
The Munich Network Management Team

Offloading Partitioned Communication

Motivation and Background

Today's distributed memory machines are typically multiple interconnected many-core shared
memory nodes. The most common programming model to progam distributed memory
machines is MPI, whereas the most common programming model to program shared memory
machines is OpenMP. One approach to use the full parallelism of these machines, and to
guarantee overlap of communication with computation, is mixing MPI with OpenMP.

However, when a shared-memory programming model is used on top of MPI, the MPI library
must be initialized with MPI_THREAD_MULTIPLE to provide full thread-safety, causing several
performance-related issues, such as internal locking.

Recently, Partitioned Communication [1] was accepted to the MPI 4.0 standard to address some
of these issues. Partitioned Communication is a form of Persistent Communication, which means
that the communication pattern is static and can be reused, for example along multiple iterations
of a loop. The communication buffer of partitioned communications is divided into multiple
parts, each handled typically by a separate thread.

Another promising approach is Software Offloading [2], where one or more of the cores of the
many-core node are dedicated only to communication. Compute threads forward their
communication operations to a thread running on the dedicated communication core, which
allows to avoid the internal locking and to guarantee progress in non-blocking communication
for improved overlap of communication and computation.

Benefits

Performance matters! During this thesis you can:

Gain hands-on experience in high-performance computing and computer architecture
Have the opportunity to work with modern state-of-the-art hardware architectures
Deepen your knowledge in the C/C++ programming languages and parallel programming

Goals and Tasks

We have developed a high-performance C++ library for software offloading at LMU named
libMMCSO on top of MPI. However, Partitioned Communication, as well as the recently proposed
Partitioned Collective Communication [3], are not implemented yet in libMMCSO. Additionally, the
benefits of using Partitioned Communication with Offloading compared to other communication
modes remain an open question.

https://www.mnm-team.org/
https://www.sciencedirect.com/science/article/abs/pii/S0167819121000752
https://pavanbalaji.github.io/pubs/2015/sc/sc15.async_mpi.pdf
https://hpcframework.com/wp-content/uploads/2022/01/ExaMPI2021_PartColl_Paper_preprint.pdf


In the context of this thesis, you will:

Implement and integrate a prototype of the Partitioned Point-to-Point Communication
primitives in libMMCSO
Implement and integrate a prototype of the Partitioned Collective Communication
primitives in libMMCSO
Design and conduct experiments on a distributed memory machine (for example
SuperMUC)
Compare the performance of Partitioned Communication in libMMCSO with other
communcation modes in micro-benchmarks and suitable use-cases

Note: The planned implementation should base on MPI 3.0 primitives, for example one-sided
MPI 3.0 RMA. This provides the opportunity of extending MPI 3.0 implementations with
Partitioned Communication using libMMCSO as a plugin.

Prerequisites

Basic understanding and interest in distributed memory and shared memory
programming
Basic knowledge in high-performance and parallel computing (Parallel and High-
Performance Computing or equivalent)
Proficiency in Linux, and C/C++ (Systempraktikum or equivalent)

Starting Point Literature

[1] Dosanjh et al. 2021 Implementation and evaluation of MPI 4.0 partitioned
communication libraries
[2] Vaidyanathan et al. 2015 Improving concurrency and asynchrony in multithreaded MPI
applications using software offloading
[3] Holmes et al. 2021 Partitioned Collective Communication
[4] MPI Forum Partitioned Communication Examples

Organization

Task setter: Prof. Dr. D. Kranzlmüller
Master's thesis duration: 6 Month
Students: 1
Supervisors: Sergej Breiter and Dr. Karl Fürlinger
Language: English

Last Change: Wed, 26 Mar 2025 13:29:14 +0100 - Viewed on: Tue, 10 Jun 2025 08:17:21 +0200

Copyright © MNM-Team http://www.mnm-team.org - Impressum / Legal Info  - Datenschutz / Privacy

https://www.sciencedirect.com/science/article/abs/pii/S0167819121000752
https://www.sciencedirect.com/science/article/abs/pii/S0167819121000752
https://pavanbalaji.github.io/pubs/2015/sc/sc15.async_mpi.pdf
https://pavanbalaji.github.io/pubs/2015/sc/sc15.async_mpi.pdf
https://hpcframework.com/wp-content/uploads/2022/01/ExaMPI2021_PartColl_Paper_preprint.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report/node91.htm#Node91
http://www.nm.ifi.lmu.de/~kranzlm/
http://www.nm.ifi.lmu.de/~breiter/
http://www.nm.ifi.lmu.de/~fuerling/
https://www.mnm-team.org/_impressum
https://www.mnm-team.org/_privacy

