Derivation of unique stable solutions to McKean-Vlasov SDEs

Alexander Kalinin, LMU Munich

Joint work with Thilo Meyer-Brandis and Frank Proske

Finance and Stochastics Seminar Imperial College London, March 2023

Introduction

We seek to analyse the one-dimensional McKean-Vlasov SDE

$$dX_t = b(t, X_t, P_{X_t}) dt + \sigma(t, X_t) dW_t \quad \text{for } t \ge 0.$$
 (1)

Thereby,

 $b : \mathbb{R}_+ \times \mathbb{R} \times \mathscr{P}_1(\mathbb{R}) \to \mathbb{R}$ and $\sigma : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ are the measurable drift and diffusion coefficients, respectively, $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \geq 0}, P)$ is a filtered probability space satisfying the usual conditions and

W is a standard $(\mathscr{F}_t)_{t\geq 0}$ -Brownian motion.

Further, $\mathscr{P}_1(\mathbb{R})$ stands for the Polish space of all Borel probability measures μ on \mathbb{R} with finite first moment

$$\int_{\mathbb{R}}|x|\,\mu(dx),$$

equipped with the first Wasserstein metric given by

$$artheta_1(\mu,
u) := \inf_{ heta\in\mathscr{P}(\mu,
u)} \int_{\mathbb{R} imes\mathbb{R}} |x-y|\, heta(dx,dy),$$

where $\mathscr{P}(\mu, \nu)$ is the convex space of all Borel probability measures θ on $\mathbb{R} \times \mathbb{R}$ with

$$heta(B imes \mathbb{R})=\mu(B) \hspace{0.3cm} ext{and} \hspace{0.3cm} heta(\mathbb{R} imes B)=
u(B)$$

for all $B \in \mathscr{B}(\mathbb{R})$.

We recall that a solution to the McKean-Vlasov SDE (1) is an adapted, continuous and integrable process X such that

$$\int_0^t |b(s,X_s,P_{X_s})| + |\sigma(s,X_s)|^2 \, ds < \infty$$

for all $t \ge 0$ and

$$X_t = X_0 + \int_0^t b(s, X_s, P_{X_s}) \, ds + \int_0^t \sigma(s, X_s) \, dW_s$$

for any $t \ge 0$ a.s. In our paper, we replace $\mathscr{P}_1(\mathbb{R})$ by a suitable metrisable topological space \mathscr{P} , to include SDEs.

For $p \geq 1$ and $l \in \mathbb{N}$ we let $\mathscr{L}^{p}_{loc}(\mathbb{R}^{l})$ denote the linear space of all measurable maps $\eta : \mathbb{R}_{+} \to \mathbb{R}^{l}$ such that

$$\int_0^t |\eta(s)|^p \, ds < \infty \quad ext{for all } t \geq 0$$

and we write $\mathscr{L}^p_{\mathit{loc}}(\mathbb{R}^l_+)$ for the convex cone of all $\eta \in \mathscr{L}^p_{\mathit{loc}}(\mathbb{R}^l)$ with

$$\eta_1\geq 0,\ldots,\eta_l\geq 0.$$

In the same spirit we define $\mathscr{L}^{\infty}_{loc}(\mathbb{R}^{l})$ and $\mathscr{L}^{\infty}_{loc}(\mathbb{R}^{l}_{+})$.

Pathwise uniqueness

First, let us consider two requirements:

(C.1) (Local Hölder continuity condition) For any $n \in \mathbb{N}$ there is $\hat{\eta}_n \in \mathscr{L}^2_{loc}(\mathbb{R}_+)$ such that $|\sigma(\cdot, x) - \sigma(\cdot, \tilde{x})| \leq \hat{\eta}_n |x - \tilde{x}|^{\frac{1}{2}}$

for all $x, \tilde{x} \in [-n, n]$.

