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Randomised ordinary differential equations

For a clear overview that can be followed readily let us begin with
the one-dimensional ordinary differential equation (ODE)

ẋ(t) = b(t, x(t)) for t ≥ 0 (1)

with a product measurable function b : R+ × R → R.

As b is not required to be continuous, we may not expect solutions
in the classical sense but an integral version of (1) can be used.
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Namely, a mild solution to (1) is a continuous function x : R+ → R
such that∫ t

0
|b(s, x(s))| ds < ∞ and x(t) = x(0) +

∫ t

0
b(s, x(s)) ds

for any t ≥ 0, two properties that entail its local absolute continuity.

We note that a mild solution x becomes a classical solution if and
only if the measurable function

R+ → R, s 7→ b(s, x(s)),

which is its weak derivative ẋ , is continuous, by the Fundamental
Theorem of Calculus.
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To allow for randomness, we take a complete probability space
(Ω,F ,P) on which there is a standard Brownian motion

W : R+ × Ω → R, (t, ω) 7→ Wt(ω).

That means, W is a continuous process with independent increments
such that W0 = 0 a.s. and

Wt − Ws ∼ N (0, t − s)

for all s, t ≥ 0 with s < t. In particular, W is a square-integrable
martingale, and we let

σ : R+ × R → R

be another measurable function.
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Thus, instead of analysing the ODE (1), we consider the stochastic
differential equation (SDE)

dXt = b(t,Xt) dt + σ(t,Xt) dWt for t ≥ 0. (2)

We recall that a solution to (2) is an adapted continuous process
X : R+ × Ω → R such that∫ t

0
|b(s,Xs)| + σ(s,Xs)2 ds < ∞

for any t ≥ 0 and

Xt = X0 +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs

for all t ≥ 0 a.s.
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Thereby,
∫ ·

0 σ(s,Xs) dWs is the stochastic integral of σ(·,X ) with
respect to W that is a local martingale with quadratic variation∫ ·

0
σ(s,Xs)2 ds.

In particular, if σ = 0 a.e., then any path of a solution to the SDE (2)
is a mild solution to the ODE (1) and vice versa.

In general, however, we may only expect the paths of a solution X
to (2) to be locally α-Hölder-continuous for any α ∈]0, 1

2 [, as

E [|Ws − Wt |2] = |s − t|2· 1
2

for any s, t ≥ 0 and W is a centred Gaussian process.
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Stability and uniqueness

Let us consider a condition on the drift b that allows for negative
partial Lipschitz coefficients:

(C.1) (Partial Hölder continuity condition)
There are α ∈]0, 1] and some measurable locally integrable
function η : R+ → R such that

sgn(x − x̃)
(
b(·, x) − b(·, x̃)

)
≤ η|x − x̃ |α

for any x , x̃ ∈ R.
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Example (sums involving decreasing functions)
For m ∈ N let κ : R+ → R and η : R+ → Rm be measurable and
f : R → Rm be increasing such that

b(·, x) = κ− η1f1(x) − · · · − ηmfm(x)

for any x ∈ R. Then (C.1) holds for any α ∈]0, 1] if

η1 ≥ 0, . . . , ηm ≥ 0.

Thereby, b may fail to be continuous in x ∈ R.
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On the diffusion σ we impose a local continuity condition only:

(C.2) (Hölder continuity condition on compact sets)
For any n ∈ N there is cn ≥ 0 such that

|σ(·, x) − σ(·, x̃)| ≤ cn|x − x̃ |
1
2

for all x , x̃ ∈ [−n, n].

