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Randomised ordinary differential equations

For a clear overview that can be followed readily let us begin with
the one-dimensional ordinary differential equation (ODE)

x(t) = b(t,x(t)) fort>0 (1)

with a product measurable function b: Ry x R — R.

As b is not required to be continuous, we may not expect solutions
in the classical sense but an integral version of (1) can be used.
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Namely, a mild solution to (1) is a continuous function x : Ry — R
such that

/|bsx s))|ds < oo and x(t)= /bsx

for any t > 0, two properties that entail its local absolute continuity.

We note that a mild solution x becomes a classical solution if and
only if the measurable function

Ry = R, s~ b(s,x(s)),

which is its weak derivative x, is continuous, by the Fundamental
Theorem of Calculus.
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To allow for randomness, we take a complete probability space
(22, F, P) on which there is a standard Brownian motion

W: Ry xQ—=R, (t,w)— Wi(w).

That means, W is a continuous process with independent increments
such that Wy =0 a.s. and

W, — Wy ~ N(0,t — s)

for all s,t > 0 with s < t. In particular, W is a square-integrable
martingale, and we let

o:Ry xR—>R

be another measurable function.
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Thus, instead of analysing the ODE (1), we consider the stochastic
differential equation (SDE)

dXt = b(t,Xt) dt + U(t,Xt) th for t Z 0. (2)

We recall that a solution to (2) is an adapted continuous process
X Ry x Q — R such that

t
/ Ib(s, Xs)| + (s, Xs) ds < o0
0
for any t > 0 and
t t
X = Xo +/ b(s, Xs) ds—l—/ o(s, Xs) dWs
0 0

for all t >0 a.s.
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Thereby, [, 0(s,Xs) dWs is the stochastic integral of o(-,X) with
respect to W that is a local martingale with quadratic variation

/ o(s, Xs)? ds.
0

In particular, if o = 0 a.e., then any path of a solution to the SDE (2)
is a mild solution to the ODE (1) and vice versa.

In general, however, we may only expect the paths of a solution X
to (2) to be locally a-Hslder-continuous for any o €]0, 3[, as

E[[Ws — Wi = |s — t)*>

for any s,t > 0 and W is a centred Gaussian process.
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Stability and uniqueness

Let us consider a condition on the drift b that allows for negative
partial Lipschitz coefficients:

(C.1) (Partial Holder continuity condition)

There are o €]0, 1] and some measurable locally integrable
function  : Ry — R such that

sgn(x — i)(b(-,x) — b(-,)"()) < mlx — x|

for any x,x € R.
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Example (sums involving decreasing functions)

For me Nlet x : Ry — R and n: Ry — R™ be measurable and
f : R — R™ be increasing such that

b(-,x) = K = mfi(x) = = Nmin(x)
for any x € R. Then (C.1) holds for any « €]0, 1] if
m Zov,ﬁmZO

Thereby, b may fail to be continuous in x € R.
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On the diffusion o we impose a local continuity condition only:

(C.2) (Holder continuity condition on compact sets)

For any n € N there is ¢, > 0 such that
- ol
(-, x) — o, %) < calx — X2

for all x,% € [—n, n].

The exponent % comes from the Yamada-Watanabe approach, since
B €]0, 1] satisfies

N =
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Example (sums of power functions)
For me Nlet x : Ry — R and n: Ry — R™ be measurable and

3 €]0, 00[™ be such that
— B1 Bm
o(-x) =K +mlx|™ + -+ nmlx|

for any x € R. Then (C.2) holds if 1 is bounded and

N =

1
51257'--75m2
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Explicit L'-comparison estimate

(Meyer-Brandis, Proske and K., '21)

Let (C.1) and (C.2) hold and X and X be two solutions to (2).
Then Y := X — X satisfies

t t t ~ ~
E[IYl) < ek vo]| + (1—a) [ i@ (s)

for all t > 0 with 7., := 7" — 7~ 113(c). In particular, if Yp and
n™ are integrable, then

sup E[|Y¢]] < oo.
>0

In this case, limg o E[| Y]] =0 if a =1 and [;° 7 (s)ds = co.
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Proof ideas.

(i) The Yamada-Watanabe approach gives us a suitable increasing
sequence (¢;)nen in C?(R.) such that

¥n(0) = ¢ (0) =4(0) =0 forany ne N

as well as sup ey ¥n(x) = x and lim, ¢,(x) = 1 for each x > 0.