Example (sums of power functions)

For $l \in \mathbb{N}$ let $\kappa : \mathbb{R}_+ \to \mathbb{R}$ and $\eta : \mathbb{R}_+ \to \mathbb{R}^l$ be measurable and $\alpha \in]0, \infty[l]$ be such that

$$\sigma(\cdot, x) = \kappa + \eta_1 |x|^{\alpha_1} + \dots + \eta_l |x|^{\alpha_l}$$

for any $x \in \mathbb{R}$. Then (C.1) holds if

$$\eta \in \mathscr{L}^2_{loc}(\mathbb{R}^l) \quad ext{and} \quad lpha_1 \geq rac{1}{2}, \dots, lpha_l \geq rac{1}{2}.$$

(C.2) (Partial Osgood continuity condition)

There exist $\eta, \lambda \in \mathscr{L}^{1}_{loc}(\mathbb{R}_{+})$ and some increasing concave function $\rho \in C(\mathbb{R}_{+})$ such that

$$ho(0)=0, \quad
ho>0 \quad ext{on }]0,\infty[$$

and

$$\frac{\operatorname{sgn}(x-\tilde{x})(b(\cdot,x,\mu)-b(\cdot,\tilde{x},\tilde{\mu}))}{\leq \eta\rho(|x-\tilde{x}|)+\lambda\rho(\vartheta_1(\mu,\tilde{\mu}))}$$

for all $x, \tilde{x} \in \mathbb{R}$ and $\mu, \tilde{\mu} \in \mathscr{P}_1(\mathbb{R})$.

Example (sums involving decreasing functions)

For $l \in \mathbb{N}$ let $\kappa, \lambda : \mathbb{R}_+ \to \mathbb{R}$ and $\eta : \mathbb{R}_+ \to \mathbb{R}'$ be measurable maps and $f : \mathbb{R} \to \mathbb{R}'$ be increasing such that

$$b(\cdot, x, \mu) = \kappa - \eta_1 f_1(x) - \cdots - \eta_l f_l(x) + \lambda \int_{\mathbb{R}} y \, \mu(dy)$$

for any $x \in \mathbb{R}$ and $\mu \in \mathscr{P}_1(\mathbb{R})$. In this case, (C.2) holds for the choice

$$\rho(x) = x \quad \text{for all } x \ge 0$$

if $\eta \in \mathscr{L}^{1}_{loc}(\mathbb{R}^{l}_{+})$ and $\lambda \in \mathscr{L}^{1}_{loc}(\mathbb{R})$.

Pathwise uniqueness (Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.2) hold such that $\int_0^1 \rho(x)^{-1} dx = \infty$ and define $\Theta : \mathbb{R}_+ \times \mathscr{P}_1(\mathbb{R}) \times \mathscr{P}_1(\mathbb{R}) \to \mathbb{R}_+$ by

$$\Theta(\cdot, \mu, \tilde{\mu}) := \lambda \rho \big(\vartheta_1(\mu, \tilde{\mu}) \big).$$

Then pathwise uniqueness for (1) relative to Θ holds. That is, any two solutions X and \tilde{X} satisfying

$$X_0 = ilde{X}_0$$
 a.s.

are indistinguishable if $\Theta(\cdot, P_X, P_{\tilde{X}}) \in \mathscr{L}^1_{loc}(\mathbb{R}_+).$

To allow for negative partial Lipschitz coefficients, we replace (C.2) by the following hypothesis:

(C.3) (Partial mixed Hölder continuity condition)

There are $I \in \mathbb{N}$,

$$\eta \in \mathscr{L}^1_{\mathit{loc}}(\mathbb{R}^l), \quad \lambda \in \mathscr{L}^1_{\mathit{loc}}(\mathbb{R}^l_+)$$

and $\alpha,\beta\in]0,1]'$ such that

$$\begin{split} \mathrm{sgn}(x- ilde{x})ig(b(\cdot,x,\mu)-b(\cdot, ilde{x}, ilde{\mu})ig) \ &\leq \sum_{k=1}^l \eta_k |x- ilde{x}|^{oldsymbol{lpha}_k} + \lambda_k artheta_1(\mu, ilde{\mu})^{eta_k} \end{split}$$

for any $x, \tilde{x} \in \mathbb{R}$ and $\mu, \tilde{\mu} \in \mathscr{P}_1(\mathbb{R})$.

