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A financial market model with default

We aim to evaluate a derivative contract between an investor &
and a counterparty % in a financial market under
- default risk,

- collateralisation and

- funding costs and benefits.

To this end, we derive a valuation equation based on default-free
information only and characterise its solutions.

1/13



Let (Ft)ecpo, 1) and (jt)te[QT] be two filtrations standing for the
default-free and the whole available information, respectively.

The two [0, T] U {co}-valued random variables 7+ and 7% model
the respective default times of .# and %.

Then 7 := 7.0 A Ty stands for the time of a party to default first
and we require that
T C Fe CFeNo(lypesy s TE T, 10}, s €[0,1]),
Pty =t)=P(rg =t)=P(ry =74, T<0) =0

(©)

for all t € [0, T].
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Example (Hitting times involving a gamma distribution)

Let & be a gamma distributed random variable and A() be a process,
both with positive values, such that

t .
Ti:inf{tG[O,T]’/ Ag')dSZ&}
0

for i € {7, € }. Then, under verifiable assumptions, the conditions
in (C) on the distribution of 7 and 7% hold and

P(r B) = /BHM o (s) ds + <1 _ /OT%(S) ds)doo(B)

for any Borel set B in [0, T] U {co} and some explicitly determined
measurable integrable function ¢, : [0, T] — [0, o¢].
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Next, the measurable integrable function r : [0, T] — R is the
instantaneous risk-free interest rate and

Ductr) =0~ [ 1(9)5)

is the discount factor from time s € [0, T] to t € [s, T].

Let us assume that P is an equivalent local martingale measure.
That is,
P~P

and the discounted price process of the only traded risky asset is an
(ﬁt)te[o 71-local martingale under P.
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A stochastic volatility model

We suppose that W and W are two (Zt)tejo, T)-Brownian motions
with covariation

and impose the following dynamics on the price process S of the
only risky asset and its squared volatility process V:
dSt = b( St dt + 0 \/ VtSt th

dVe = (k(£) — b(t)Ve + (1) V) dt + A(£)V{ d W

for t € [0, T] with initial condition (Sp, Vo) = (so0, o) a.s., where
a>1land g >1/2.
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From a pathwise uniqueness and a strong existence result in [2] and
a positivity condition we draw the following conclusion.

Power diffusion as squared volatility

(Brigo, Graceffa and K., 2021)

Let b, 6, k, Iy, I, X be bounded, / < 0 and A\?/2 < k. Then
pathwise uniqueness for the SDE (1) holds and there is a unique
strong solution (S, V) satisfying

$>0, V>0 and (So, V)= (s0,w) as.
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Example (Established models in the literature)

For I =0 and fy > 0 we recover the dynamics
dV; = (k(t) — lo(t)Ve) dt + M(t) V] d W, for t € [0, T]

in time-dependent versions of the following option pricing models:

(i) The Heston model for 5 = 1/2. There, Iy is the mean reversion
speed, k/Iy is the mean reversion level and the same positivity
condition A < 2k applies.

(i) The Garch diffusion model for 5 = 1. Similarly, fy is the mean
reversion speed and k/Iy the mean reversion level.
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We derive an equation for the value process, denoted by ¥ € ., of
a trading strategy that hedges the contract under P.

In the end, we seek a default-free valuation, and the equation for oV
includes quantities that merely depend on its pre-default part.

So, let G(7) be an (F¢)sejo, 1]-survival process of 7 under P, which
is an [0, 1]-valued supermartingale such that

P(t > t|.#:) = G¢(7) a.s. forall t € [0, T].

Further, a process X is called integrable up to time 7 if 5(]1{T>,} is
integrable.
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We refine a classical result as follows.
Pre-default versions

A process X € S is integrable up to time 7 if and only if there
is X € . such that XG(7) is integrable and X = X a.s. on
{T > s} for all s € [0, T]. In this case,

XsGs(T) = E[)N(s]l{7>s}|95] a.s.

for all s € [0, T]. If in addition Gs(7) > 0 a.s. for all s € [0, T,
then X is unique up to a modification.

We shall call X a pre-default version of X.
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The discounted cash flows

For simplicity of the talk, let us focus on a part of the considered
financial quantities:

1. The contractual cash flows depend on a payoff function and
the risky asset that is influenced by its squared volatility:

conCFs 1= Ds,T(r)¢(ST7 VT)]]‘{T>T}'

2. The cash flows arising on the default of .# or ¥ can be
computed with the residual value of the claim:

defCFs(¥) := Ds (r)e-(¥)

on {s <7 < T} and 4efCFs(¥) := 0 on the complement of this
set.
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Under mild conditions, we require that ¥ satisfies the valuation
equation
4//5 — E[conCFs + dchFs(/j/)’gs] (2)

a.s. for all s € [0, T]. Then (2) is satisfied if and only if

Y Gs(1) = E[Ds,r(r)qﬁ(sT, V1) Gr(r) 9;]

E [ / "D, (1ee(¥) dGu(r)

95] a.s.
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Characterisation of pre-default value semimartingales

(Brigo, Graceffa and K., 2021)

Under weak conditions, a continuous (.%¢).c[o, 7]-Semimartingale
¥ is a pre-default value process if and only if E[|%|] < oo and

T
Vs = ¢(5T, VT) +/ —r(t)“//t dt

Te(?)- % Do,e(—r)
_ / T dGi(r) — / i M

for all s € [0, T] a.s. and some continuous (F¢):¢[o, 7j-martingale
M.
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The pre-default valuation PDE

Next, we explicitly construct a local martingale measure Py via
Girsanvov's theorem, by proposing suitable market prices of risk.

Then we deduce the dynamics of (log(S), V) under P\, and derive
a parabolic semilinear PDE with terminal condition.

Finally, under certain conditions, we prove that for any mild solution
u to this PDE the process ¥ € .% defined via

,Vt = U(t, |Og(5t), Vt)

is a pre-default value process under Py, .
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Thank you for your attention!
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