The exponent 1
2 comes from the Yamada-Watanabe approach, since

β ∈]0, 1] satisfies ∫ 1

0

1
x2β

dx = ∞ ⇔ β ≥ 1
2 .
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Example (sums of power functions)
For m ∈ N let κ : R+ → R and η : R+ → Rm be measurable and
β ∈]0,∞[m be such that

σ(·, x) = κ+ η1|x |β1 + · · · + ηm|x |βm

for any x ∈ R. Then (C.2) holds if η is bounded and

β1 ≥ 1
2 , . . . , βm ≥ 1

2.
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Explicit L1-comparison estimate
(Meyer-Brandis, Proske and K., ’21)

Let (C.1) and (C.2) hold and X and X̃ be two solutions to (2).
Then Y := X − X̃ satisfies

E
[
|Yt |

]
≤ eα

∫ t
0 ηα(s) dsE

[
|Y0|

]
+ (1 −α)

∫ t

0
eα

∫ t
s ηα(s̃) ds̃η+(s) ds

for all t ≥ 0 with ηα := η+ − η−
1{1}(α). In particular, if Y0 and

η+ are integrable, then

sup
t≥0

E
[
|Yt |

]
< ∞.

In this case, limt↑∞ E [|Yt |] = 0 if α = 1 and
∫ ∞

0 η−(s) ds = ∞.

10 / 31



Proof ideas.
(i) The Yamada-Watanabe approach gives us a suitable increasing
sequence (ψn)n∈N in C2(R+) such that

ψn(0) = ψ′
n(0) = ψ′′

n(0) = 0 for any n ∈ N

as well as supn∈N ψn(x) = x and limn↑∞ ψ′
n(x) = 1 for each x > 0.

(ii) We may apply Itô’s formula to ψn(|Y |) for all n ∈ N, since
ψn(| · |) ∈ C2(R). Further, we take a locally absolutely continuous
function

u : R+ → R+ with u(0) = 1

and deduce the dynamics of u · ψn(|Y |) from Itô’s product rule,
which is the novel part of our work.
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.
(iii) Next, we show that Y is integrable and the function R+ → R+,
t 7→ E [|Yt |] is locally bounded provided E [|Y0|] < ∞. Then

u(t)E
[
|Yt |

]
= lim

n↑∞
u(t)E

[
ψn(|Yt |)

]
≤ E

[
|Y0|

]
+

∫ t

0
E
[
u̇(s)|Ys | + u(s)η(s)|Ys |α

]
ds

for any t ≥ 0, by monotone convergence.

(iv) Hence, Young’s inequality and the choice

u(t) = exp
(

− α

∫ t

0
ηα(s) ds

)
for all t ≥ 0 yield the asserted estimate.
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As a corollary we obtain a stability result in the sense of Lyapunov.

Exponential first moment stability
(Meyer-Brandis, Proske and K., ’21)

Let (C.1) and (C.2) hold for α = 1. Further, let β > 0 and λ < 0
satisfy

η(s) ≤ λβsβ−1 for a.e. s ≥ 0.

Then (2) is β-exponentially stable in moment and λ is a Lyapunov
exponent. That is, there is c ≥ 0 such that

E
[
|Xt − X̃t |

]
≤ ceλtβ E

[
|X0 − X̃0|

]
for all t ≥ 0 whenever X and X̃ are two solutions to (2).
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Derivation of strong solutions

For weak solutions to (2) we rely on the subsequent requirements:

(C.3) b is continuous in x ∈ R and locally bounded.

(C.4) (Partial affine growth condition)
There are measurable locally bounded functions κ : R+ → R+
and υ : R+ → R satisfying

sgn(x)b(·, x) ≤ κ+ υ|x |

for every x ∈ R.
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Example (sums involving decreasing functions)
For m ∈ N let κ : R+ → R and η : R+ → Rm

+ be measurable and
locally bounded and n ∈ Nm be such that

b(·, x) = κ− η1xn1 − · · · − ηmxnm

for any x ∈ R. Then (C.1), (C.3) and (C.4) are satisfied for any
α ∈]0, 1] if

the coordinates of n are odd.

However, b does not need to be of affine growth in x ∈ R.
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Let us take an F0-measurable random variable ξ with E [|ξ|] < ∞.

Existence of unique strong solutions
(Meyer-Brandis, Proske and K., ’21)

Let (C.1)-(C.4) hold for α = 1 and σ(·, 0) = 0. Then we have
pathwise uniqueness for (2) and there is a unique strong solution
X ξ such that

X ξ
0 = ξ a.s.