Under (C.3), we define $\gamma_{\mathscr{P}_1} \in \mathscr{L}^1_{loc}(\mathbb{R})$ and $\delta_{\mathscr{P}_1} \in \mathscr{L}^1_{loc}(\mathbb{R}_+)$ via

$$\gamma_{\mathscr{P}_1} := \sum_{k=1}^{l} \alpha_k \big(\eta_k^+ - \eta_k^- \mathbb{1}_{\{1\}}(\alpha_k) \big) + \beta_k \lambda_k$$

and

$$\delta_{\mathscr{P}_1} := \sum_{k=1}^l (1-\alpha_k)\eta_k^+ + (1-\beta_k)\lambda_k.$$

Further, let $\Theta: \mathbb{R}_+ imes \mathscr{P}_1(\mathbb{R}) imes \mathscr{P}_1(\mathbb{R}) o \mathbb{R}_+$ be given by

$$\Theta(\cdot,\mu,\tilde{\mu}) := \sum_{k=1}^{l} \lambda_k \vartheta_1(\mu,\tilde{\mu})^{\beta_k}.$$

Explicit L^1 -comparison estimate (Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.3) hold and X and \tilde{X} be two solutions such that $\Theta(\cdot, P_X, P_{\tilde{X}}) \in \mathscr{L}^1_{loc}(\mathbb{R}_+)$. Then $Y := X - \tilde{X}$ satisfies

$$E\big[|Y_t|\big] \le e^{\int_0^t \gamma_{\mathscr{P}_1}(s) \, ds} E\big[|Y_0|\big] + \int_0^t e^{\int_s^t \gamma_{\mathscr{P}_1}(\tilde{s}) \, d\tilde{s}} \delta_{\mathscr{P}_1}(s) \, ds$$

for all $t \geq 0$. In particular, if $\gamma^+_{\mathscr{P}_1}$ and $\delta_{\mathscr{P}_1}$ are integrable, then

$$\sup_{t\geq 0} E\big[|Y_t|\big] < \infty.$$

If additionally $\int_0^{\infty} \gamma_{\mathscr{P}_1}^{-}(s) ds = \infty$, then $\lim_{t \uparrow \infty} E[|Y_t|] = 0$.

First moment stability

We restrict (C.3) as follows:

(C.4) (Partial Lipschitz condition) There are $\eta \in \mathscr{L}^{1}_{loc}(\mathbb{R})$ and $\lambda \in \mathscr{L}^{1}_{loc}(\mathbb{R}_{+})$ such that $\operatorname{sgn}(x - \tilde{x})(b(\cdot, x, \mu) - b(\cdot, \tilde{x}, \tilde{\mu})) \leq \eta |x - \tilde{x}| + \lambda \vartheta_{1}(\mu, \tilde{\mu})$ for every $x, \tilde{x} \in \mathbb{R}$ and $\mu, \tilde{\mu} \in \mathscr{P}_{1}(\mathbb{R})$. Under this requirement,

 $\delta_{\mathscr{P}_1} = 0, \quad \gamma_{\mathscr{P}_1} = \eta + \lambda \quad \text{and} \quad \Theta(\cdot, \mu, \tilde{\mu}) = \lambda \vartheta_1(\mu, \tilde{\mu})$ for all $\mu, \tilde{\mu} \in \mathscr{P}_1(\mathbb{R})$.

Exponential first moment stability (Meyer-Brandis, Proske and K., 2021)

Let (C.1) and (C.4) hold. Further, let $\alpha > 0$ and $\hat{\lambda} < 0$ satisfy

$$\gamma_{\mathscr{P}_1}(s) \leq \hat{\lambda} lpha s^{lpha - 1} \quad ext{for a.e. } s \geq 0.$$

Then (1) is α -exponentially stable in moment relative to Θ and $\hat{\lambda}$ is a Lyapunov exponent. That is, there is $c \ge 0$ such that

$$Eig[|X_t - ilde{X}_t|ig] \leq c e^{\hat{\lambda} t^lpha} Eig[|X_0 - ilde{X}_0|ig]$$

for all $t \geq 0$ whenever X and \tilde{X} are two solutions satisfying $\Theta(\cdot, P_X, P_{\tilde{X}}) \in \mathscr{L}^1_{loc}(\mathbb{R}_+).$

