Mild to classical solutions for XVA equations under stochastic volatility

Alexander Kalinin, LMU Munich

Joint work with Damiano Brigo and Federico Graceffa

German Probability and Statistics Days Essen, 2023

A financial market model with default

We aim to evaluate a derivative contract between an investor ${\mathscr I}$ and a counterparty ${\mathscr C}$ in a financial market under

- default risk,
- collateralisation and
- funding costs and benefits.

To this end, we derive a valuation equation based on default-free information only and characterise its solutions.

Let $(\mathscr{F}_t)_{t \in [0,T]}$ and $(\mathscr{F}_t)_{t \in [0,T]}$ be two filtrations standing for the default-free and the whole available information, respectively.

The two $[0, T] \cup \{\infty\}$ -valued random variables $\tau_{\mathscr{I}}$ and $\tau_{\mathscr{C}}$ model the respective default times of \mathscr{I} and \mathscr{C} .

Then $\tau := \tau_{\mathscr{I}} \wedge \tau_{\mathscr{C}}$ stands for the time of a party to default first and we require that

$$\mathcal{F}_{t} \subset \tilde{\mathcal{F}}_{t} \subset \mathcal{F}_{t} \lor \sigma (\mathbb{1}_{\{\tau \leq s\}} : \tau \in \{\tau_{\mathscr{I}}, \tau_{\mathscr{C}}\}, s \in [0, t]),$$

$$P(\tau_{\mathscr{I}} = t) = P(\tau_{\mathscr{C}} = t) = P(\tau_{\mathscr{I}} = \tau_{\mathscr{C}}, \tau < \infty) = 0$$
(C)

for all $t \in [0, T]$.

Example (Hitting times involving a gamma distribution) Let ξ_i be a gamma distributed random variable and $\lambda^{(i)}$ be a process, both with positive values, such that

$$\tau_i = \inf \left\{ t \in [0, T] \, \middle| \, \int_0^t \lambda_s^{(i)} \, ds \ge \xi_i \right\}$$

for $i \in \{\mathscr{I}, \mathscr{C}\}$. Then, under verifiable assumptions, the conditions in (C) on the distribution of $\tau_{\mathscr{I}}$ and $\tau_{\mathscr{C}}$ hold and

$$P(au \in B) = \int_{B \cap [0,T]} arphi_{ au}(s) \, ds + \left(1 - \int_0^T arphi_{ au}(s) \, ds\right) \delta_{\infty}(B)$$

for any Borel set B in $[0, T] \cup \{\infty\}$ and some explicitly determined measurable integrable function $\varphi_{\tau} : [0, T] \rightarrow [0, \infty]$.

Next, the measurable integrable function $r : [0, T] \to \mathbb{R}$ is the instantaneous risk-free interest rate and

$$D_{s,t}(r) := \exp\left(-\int_s^t r(\tilde{s}) d\tilde{s}\right)$$

is the discount factor from time $s \in [0, T]$ to $t \in [s, T]$.

Let us assume that \tilde{P} is an equivalent local martingale measure. That is,

$$P\sim ilde{P}$$

and the discounted price process of the only traded risky asset is an $(\tilde{\mathscr{F}}_t)_{t\in[0,T]}$ -local martingale under \tilde{P} .

A stochastic volatility model

We suppose that \hat{W} and \tilde{W} are two $(\mathscr{F}_t)_{t\in[0,T]}$ -Brownian motions with covariation

$$\langle \hat{W}, \tilde{W} \rangle = \int_0^{\cdot} \rho(s) \, ds$$
 a.s.

and impose the following dynamics on the price process S of the only risky asset and its squared volatility process V:

$$dS_t = b(t)S_t dt + \theta(t)\sqrt{V_t}S_t d\hat{W}_t$$

$$dV_t = \left(k(t) - l_0(t)V_t + l(t)\frac{V_t^{\alpha}}{t}\right)dt + \lambda(t)\frac{V_t^{\beta}}{t}d\tilde{W}_t$$
(1)

for $t \in [0, T]$ with initial condition $(S_0, V_0) = (s_0, v_0)$ a.s., where $\alpha \ge 1$ and $\beta \ge 1/2$.

From a pathwise uniqueness and a strong existence result in [2] and a positivity condition we draw the following conclusion.

Power diffusion as squared volatility (Brigo, Graceffa and K., 2021)

Let b, θ , k, l_0 , l, λ be bounded, $l \leq 0$ and $\lambda^2/2 \leq k$. Then pathwise uniqueness for the SDE (1) holds and there is a unique strong solution (S, V) satisfying

S > 0, V > 0 and $(S_0, V_0) = (s_0, v_0)$ a.s.

Example (Established models in the literature) For l = 0 and $l_0 > 0$ we recover the dynamics

$$dV_t = (k(t) - l_0(t)V_t) dt + \lambda(t) V_t^{\beta} d\tilde{W}_t, \text{ for } t \in [0, T]$$

in time-dependent versions of the following option pricing models:

- (i) The Heston model for β = 1/2. There, l₀ is the mean reversion speed, k/l₀ is the mean reversion level and the same positivity condition λ ≤ 2k applies.
- (ii) The Garch diffusion model for $\beta = 1$. Similarly, l_0 is the mean reversion speed and k/l_0 the mean reversion level.