Moreover, X ξ is integrable and its first absolute moment function
R+ → R+, t 7→ E [|X ξ

t |] is locally bounded.
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(i) As we show in our paper [4], all these methods are extendible to
the McKean-Vlasov SDE

dXt = b(t,Xt ,L(Xt)) dt + σ(t,Xt) dWt for t ≥ 0,

where the product measurable drift b is defined on R+ ×R× P1(R)
instead of R+ × R.

In such a setting, Pp(R) is the Polish space of all Borel probability
measures µ on R with finite p-th moment∫

R
|x |p µ(dx),

equipped with the p-th Wasserstein metric for p ≥ 1.
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(ii) If the diffusion σ should depend on the law of the solution, we
provide methods in another work [5] to handle the McKean-Vlasov
SDE

dXt = b(t,Xt ,L(Xt)) dt + σ(t,Xt ,L(Xt)) dWt for t ≥ 0,

where the product measurable drift b and diffusion σ are defined on
R+ × R × Pp(R) for p ≥ 2 instead of R+ × R.
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(iii) As an application in mathematical finance, in a joint work with
Brigo and Graceffa [1] the SDE

dVt =
(
k(t) − l0(t)Vt + l(t)V α

t
)

dt + λ(t)V β
t dWt (3)

for t ∈ [0,T ] with T > 0, α ≥ 1 and β ≥ 1
2 yields the dynamics of

a squared volatility process.

Thereby, k, l0, l and λ are real-valued continuous functions on [0,T ]
such that

l ≤ 0 and λ2

2 ≤ k.

Note that pathwise uniqueness holds for (3) and there is a unique
strong solution starting at a positive deterministic value.
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Support representations

In the sequel, let us consider the SDE (2) on a finite time horizon:

dXt = b(t,Xt) dt + σ(t,Xt) dWt for t ∈ [0,T ] (4)

with initial condition X0 = x0 a.s., where W is replaced by its
restriction to [0,T ] × Ω and x0 ∈ R.

First, we recall that the linear space C([0,T ],R) of all real-valued
continuous paths on [0,T ], equipped with the supremum norm

∥x∥∞ := sup
t∈[0,T ]

|x(t)|,

is a separable Banach space.
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The image measure P ◦ W −1 of W in C([0,T ],R), which is its law,
admits full support in the sense that

supp(P ◦ W −1) = {x ∈ C([0,T ],R) | x(0) = 0}.

That is, for any path x ∈ C([0,T ],R) starting at 0 the probability

P(∥W − x∥∞ < ε)

that W remains in the open ball with center x and radius ε is positive
for any ε > 0.
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Under the conditions below, this property of the driver W carries
over to the solutions to (4).

Full support theorem for SDEs
(Stroock and Varadhan, ’72)

Let b and σ be bounded and Lipschitz continuous in x ∈ R,
uniformly in t ∈ [0,T ], σ be continuous and

σ ̸= 0.

Then the unique solution X to the SDE (4) satisfies

supp(P ◦ X−1) = {x ∈ C([0,T ],R) | x(0) = x0}.

22 / 31



Flow of mild solutions

To study the support of solutions to (4) when σ may have zeros, let

H([0,T ],R)

denote the separable Banach space of all absolutely continuous paths
h : [0,T ] → R such that∫ T

0
ḣ(t)2 dt < ∞,

endowed with the Cameron-Martin norm

∥h∥H := |h(0)| +
(∫ T

0
ḣ(s)2 ds

) 1
2
.
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Under the conditions of the last result and the hypothesis that σ is
of class C0,2

b , each h ∈ H([0,T ],R) induces an ODE

ẋ(t) =
(
b − (1/2)ρ

)
(t, x(t)) + σ(t, x(t))ḣ(t) (5)

for t ∈ [0,T ] with initial condition x(0) = x0 and the correction
term

ρ := ∂σ

∂x · σ.

