Support characterization for regular path-dependent stochastic Volterra integral equations

Alexander Kalinin

LMU Munich

German Probability and Statistics Days Mannheim 2021

Support of the law of a diffusion

Let S be a metrizable topological space and μ be an inner regular measure on $\mathscr{B}(S)$.

Support of a measure

The support of μ , denoted by $\operatorname{supp}(\mu)$, is the smallest closed set in *S* whose complement has μ -measure zero.

By using a metric that generates the topology of S, it follows readily that

 $\operatorname{supp}(\mu) = \{ x \in S \, | \, \mu(B_{\varepsilon}(x)) > 0 \text{ for all } \varepsilon > 0 \}.$

Let $C_r^{\alpha}([0, T], \mathbb{R}^m)$ be the Banach space of all $x \in C([0, T], \mathbb{R}^m)$ that are α -Hölder-continuous on [r, T], equipped with the delayed α -Hölder norm

$$\|x\|_{\alpha,r} := \|x^r\|_{\infty} + \sup_{s,t \in [r,T]: s \neq t} \frac{|x(s) - x(t)|}{|s - t|^{\alpha}}$$

Moreover, let $X : [0, T] \times \Omega \to \mathbb{R}^m$ be a stochastic process on some probability space (Ω, \mathscr{F}, P) satisfying

$$X \in C^{\alpha}_r([0, T], \mathbb{R}^m)$$
 a.s.

By viewing X as a random variable and assuming inner regularity, we may consider the support of $P \circ X^{-1}$.

Namely, a path $x \in C_r^{\alpha}([0, T], \mathbb{R}^m)$ belongs to $\mathrm{supp}(P \circ X^{-1})$ if and only if

 $P(||X - x||_{\alpha,r} < \varepsilon) > 0$ for any $\varepsilon > 0$.

We note that $P \circ X^{-1}$ is inner regular as soon as

$$X \in C^{eta}_r([0,T],\mathbb{R}^m)$$
 a.s.

for some $\beta \in (\alpha, 1]$.

Let $W_r^{1,p}([0, T], \mathbb{R}^m)$ be the Banach space of all $x \in C([0, T], \mathbb{R}^m)$ that are absolutely continuous on [r, T] such that

$$\int_r^T |\dot{x}(s)|^p \, ds < \infty$$

endowed with the delayed Sobolev L^p-norm

$$||x||_{1,p,r} := ||x^r||_{\infty} + \left(\int_r^T |\dot{x}(s)|^p ds\right)^{\frac{1}{p}}$$

Then $W_r^{1,p}([0,T],\mathbb{R}^m) \subsetneq C_r^{1/q}([0,T],\mathbb{R}^m)$ whenever p > 1 and q is its dual exponent.

Stochastic Volterra integral equations

For two non-anticipative product measurable maps b and σ on

 $[r, T]^2 \times C([0, T], \mathbb{R}^m)$

with values in \mathbb{R}^m and $\mathbb{R}^{m \times d}$, respectively, we consider the SVIE

$$X_t = X_r + \int_r^t b(t, s, X) \, ds + \int_r^t \sigma(t, s, X) \, dW_s \qquad (1)$$

for $t \in [r, T]$ with initial condition $X_q = \hat{x}(q)$ for all $q \in [0, r]$ a.s.

We introduce the map $\rho: [r, T]^2 \times C([0, T], \mathbb{R}^m) \to \mathbb{R}^m$ by

$$\rho_k(t,s,x) := \sum_{l=1}^d \underbrace{\partial_x \sigma_{k,l}(t,s,x)}_{\in \mathbb{R}^{1 \times m}} \underbrace{\sigma(s,s,x)}_{\in \mathbb{R}^{m \times d}} \underbrace{e_l}_{\in \mathbb{R}^d},$$

if s < t, and $\rho_k(t, s, x) := 0$, otherwise.

For any $p \geq 1$ and $h \in W^{1,p}_r([0,T],\mathbb{R}^d)$, we study the VIE

$$x_{h}(t) = x_{h}(r) + \int_{r}^{t} (b - (1/2)\rho)(t, s, x_{h}) ds$$

+
$$\int_{r}^{t} \sigma(t, s, x_{h}) dh(s)$$
(2)

for $t \in [r, T]$ with initial condition $x_h(q) = \hat{x}(q)$ for any $q \in [0, r]$.

Strong solutions as semimartingales (K., 2019)

Pathwise uniqueness for (1) holds and there is a unique strong solution X. Further, X is a semimartingale and

 $E[\|X\|_{\alpha,r}^p] < \infty$

for any $\alpha \in [0, 1/2)$ and $p \geq 1$.

Related work

Volterra equations driven by semimartingales, Protter ('85).

Mild solutions and the flow map (K., 2019)

For any $p \ge 1$ and $h \in W_r^{1,p}([0,T],\mathbb{R}^d)$, there is a unique solution x_h to (2). Moreover, the flow map

 $W^{1,p}_r([0,T],\mathbb{R}^d) \to W^{1,p}_r([0,T],\mathbb{R}^m), \quad h\mapsto x_h$

is Lipschitz continuous on bounded sets.

Support characterization for SVIEs (K., 2019)

Under suitable conditions, it holds that

$$supp(P \circ X^{-1}) = \{x_h \mid h \in W^{1,p}_r([0,T], \mathbb{R}^d)\}$$

in $C_r^{\alpha}([0, T], \mathbb{R}^m)$ for every $\alpha \in [0, 1/2)$ and $p \geq 2$.

Works on support theorems for SDEs

- Stroock and Varadhan ('72), Gyöngy and Pröhle ('90), Aida ('90),
- Ben Arous, Grădinaru and Ledoux ('94), Millet and Sanz-Solé ('94), Cont and Kalinin ('20).

Example (diffusion coefficients with regular kernels) Let d = m = 1, $k \in C([r, T]^2, \mathbb{R})$ and $F : [r, T] \times C([0, T], \mathbb{R}) \to \mathbb{R}$ be of class $\mathbb{C}^{1,2}$ such that

$$\sigma(t,s,x) = k(t,s)F(s,x)$$

for every $s, t \in [r, T]$ and $x \in C([0, T], \mathbb{R})$. Then the correction map ρ satisfies

$$\rho(t, s, x) = k(t, s)k(s, s)\partial_x F(s, x)F(s, x)$$

for any $s, t \in [r, T]$ with s < t and $x \in C([0, T], \mathbb{R})$.

Thank you for your attention!

Reference

Support characterization for regular path-dependent stochastic Volterra integral equations, A. Kalinin, *Electronic Journal of Probability*, 2021.