Derivation of strong solutions

We recall that a Borel measurable map $\mu:\mathbb{R}_+\to\mathscr{P}_1(\mathbb{R})$ induces the SDE

$$dX_t = b_{\mu}(t, X_t) dt + \sigma(t, X_t) dW_t \quad \text{for } t \ge 0$$
(2)

with the measurable map $b_{\mu}: \mathbb{R}_+ imes \mathbb{R} o \mathbb{R}$ given by

$$b_{\mu}(t,x) := b(t,x,\mu(t))$$

and let ξ denote an \mathscr{F}_0 -measurable random variable.

Now we specify (C.1) as follows:

(C.5) (Local Hölder continuity condition and the origin as zero) For every $n \in \mathbb{N}$ there is $\hat{\eta}_n \in \mathscr{L}^{\infty}_{loc}(\mathbb{R}_+)$ such that

$$|\sigma(\cdot,x) - \sigma(\cdot,\tilde{x})| \leq \hat{\eta}_n |x - \tilde{x}|^{\frac{1}{2}}$$

for any $x, \tilde{x} \in [-n, n]$ and

 $\sigma(\cdot,\mathbf{0})=\mathbf{0}.$

Example (sums of power functions)

The case in which there are $l \in \mathbb{N}$, $\eta \in \mathscr{L}^{\infty}_{loc}(\mathbb{R}^{l})$ and $\alpha \in [1/2, \infty[^{l}$ such that

$$\sigma(\cdot,x) = \eta_1 |x|^{\alpha_1} + \cdots + \eta_l |x|^{\alpha_l}$$

for all $x \in \mathbb{R}$ is included, even though $\alpha_k > 1$ may hold for some $k = 1, \dots, l$.

For local weak solutions to (2) we need the following condition: (C.6) (Space continuity and boundedness on bounded sets) b is continuous in $x \in \mathbb{R}$ and for each $n \in \mathbb{N}$ there is $c_n \ge 0$ such that

$$egin{aligned} &|b(s,x,\mu)|\leq c_n \ & ext{for any }s\in [0,n],\,x\in [-n,n] ext{ and }\mu\in \mathscr{P}_1(\mathbb{R}) ext{ with }\ &\int_{\mathbb{R}}|y|\,\mu(dy)\leq n. \end{aligned}$$

Thereby, we recall that $\vartheta_1(\mu, \delta_0) = \int_{\mathbb{R}} |y| \, \mu(dy)$.

The subsequent assumption leads to an *explicit* L^1 -growth estimate: (C.7) (Partial affine growth condition) There are $\kappa, \chi \in \mathscr{L}^1_{loc}(\mathbb{R}_+)$ and $v \in \mathscr{L}^1_{loc}(\mathbb{R})$ such that

$$\operatorname{sgn}(x)b(\cdot, x, \mu) \leq \kappa + \upsilon |x| + \chi \int_{\mathbb{R}} |y| \, \mu(dy)$$

for each $x \in \mathbb{R}$ and $\mu \in \mathscr{P}_1(\mathbb{R})$.

Example (sums involving polynomials and integral functions) For $l \in \mathbb{N}$ let $\kappa, \eta_0, \lambda \in \mathscr{L}^{\infty}_{loc}(\mathbb{R})$ and

 $\eta \in \mathscr{L}^{\infty}_{loc}(\mathbb{R}'_+)$

as well as $n \in \mathbb{N}^{l}$ be such that

$$b(\cdot, x, \mu) = \kappa + \eta_0 x - \eta_1 x^{n_1} - \dots - \eta_l x^{n_l} + \lambda \int_{\mathbb{R}} |y| \, \mu(dy)$$

for all $x \in \mathbb{R}$ and $\mu \in \mathscr{P}_1(\mathbb{R})$. Then (C.4), (C.6) and (C.7) are valid if the coordinates of *n* are odd.

