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Abstract. This chapter focuses on the approximation theory of deep
ReLU neural networks, analyzing their ability to approximate various
target functions with different network architectures. We begin by in-
troducing the universal approximation theory of deep neural networks,
stating that given enough neurons, neural networks can approximate gen-
eral functions. We then delve into the fundamental properties of ReLU
neural networks and explore the role of width and depth of neural net-
works, highlighting that increasing layers could be more effective than
increasing width in improving approximation accuracy. Next, we discuss
the approximation rates for Sobolev functions using fully connected and
convolutional neural networks. To alleviate the curse of dimensionality,
we further consider Korobov functions. Finally, we focus on the approxi-
mation properties of self-attention and transformers, which have become
increasingly important in modern deep learning. These results shed light
on the expressivity and reliability of deep learning models, providing
valuable insights into networks’ behavior and performance.

Keywords: deep learning, neural networks, universality, approximation
error

1 Neural networks and their expressivity

1.1 Introduction

In the era of artificial intelligence (AI), deep learning has become a corner-
stone of modern science and technology, playing a pivotal role in image pro-
cessing and natural language processing [90, 45, 34, 71, 11, 31, 2]. Beyond these
traditional machine learning tasks, deep learning is rapidly evolving and has
achieved significant breakthroughs in various fields, including autonomous driv-
ing [113, 56], chatbots and conversational AI [3, 54, 51], drug discovery [88, 16,
91], and many more.

The origins of deep learning can be traced back decades, with research con-
ducted in classical machine learning. Inspired by the human brain, deep learning
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aims to mimic its functionality [5]. Artificial neurons, developed to model their
biological counterparts, are mutually connected to form neural network models.
As the number of these artificial neurons grows, the complexity of the network
increases, enabling it to process big data. However, on the other hand, neural
network architectures have become increasingly sophisticated, presenting great
challenges, such as safety issues involving robots [100], security concerns in AI
systems [49], and privacy violations related to health data [79]. These problems
underscore the need to improve the reliability of AI technology. From a mathe-
matical point of view, exploring the mathematical foundations of deep learning
is a promising direction for improving our understanding of deep learning and,
hopefully, helping to address the aforementioned problems.

One way to understand the learning ability of neural networks is to consider
their approximation properties. Approximation theory is a fundamental math-
ematical tool for the quantitative analysis of how closely neural networks can
approach a certain target function. By studying approximation errors, we can
gain insight into the complexity and limitations of neural networks.

There are at least three distinct benefits that approximation theory brings to
the field of deep learning. Firstly, approximation theory provides a mathematical
framework for comparing different neural network architectures, such as fully
connected neural networks, convolutional neural networks, and transformers.
Secondly, it enhances our understanding of neural network design, for example,
offering insights into why a deep network instead of a wide network is preferred
in practice. Third, we can explore new architectures by leveraging approximation
theory, which could make the proposed models both effective and efficient.

This chapter is organized as follows. In Sect. 2, we will review the founda-
tional principles of neural networks and describe the most widely used architec-
tures. In Sect. 3, we will study the universal approximation properties of deep
neural networks, focusing on those with a bounded depth or width. Before ana-
lyzing complex target functions, we will present the approximation properties for
some simple yet crucial target functions in Sect. 4, highlighting the significance
of depth over width in neural networks. In Sect. 5, we will focus on the approx-
imation properties for various smooth functions and different architectures.

2 Foundational principles of neural networks

A neural network is composed of two key ingredients: activation functions and its
architecture. The activation function defines how a neuron processes incoming
signals based on a specific predetermined function. The architecture of a neural
network refers to the way neurons are connected, as illustrated in Fig. 1. For ex-
ample, in fully connected neural networks, neurons are arranged in layers, with
the outputs of one layer being fed to the subsequent layer as inputs. This com-
positional structure allows neural networks with many layers to become highly
complex and to be able to learn hierarchical structures that enhance the ability
of neural networks to generalize well to new data.
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Fig. 1. Visualization of a neural network featuring a 4-dimensional input layer, 3 hidden
layers, and a 1-dimensional output layer.