We derive an equation for the value process, denoted by $\tilde{\mathscr{V}} \in \tilde{\mathscr{S}}$, of a trading strategy that hedges the contract under \tilde{P} .

In the end, we seek a default-free valuation, and the equation for $\tilde{\mathcal{V}}$ includes quantities that merely depend on its pre-default part.

So, let $G(\tau)$ be an $(\mathscr{F}_t)_{t \in [0,T]}$ -survival process of τ under \tilde{P} , which is an [0,1]-valued supermartingale such that

$$ilde{P}(au > t | \mathscr{F}_t) = {\sf G}_t(au)$$
 a.s. for all $t \in [0, T]$.

Further, a process \tilde{X} is called integrable up to time τ if $\tilde{X} \mathbb{1}_{\{\tau > \cdot\}}$ is integrable.

We refine a classical result as follows.

Pre-default versions

A process $\tilde{X} \in \tilde{\mathscr{S}}$ is integrable up to time τ if and only if there is $X \in \mathscr{S}$ such that $XG(\tau)$ is integrable and $X_s = \tilde{X}_s$ a.s. on $\{\tau > s\}$ for all $s \in [0, T]$. In this case,

$$X_s G_s(au) = ilde{E}[ilde{X}_s \mathbbm{1}_{\{ au>s\}}|\mathscr{F}_s]$$
 a.s.

for all $s \in [0, T]$. If in addition $G_s(\tau) > 0$ a.s. for all $s \in [0, T]$, then X is unique up to a modification.

We shall call X a pre-default version of \tilde{X} .

The discounted cash flows

For simplicity of the talk, let us focus on a part of the considered financial quantities:

1. The contractual cash flows depend on a payoff function and the risky asset that is influenced by its squared volatility:

$$_{\operatorname{con}}\operatorname{CF}_{s} := D_{s,T}(r)\phi(S_{T},V_{T})\mathbb{1}_{\{\tau > T\}}.$$

2. The cash flows arising on the default of \mathscr{I} or \mathscr{C} can be computed with the residual value of the claim:

$$_{\mathrm{def}}\mathrm{CF}_{s}(\mathscr{V}) := D_{s,\tau}(r)\varepsilon_{\tau}(\mathscr{V})$$

on $\{s < \tau < T\}$ and $_{def} CF_s(\mathscr{V}) := 0$ on the complement of this set.

Under mild conditions, we require that $\tilde{\mathscr{V}}$ satisfies the valuation equation

$$\tilde{\mathscr{V}}_{s} = \tilde{E} \big[_{\mathrm{con}} \mathrm{CF}_{s} + _{\mathrm{def}} \mathrm{CF}_{s}(\mathscr{V}) \big| \tilde{\mathscr{F}}_{s} \big]$$
⁽²⁾

a.s. for all $s \in [0, T]$. Then (2) is satisfied if and only if

$$\begin{aligned} \mathscr{V}_{s}G_{s}(\tau) &= \tilde{E}\left[D_{s,T}(r)\phi(S_{T},V_{T})G_{T}(\tau) \,\middle|\,\mathscr{F}_{s}\right] \\ &- \tilde{E}\left[\int_{s}^{T}D_{s,t}(r)\varepsilon_{t}(\mathscr{V})\,dG_{t}(\tau) \,\middle|\,\mathscr{F}_{s}\right] \quad \text{a.s.} \end{aligned}$$

Characterisation of pre-default value semimartingales (Brigo, Graceffa and K., 2021)

Under weak conditions, a continuous $(\mathscr{F}_t)_{t\in[0,T]}$ -semimartingale \mathscr{V} is a pre-default value process if and only if $\tilde{E}[|\mathscr{V}_0|] < \infty$ and

$$\mathcal{V}_{s} = \phi(S_{T}, V_{T}) + \int_{s}^{T} -r(t)\mathcal{V}_{t} dt$$
$$-\int_{s}^{T} \frac{\varepsilon_{t}(\mathcal{V}) - \mathcal{V}_{t}}{G_{t}(\tau)} dG_{t}(\tau) - \int_{s}^{T} \frac{D_{0,t}(-r)}{G_{t}(\tau)} dM_{t}$$

for all $s \in [0, T]$ a.s. and some continuous $(\mathscr{F}_t)_{t \in [0, T]}$ -martingale M.

Next, we explicitly construct a local martingale measure \tilde{P}_V via Girsanvov's theorem, by proposing suitable market prices of risk.

Then we deduce the dynamics of $(\log(S), V)$ under \tilde{P}_V and derive a parabolic semilinear PDE with terminal condition.

Finally, under certain conditions, we prove that for any mild solution u to this PDE the process $\mathscr{V} \in \mathscr{S}$ defined via

 $\mathscr{V}_t := u(t, \log(S_t), V_t)$

is a pre-default value process under \tilde{P}_V .

References

[1] D. Brigo, F. Graceffa, and A. Kalinin.

Mild to classical solutions for XVA equations under stochastic volatility. *arXiv:2112.11808*, 2021.

[2] A. Kalinin, T. Meyer-Brandis, and F. Proske. Stability, uniqueness and existence of solutions to McKean-Vlasov SDEs: a multidimensional Yamada-Watanabe approach. arXiv:2107.07838, 2021.

Thank you for your attention!