i) = > il (p, i)
k=1
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Explicit [-comparison estimate

(Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.3) hold and X and X be two solutions such
that O(-, Px, Pg) € ZL.(Ry). Then Y := X — X satisfies

t t t ~ ~
E[|Yel] < el 11| vg|] + /0 e 121 %5,,(s) ds

for all £ > 0. In particular, if 7},1 and d4, are integrable, then

sup E[|Y¢]] < oo.
£>0

If additionally [, Y, (5) ds = oo, then limspoo E[| Y]] = 0.
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First moment stability

We restrict (C.3) as follows:

(C.4) (Partial Lipschitz condition)
There are n € £ (R) and X € ZL_(R;) such that

SgIl(X - ;()(b('7x7:u) - b(v)?vﬂ)) < 77|X - )?’ + )‘191(:“7/])

for every x, % € R and p, fi € 21(R).
Under this requirement,

5,’}71 =0, Yo =1+ A and @(7/'L>ﬁ) = Aﬁl(f‘)ﬂ)

for all u, i € Z1(R).

13/30



Exponential first moment stability

(Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.4) hold. Further, let & > 0 and \ < 0 satisfy
Yo, (5) < Aas® ! forae. s> 0.

Then (1) is a-exponentially stable in moment relative to © and
A is a Lyapunov exponent. That is, there is ¢ > 0 such that

E[1X: — Xel] < ce® E[|1X — Xol]

for all t > 0 whenever X and X are two solutions satisfying
@('7 PXa P)?) € ’E’pl(];C(R'i‘)'
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Derivation of strong solutions

We recall that a Borel measurable map p : Ry — Z21(R) induces
the SDE

dXt = bu(t7Xt) dt+0(t,Xt) th for t> 0 (2)
with the measurable map b, : R, x R — R given by

bu(t,x) = b(t,x, u(t))

and let &£ denote an .#p-measurable random variable.
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Now we specify (C.1) as follows:

(C.5) (Local Holder continuity condition and the origin as zero)

For every n € N there is 7, € Z52(R) such that
. . ol
|0+, x) = (5 X)| < finlx — X2
for any x,% € [—n, n] and

o(-,0)=0.
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Example (sums of power functions)
The case in which there are / € N, n € Z2(R) and o € [1/2, 00]/
such that

o, x) = mlx|™* 4 - x|
for all x € R is included, even though aj, > 1 may hold for some
k=1,...,1.
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For local weak solutions to (2) we need the following condition:

(C.6) (Space continuity and boundedness on bounded sets)

b is continuous in x € R and for each n € N there is ¢, > 0
such that
|b(s, x, p)| < cn

for any s € [0, n], x € [-n, n] and p € Z1(R) with

/ lylu(dy) < n.
R

Thereby, we recall that 91(u, do) = [p [y| p(dy).
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The subsequent assumption leads to an explicit L1-growth estimate:

(C.7) (Partial affine growth condition)
There are 1,y € ZL (R4) and v € £} (R) such that

sgn(x)b(-,x, 1) < % + vlx| + X /R Iy lly)

for each x € R and pu € Z1(R).
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Example (sums involving polynomials and integral functions)
For | € N let k,m0, A € Z52(R) and

n€.Z(R))
as well as n € N/ be such that
b(+, x,p) = K+ nox —mx"™ — - —mx" 4+ )x/ ly| u(dy)
R

forall x € R and p € Z1(R). Then (C.4), (C.6) and (C.7) are valid
if the coordinates of n are odd.
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An explicit ['-growth estimate

(Meyer-Brandis, Proske and K., 2021)

Let (C.5) and (C.7) be valid and X be a solution to (1) such that
VE[IX[] € Zh(R.). Then

t t t ~ ~
E[X] < K PIOSExg)] + [ el ou(s)ds
0

for all t > 0. In particular, if (v+x)" and & are integrable, then
supyo E[|X¢|] < oo. In this case,

i H[) =
follows from [;™(v + x)~(s) ds = .
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Existence of unique strong solutions

(Meyer-Brandis, Proske and K., 2021)

Let (C.4)-(C.7) be satisfied and E[|{|]] < oco. Moreover, define
O : R+ X yl(R) X 9’1(]1%) — R+ by

O, p, fi) := M1 (p, fi)-

Then pathwise uniqueness for (1) relative to © holds and there
exists a unique strong solution X¢ such that

X§=¢ as

and E[|X¢|] is locally bounded.
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Proof ideas.
For any Borel measurable map p : Ry — Z71(R) we show that the
SDE (2) admits a unique strong solution X&# such that

Xg’uzf a.s.

and E[|X$*#] is locally bounded as soon as the function R, — R,
t— [ [x| u(t)(dx) is locally bounded.