2.1 Activation functions

For decades, sigmoidal functions have been among the most popular activation
functions, with their universality well studied in the literature [23, 9, 48, 86]. One
of the most well-known sigmoidal functions is the Sigmoid function, while an-
other commonly used activation function is Tanh, which has a similar shape but
is symmetric around the origin, defined as

Sigmoid(x) =
1

1 + e−x
, Tanh(x) =

ex − e−x

ex + e−x
.

These functions are closely related up to a transformation

Tanh(x) = 2× Sigmoid(2x)− 1.

However, both Sigmoid and Tanh suffer from the vanishing gradient problem
and lead to a low training speed [13, 10, 46, 47, 12].

The ReLU activation is one of the simplest and most efficient activation
functions, defined as

ReLU(x) = max(x, 0).

Due to its simplicity, it is now widely popular in deep learning. However, the
main drawback of ReLU is that its negative part has a gradient zero, leading
to dead neurons during training. To address these limitations, numerous acti-
vation functions have been proposed, including LeakyReLU [67], Softplus [36],
Exponential Linear Unit (ELU) [26], Scaled Exponential Linear Unit (SELU)
[52], Swish [87], and Mish [75], aiming at enhancing the performance of neural
networks. Notably, these activation functions share a similar shape to ReLU,
demonstrating the significance of ReLU-type activation functions in neural net-
works. Figure 2 illustrates the graphs of Sigmoid, Tanh, and ReLU, while the sur-
vey [35] provides a detailed summary and experimental comparison of the most
popular activation functions across different network architectures and datasets.
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Fig. 2. Visualization of ReLU, Sigmoid, and Tanh.

2.2 Fully connected neural networks

Neural networks are structured through affine transformations. The first network
architecture that we will introduce is the fully connected neural network, which
has connections between all neurons across layers.

Let R represent the set of all real numbers, N represent the set of natural
numbers, and N+ represent the set of non-zero natural numbers. We use boldface
lowercase letters to denote vectors, such as x := (x1, x2, . . . , xd)

⊤ ∈ Rd. Addi-
tionally, for any N ∈ N+, we define [N ] := {1, . . . , N} and [N ]0 := {0, 1, . . . , N}.
In the following, we will use σ : R → R to denote the activation function, which
acts component-wise on vectors, matrices, and tensors.

Definition 1 (Fully connected neural networks). A fully connected neural
network ϕ with L layers is defined iteratively by

ϕ(1)(x) = σ
(
W (1)x+ b(1)

)
,

ϕ(ℓ)(x) = σ
(
W (ℓ)ϕ(ℓ−1)(x) + b(ℓ)

)
,

ϕ(x) = W (L)ϕ(L−1)(x) + b(L),

for some weight matrices W (ℓ) ∈ RNℓ×Nℓ−1 and bias vectors b(ℓ) ∈ RNℓ .

In the mathematical analysis of neural networks, we typically focus on the
maximum widthW := max{N1, N2, . . . , NL−1} of a network instead of the num-
ber of neurons in each layer. The total number of neurons in a neural network
ϕ is denoted as N :=

∑L−1
ℓ=1 Nℓ. In approximation theory, the depth L, width

W , and total number of neurons N are the most frequently used quantities to
characterize the approximation ability of neural networks.
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Fig. 3. Visualization of (a) a fully connected neural network and (b) a convolutional
neural network. Both of them have a single hidden layer.