(i) We may apply I1td's formula to 9,(|Y|) for all n € N, since
¥n(] - ]) € C?(R). Further, we take a locally absolutely continuous

function
u:Ry - Ry with w(0)=1

and deduce the dynamics of u - 1,(|Y|) from Itd's product rule,
which is the novel part of our work.
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(iii) Next, we show that Y is integrable and the function Ry — R,
t — E[|Y¢]] is locally bounded provided E[|Yp|] < co. Then

u(E[Y4]] = lim u()E[n(|Ye])]

< £l + [ E[u(s)1Yal + ls)n(s) il s

for any t > 0, by monotone convergence.

(iv) Hence, Young's inequality and the choice

u(t) = exp ( - a/otna(s) ds)

for all t > 0 yield the asserted estimate. ]
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As a corollary we obtain a stability result in the sense of Lyapunov.

Exponential first moment stability

(Meyer-Brandis, Proske and K., '21)

Let (C.1) and (C.2) hold for « = 1. Further, let 3 > 0and A <0

satisfy
n(s) < ABs”~1 forae s>0.

Then (2) is S-exponentially stable in moment and \ is a Lyapunov
exponent. That is, there is ¢ > 0 such that

E[1X: — %] < e’ E[|X0 — Xo]]

for all t > 0 whenever X and X are two solutions to (2).
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Derivation of strong solutions

For weak solutions to (2) we rely on the subsequent requirements:
(C.3) b is continuous in x € R and locally bounded.
(C.4) (Partial affine growth condition)

There are measurable locally bounded functions s : R, — R
and v : Ry — R satisfying

sen(x)b(-,x) < £ + vl

for every x € R.

14/31



Example (sums involving decreasing functions)

Forme Nlet k : Ry — R and n: Ry — R be measurable and
locally bounded and n € N be such that

b(-,x) =Kk —mx™ — - — px™m

for any x € R. Then (C.1), (C.3) and (C.4) are satisfied for any
a €]0,1] if
the coordinates of n are odd.

However, b does not need to be of affine growth in x € R.
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Let us take an Fy-measurable random variable £ with E[|{]] < oc.

Existence of unique strong solutions

(Meyer-Brandis, Proske and K., '21)

Let (C.1)-(C.4) hold for « = 1 and o(-,0) = 0. Then we have
pathwise uniqueness for (2) and there is a unique strong solution
X& such that

Xg =¢ as.
Moreover, X¢ is integrable and its first absolute moment function
Ry — Ry, t = E[|X?[] is locally bounded.
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(i) As we show in our paper [4], all these methods are extendible to
the McKean-Vlasov SDE

dXt == b(t,Xt, C(Xt)) dt + O'(t,Xt) th for t > 0,

where the product measurable drift b is defined on Ry xR x P1(R)
instead of Ry x R.

In such a setting, Pp(R) is the Polish space of all Borel probability
measures 1 on R with finite p-th moment

| el ).

equipped with the p-th Wasserstein metric for p > 1.
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(i) If the diffusion o should depend on the law of the solution, we
provide methods in another work [5] to handle the McKean-Vlasov
SDE

dXt = b(t, Xj_-, E(Xt)) dt + O'(t,Xt,,C(Xt)) de_— for t > 0,

where the product measurable drift b and diffusion ¢ are defined on
R4 x R x Pp(R) for p > 2 instead of R x R.

18/31



(iii) As an application in mathematical finance, in a joint work with
Brigo and Graceffa [1] the SDE

dVi = (k(t) = lo(£) Ve + () V) dt + A(e) V) dW;  (3)

for t € [0, T] with T >0, a > 1 and 3 > 3 yields the dynamics of
a squared volatility process.

Thereby, k, Iy, / and X are real-valued continuous functions on [0, T]

such that 5

/<0 and %gk.

Note that pathwise uniqueness holds for (3) and there is a unique
strong solution starting at a positive deterministic value.
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Support representations

In the sequel, let us consider the SDE (2) on a finite time horizon:
dX; = b(t, X¢) dt + o(t, X¢) dW; for t € [0, T] (4)

with initial condition Xg = xp a.s., where W is replaced by its
restriction to [0, T] x Q and xp € R.

First, we recall that the linear space C([0, T],R) of all real-valued
continuous paths on [0, T], equipped with the supremum norm

[x[loc == sup_|x(t)],
te[0,T]

is a separable Banach space.
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The image measure Po W~1 of W in C([0, T],R), which is its law,
admits full support in the sense that

supp(P o W) = {x € C([0, T],R) | x(0) = 0}.
That is, for any path x € C([|0, T],R) starting at 0 the probability
P(IW — x|l < &)

that W remains in the open ball with center x and radius ¢ is positive
for any € > 0.
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Under the conditions below, this property of the driver W carries
over to the solutions to (4).