Then we prove that the sequence (fin)nen of Z1(R)-valued Borel
measurable maps on R recursively given by

pn = Pyep,_y  with  po = p

converges locally uniformly to the law of the strong solution to (1).
O]
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An Application in Mathematical Finance

Joint work with Damiano Brigo and Federico Graceffa



A stochastic volatility model

Let us consider a financial market model with time horizon T > 0
consisting of only one riskless and one risky asset that are traded.

In this setting, the measurable integrable function r: [0, T] = R is
the instantaneous risk-free interest rate and

Di(r) = exp ( — [ r(s) o)

is the discount factor from the initial time to t € [0, T].

Similarly as before, let (Q, %, (%¢)¢c[o, 1], P) be a filtered probability
space satisfying the usual conditions.
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We suppose that W and W are two (Zt)tejo, 7)-Brownian motions
with covariation

(W, W) = / p(s)ds as.
0

and impose the following dynamics on the price process S of the
only risky asset and its squared volatility process V:

dSt - b( St dt + 0 \/ VtSt th

g (3)
dVe = (k(t) — Io(t) Vi + () V) dt + A(t) V) d Wy

for t € [0, T] with &« > 1 and 3 > 1/2.
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From the pathwise uniqueness and strong existence results in [1] and
a positivity condition we draw the following conclusion.

Power diffusion as squared volatility

(Brigo, Graceffa and K., 2021)

Let b, 0, k, Iy, I, A be bounded, / < 0 and A\?/2 < k. Then
pathwise uniqueness for (3) holds and there is a unique strong
solution (S, V) satisfying

$>0, V>0 and (So, W)= (s0,w) as.,

where sp,vo > 0. Furthermore, sup,c[o 7] |log(St)| and V are
integrable.
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Example (Established models in the literature)

For I =0 and fy > 0 we recover the dynamics
dV; = (k(t) — lo(t)Ve) dt + M(t) V] d W, for t € [0, T]

in time-dependent versions of the following option pricing models:

(i) The Heston model for 5 = 1/2. There, Iy is the mean reversion
speed, k/Iy is the mean reversion level and the same positivity
condition A < 2k applies.

(i) The Garch diffusion model for 5 = 1. Similarly, fy is the mean
reversion speed and k/Iy the mean reversion level.
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Market prices of risk

The model allows for an equivalent local martingale measure.

That is, there is a probability measure P on (,.%) such that P ~ P
and the discounted price process

[0, T] x Q =]0,00[, (t,w) > De(r)Se(w)

is a local martingale under P.

Indeed, let us define a continuous local martingale Z via

. . y 1
Zzexp(—/ /iSdWS—/ Fades—/ n§+/%§ds> a.s.,
0 0 2 Jo

where W' is an (F¢)c[o, 7]-Brownian motion independent of W.
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If E[Z7] = 1, then Z induces an equivalent local martingale measure
via Girsanov’s theorem if and only if

(b—r)(t) = 0(t)\/ Ve (rer/1 — p(t)2 + Fep(t))

for a.e. t € [0, T] a.s. If in addition # > 0, then we propose to take
the market prices of risk

e =~0(t)\/ Ve and kp = <(5(t_)\r/)(7i) - Fatp(t)>

for all t € [0, T] and fixed v > 0.

1

Vi AP
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In this case, Novikov's condition implies that E[Z7] =1 as soon as

E[exp </22 /OTG(t)2Vt dtﬂ < oo.

In particular, the choice v = 0 is feasible and V satisfies the same
SDE

dVe = (k(t) — lo(t) Ve + I(£) V) dt + A(£) V) d W,

under the resulting risk-neutral measure.

By also considering the dynamics of log(S), we can turn to the
evaluation of contingent claims in a subsequent analysis.
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Thank you for your attention!
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