An explicit L^1 -growth estimate (Meyer-Brandis, Proske and K., 2021)

Let (C.5) and (C.7) be valid and X be a solution to (1) such that $\chi E[|X|] \in \mathscr{L}^{1}_{loc}(\mathbb{R}_{+})$. Then

$$E\big[|X_t|\big] \le e^{\int_0^t (\upsilon+\chi)(s)\,ds} E\big[|X_0|\big] + \int_0^t e^{\int_s^t (\upsilon+\chi)(\tilde{s})\,d\tilde{s}} \kappa(s)\,ds$$

for all $t \ge 0$. In particular, if $(v + \chi)^+$ and κ are integrable, then $\sup_{t>0} E[|X_t|] < \infty$. In this case,

 $\lim_{t\uparrow\infty}E[|X_t|]=0$

follows from $\int_0^\infty (v + \chi)^-(s) \, ds = \infty$.

Existence of unique strong solutions (Meyer-Brandis, Proske and K., 2021)

Let (C.4)-(C.7) be satisfied and $E[|\xi|] < \infty$. Moreover, define $\Theta : \mathbb{R}_+ \times \mathscr{P}_1(\mathbb{R}) \times \mathscr{P}_1(\mathbb{R}) \to \mathbb{R}_+$ by

 $\Theta(\cdot,\mu,\tilde{\mu}) := \lambda \vartheta_1(\mu,\tilde{\mu}).$

Then pathwise uniqueness for (1) relative to Θ holds and there exists a unique strong solution X^{ξ} such that

$$X_0^\xi=\xi$$
 a.s.

and $E[|X^{\xi}|]$ is locally bounded.

Proof ideas.

For any Borel measurable map $\mu : \mathbb{R}_+ \to \mathscr{P}_1(\mathbb{R})$ we show that the SDE (2) admits a unique strong solution $X^{\xi,\mu}$ such that

$$X_0^{\xi,\mu}=\xi$$
 a.s.

and $E[|X^{\xi,\mu}|]$ is locally bounded as soon as the function $\mathbb{R}_+ \to \mathbb{R}_+$, $t \mapsto \int_{\mathbb{R}} |x| \, \mu(t)(dx)$ is locally bounded.

Then we prove that the sequence $(\mu_n)_{n \in \mathbb{N}}$ of $\mathscr{P}_1(\mathbb{R})$ -valued Borel measurable maps on \mathbb{R}_+ recursively given by

$$\mu_n := P_{X^{\xi,\mu_{n-1}}}$$
 with $\mu_0 := \mu$

converges locally uniformly to the law of the strong solution to (1).

An Application in Mathematical Finance

Joint work with Damiano Brigo and Federico Graceffa

Let us consider a financial market model with time horizon T>0 consisting of only one riskless and one risky asset that are traded.

In this setting, the measurable integrable function $r : [0, T] \to \mathbb{R}$ is the instantaneous risk-free interest rate and

$$D_t(r) := \exp\left(-\int_0^t r(s)\,ds\right)$$

is the discount factor from the initial time to $t \in [0, T]$.

Similarly as before, let $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \in [0,T]}, P)$ be a filtered probability space satisfying the usual conditions.

We suppose that \hat{W} and \tilde{W} are two $(\mathscr{F}_t)_{t\in[0,T]}$ -Brownian motions with covariation

$$\langle \hat{W}, \tilde{W} \rangle = \int_0^{\cdot} \rho(s) \, ds$$
 a.s.

and impose the following dynamics on the price process S of the only risky asset and its squared volatility process V:

$$dS_{t} = b(t)S_{t} dt + \theta(t)\sqrt{V_{t}}S_{t} d\hat{W}_{t}$$

$$dV_{t} = (k(t) - l_{0}(t)V_{t} + l(t)\frac{V_{t}^{\alpha}}{t} dt + \lambda(t)\frac{V_{t}^{\beta}}{t} d\tilde{W}_{t}$$
(3)

for $t \in [0, T]$ with $\alpha \ge 1$ and $\beta \ge 1/2$.