Full support theorem for SDEs
(Stroock and Varadhan, '72)

Let b and o be bounded and Lipschitz continuous in x € R,
uniformly in t € [0, T], o be continuous and

o # 0.
Then the unique solution X to the SDE (4) satisfies

supp(P oX_l) ={x e C([0, T],R) | x(0) = xo}.

22/31



Flow of mild solutions

To study the support of solutions to (4) when o may have zeros, let
H([0, T],R)

denote the separable Banach space of all absolutely continuous paths
h: [0, T] — R such that

T .
/ h(t)? dt < oo,
0

endowed with the Cameron-Martin norm

Il = [H(O)| + (/OTh(s)2 ds)i.
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Under the conditions of the last result and the hypothesis that o is
of class C2’2, each h € H([0, T],R) induces an ODE

x(t) = (b= (1/2)p) (£, x(8)) + o (t, x(£)) h(t) (5)

for t € [0, T] with initial condition x(0) = xp and the correction
term
0o
pi=- 0

We readily see that (5) admits a unique mild solution x;,. That is,

xp(t) :X0+/0 (b= (1/2)p)(s, xn(s)) ds—i—/0 o (s, xn(s)) dh(s)

for all t € [0, T], and x, € H([0, T],R).
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Support theorem for SDEs
(Stroock and Varadhan, ’72)

Let b be bounded and Lipschitz continuous in x € R, uniformly
in t € [0, T], and o be of class C;. Then

supp(Po X 1) = {x,|h € H([0, T],R)} in C([0, T],R).

That is, for every x € C([0, T],R) the probability
P(IX = xlloe <€)

is positive for any € > 0 if and only if there is a sequence (hp)nen
in H([0, T],R) such that limpjs || X — X4, ||cc = O.

25/31



For a €]0, 1] we consider the non-separable Banach space
c([o, T]. R)

of all real-valued a-Hoélder continuous paths on [0, T, equipped with
the a-Holder norm

— t
Il = x(@) +  sup X=X
s,te[0, T]: s#t |s —t|

Then H([0, T],R) C C2([0, T],R) and we set
CO([()? T]aR) = C([O’ T]vR) and || : ||0 = H : Hom

by convention.
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Support theorem for SDEs

(Ben Arous, Gradinaru and Ledoux, '94)

Under the same conditions as in the previous result,

supp(P o X™1) = {x, | h € H([0, T],R)} in C*([0, T],R)

for any a €]0, 1.

The case when both b and o are time-independent was established
independently by Millet and Sanz-Solé ('94) with different methods.
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Based on the functional It6 formula, this support characterisation
extends to the path-dependent SDE

dX; = b(t, X) dt + o(t, X) dW, for t € [0, T] (6)

with initial condition Xy = xp a.s., where the product measurable
drift b and diffusion o are defined on

[0, T] x C([0, T],R) instead of [0, T] x R.

In addition, b and o are required to be non-anticipative, which means
that
b(t,x) = b(t,x") and o(t,x)=o(t,x")

for all t € [0, T] and x € C([0, T],R).
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Under the conditions of the next result, every h € H([0, T],R)
induces a path-dependent ODE

x(t) = (b— (1/2)p)(t, %) + o(t, x)h(t) (7)

for t € [0, T] with initial condition x(0) = xp and the correction
term
p=0x0 -0

that involves the vertical derivative 0,0 of o. Moreover, there is a
unique mild solution x, to (7) and the resulting flow map

H([0, T],R) — H([0, T],R), h+ xp

is Lipschitz continuous on bounded sets.
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Support theorem for path-dependent SDEs

(Cont and K., "20)

Let b be bounded and Lipschitz continuous in x € C([0, T],R),
uniformly in t € [0, T], and o be of class (Ci’2 and

together with 0yo be Lipschitz continuous

in the sense of functional 1t6 calculus. Then the unique solution
X to (6) satisfies

supp(P o X™) = {x, | h € H([0, T],R)} in C*([0, T],R)

for any o € [0, 3]
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Finally, a support characterisation for the path-dependent stochastic
Volterra integral equation

t

t
Xt:X()-i-/ b(t,s,X)ds+/ o(t,s, X)dWs
0 0

for t € [0, T], where the non-anticipative product measurable drift
b and diffusion o are defined on

[0, T]? x C([0, T],R) instead of [0, T] x C([0, T],R),

is derived in a consecutive work [3], under an absolute continuity
condition on b and o.
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