We readily see that (5) admits a unique mild solution xh. That is,

xh(t) = x0 +
∫ t

0

(
b − (1/2)ρ

)
(s, xh(s)) ds +

∫ t

0
σ(s, xh(s)) dh(s)

for all t ∈ [0,T ], and xh ∈ H([0,T ],R).
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Support theorem for SDEs
(Stroock and Varadhan, ’72)

Let b be bounded and Lipschitz continuous in x ∈ R, uniformly
in t ∈ [0,T ], and σ be of class C1,2

b . Then

supp(P ◦ X−1) = {xh | h ∈ H([0,T ],R)} in C([0,T ],R).

That is, for every x ∈ C([0,T ],R) the probability

P(∥X − x∥∞ < ε)

is positive for any ε > 0 if and only if there is a sequence (hn)n∈N
in H([0,T ],R) such that limn↑∞ ∥x − xhn∥∞ = 0.
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For α ∈]0, 1] we consider the non-separable Banach space

Cα([0,T ],R)

of all real-valued α-Hölder continuous paths on [0,T ], equipped with
the α-Hölder norm

∥x∥α := |x(0)| + sup
s,t∈[0,T ]: s ̸=t

|x(s) − x(t)|
|s − t|α

.

Then H([0,T ],R) ⊊ C 1
2 ([0,T ],R) and we set

C0([0,T ],R) := C([0,T ],R) and ∥ · ∥0 := ∥ · ∥∞,

by convention.
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Support theorem for SDEs
(Ben Arous, Gradinaru and Ledoux, ’94)

Under the same conditions as in the previous result,

supp(P ◦ X−1) = {xh | h ∈ H([0,T ],R)} in Cα([0,T ],R)

for any α ∈]0, 1
2 [.

The case when both b and σ are time-independent was established
independently by Millet and Sanz-Solé (’94) with different methods.

27 / 31



Based on the functional Itô formula, this support characterisation
extends to the path-dependent SDE

dXt = b(t,X ) dt + σ(t,X ) dWt for t ∈ [0,T ] (6)

with initial condition X0 = x0 a.s., where the product measurable
drift b and diffusion σ are defined on

[0,T ] × C([0,T ],R) instead of [0,T ] × R.

In addition, b and σ are required to be non-anticipative, which means
that

b(t, x) = b(t, x t) and σ(t, x) = σ(t, x t)

for all t ∈ [0,T ] and x ∈ C([0,T ],R).
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Under the conditions of the next result, every h ∈ H([0,T ],R)
induces a path-dependent ODE

ẋ(t) =
(
b − (1/2)ρ

)
(t, x) + σ(t, x)ḣ(t) (7)

for t ∈ [0,T ] with initial condition x(0) = x0 and the correction
term

ρ := ∂xσ · σ

that involves the vertical derivative ∂xσ of σ. Moreover, there is a
unique mild solution xh to (7) and the resulting flow map

H([0,T ],R) → H([0,T ],R), h 7→ xh

is Lipschitz continuous on bounded sets.
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Support theorem for path-dependent SDEs
(Cont and K., ’20)

Let b be bounded and Lipschitz continuous in x ∈ C([0,T ],R),
uniformly in t ∈ [0,T ], and σ be of class C1,2

b and

together with ∂xσ be Lipschitz continuous

in the sense of functional Itô calculus. Then the unique solution
X to (6) satisfies

supp(P ◦ X−1) = {xh | h ∈ H([0,T ],R)} in Cα([0,T ],R)

for any α ∈ [0, 1
2 [.

30 / 31



Finally, a support characterisation for the path-dependent stochastic
Volterra integral equation

Xt = x0 +
∫ t

0
b(t, s,X ) ds +

∫ t

0
σ(t, s,X ) dWs

for t ∈ [0,T ], where the non-anticipative product measurable drift
b and diffusion σ are defined on

[0,T ]2 × C([0,T ],R) instead of [0,T ] × C([0,T ],R),

is derived in a consecutive work [3], under an absolute continuity
condition on b and σ.
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