From the pathwise uniqueness and strong existence results in [1] and a positivity condition we draw the following conclusion.

Power diffusion as squared volatility (Brigo, Graceffa and K., 2021)

Let b, θ , k, l_0 , l, λ be bounded, $l \leq 0$ and $\lambda^2/2 \leq k$. Then pathwise uniqueness for (3) holds and there is a unique strong solution (S, V) satisfying

$$S>0, V>0$$
 and $(S_0, V_0) = (s_0, v_0)$ a.s.,

where $s_0, v_0 > 0$. Furthermore, $\sup_{t \in [0,T]} |\log(S_t)|$ and V are integrable.

Example (Established models in the literature) For l = 0 and $l_0 > 0$ we recover the dynamics

$$dV_t = (k(t) - l_0(t)V_t) dt + \lambda(t) V_t^{\beta} d\tilde{W}_t, \text{ for } t \in [0, T]$$

in time-dependent versions of the following option pricing models:

- (i) The Heston model for β = 1/2. There, l₀ is the mean reversion speed, k/l₀ is the mean reversion level and the same positivity condition λ ≤ 2k applies.
- (ii) The Garch diffusion model for $\beta = 1$. Similarly, l_0 is the mean reversion speed and k/l_0 the mean reversion level.

Market prices of risk

The model allows for an equivalent local martingale measure.

That is, there is a probability measure \tilde{P} on (Ω, \mathscr{F}) such that $\tilde{P} \sim P$ and the discounted price process

$$[0, T] imes \Omega o]0, \infty [, \quad (t, \omega) \mapsto D_t(r)S_t(\omega)$$

is a local martingale under \tilde{P} .

Indeed, let us define a continuous local martingale Z via

$$Z = \exp\left(-\int_0^{\cdot} \kappa_s \, dW_s - \int_0^{\cdot} \tilde{\kappa}_s \, d\tilde{W}_s - \frac{1}{2}\int_0^{\cdot} \kappa_s^2 + \tilde{\kappa}_s^2 \, ds\right) \quad \text{a.s.},$$

where W is an $(\mathscr{F}_t)_{t \in [0,T]}$ -Brownian motion independent of \tilde{W} .

If $E[Z_T] = 1$, then Z induces an equivalent local martingale measure via Girsanov's theorem if and only if

$$(b-r)(t) = \theta(t)\sqrt{V_t} (\kappa_t \sqrt{1-\rho(t)^2 + \tilde{\kappa}_t \rho(t)})$$

for a.e. $t \in [0, T]$ a.s. If in addition $\theta > 0$, then we propose to take the market prices of risk

$$ilde{\kappa}_t = \gamma heta(t) \sqrt{V_t}$$
 and $\kappa_t = igg(rac{(b-r)(t)}{ heta(t) \sqrt{V_t}} - ilde{\kappa}_t
ho(t) igg) rac{1}{\sqrt{1-
ho(t)^2}}$

for all $t \in [0, T]$ and fixed $\gamma \geq 0$.

In this case, Novikov's condition implies that $E[Z_T] = 1$ as soon as

$$E\left[\exp\left(rac{\gamma^2}{2}\int_0^T heta(t)^2 V_t\,dt
ight)
ight]<\infty.$$

In particular, the choice $\gamma = 0$ is feasible and V satisfies the same SDE

$$dV_t = \left(k(t) - l_0(t)V_t + l(t)V_t^{lpha}
ight)dt + \lambda(t)V_t^{eta} \, d ilde W_t$$

under the resulting risk-neutral measure.

By also considering the dynamics of log(S), we can turn to the evaluation of contingent claims in a subsequent analysis.

References

- A. Kalinin, T. Meyer-Brandis, and F. Proske. Stability, uniqueness and existence of solutions to McKean-Vlasov SDEs: a multidimensional Yamada-Watanabe approach. arXiv:2107.07838, 2021.
- [2] D. Brigo, F. Graceffa, and A. Kalinin. Mild to classical solutions for XVA equations under stochastic volatility. arXiv:2112.11808, 2021.

Thank you for your attention!