Example 1. Let ϕ : R3 → R2 be a neural network with a depth of L = 3 layers, a
width of at most W = 3 neurons per layer, and a total of N = 5 neurons across
all layers, along with the following weight matrices

W (1) =

W
(1)
11 0 0

W
(1)
21 0 0

0 W
(1)
32 W

(1)
33

 , W (2) =

[
W

(2)
11 0 W

(2)
13

0 W
(2)
22 0

]
,

W (3) =

[
W

(3)
11 0

W
(3)
21 W

(3)
22

]
,

and bias vectors b(1), b(2), and b(3). The neural network expression is then given
by

ϕ(x) = W (3)σ
(
W (2)σ

(
W (1)x+ b(1)

)
+ b(2)

)
+ b(3),

where σ denotes the activation function. Figure 4 provides an illustration of
this neural network. When there are no connections between neurons, the cor-
responding entries in weight matrices are set to zero. The specific arrangements
of zero elements determine the structure of fully connected neural networks and
contribute to different properties.

2.3 Convolutional neural networks

Convolutional neural networks are among the most popular and efficient archi-
tectures and can be considered as a specialized version of fully connected neural
networks. Let w = (wk)

∞
k=−∞ be a convolutional filter mask and assume that it
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Fig. 4. Visualization of the neural network in Example 1.

has support on [K], that is, wk = 0 for any k /∈ [K], where K is the so-called

kernel size. The 1D convolution is computed by (w ∗ x)i =
∑d

k=1 wi−k+1xk,
which is associated with a Toeplitz type matrix Tw ∈ R(d+K−1)×d:

Tw :=



w1 0 0 · · · · · · 0
w2 w1 0 · · · · · · 0
...

...
. . .

. . . · · · 0

wK wK−1 · · · w1 · · ·
...

0 wK wK−1 · · · w1

...
...

. . .
. . .

. . . · · ·
...

0 · · ·
. . . wK wK−1 wK−2

0 · · ·
. . .

. . . wK wK−1

0 · · · · · · · · · 0 wK



. (1)

We can see that the Toeplitz matrix is very sparse, with weights shared between
neurons, leading to substantially fewer parameters than the corresponding dense
matrix used in fully connected neural networks. For example, when the convo-
lutional filter mask has support {1, 2}, then the corresponding Toeplitz type
matrix is given by

Tw :=


w1 0 0 0 0
w2 w1 0 0 0
0 w2 w1 0 0
0 0 w2 w1 0
0 0 0 w2 w1

0 0 0 0 w2

 ,

which depends solely on w1, w2. If we use T
w instead of a full matrix for a neural

network with only a single hidden layer, then the connectivity (the number of
nonzero elements in the weight matrices) of convolutional neural networks is
decreased to 10, governed by just 2 free parameters, in contrast to 5 × 6 = 30
parameters for a fully connected neural network. For further visualization, please
refer to Fig. 3 (b).
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Definition 2 (Convolutional neural networks (CNNs)). A deep convolu-
tional neural network ϕ is defined iteratively by

ϕ(1)(x) = σ
(
T (1)x+ b(1)

)
,

ϕ(ℓ)(x) = σ
(
T (ℓ)ϕ(ℓ−1)(x) + b(ℓ)

)
, ℓ ∈ [L− 1],

ϕ(x) = σ
(
T (L)ϕ(L−1)(x) + b(L)

)
,

where each T (ℓ) := Tw(ℓ)

is a Toeplize type matrix associated with a filter mask
w(ℓ) and b(ℓ) is a bias vector.

In deep learning, the above definition of convolution is commonly referred
to as the convolution with zero padding. Let us denote x̃ as the zero-padded
version of x, where K − 1 zero elements are added on both sides, i.e.,

x̃ = (0, . . . , 0︸ ︷︷ ︸
K−1

,x⊤, 0, . . . , 0︸ ︷︷ ︸
K−1

)⊤,

We also define w̃ as the flipped version of the convolutional filter mask w, i.e.,
w̃ := (wK , wK−1, . . . , w1)

T . Then the convolution characterized in (1) can be
represented as

(w ∗ x)i =
K∑

k=1

w̃kx̃i+k−1. (2)

This formula describes the commonly used notation for convolution with zero
padding and a stride of one in deep learning implementations. In particular, it
will be useful for our later analysis. For a matrix input X ∈ Rd×d and a con-
volutional kernel W ∈ RK×K , the 2D convolution at position (i, j) is computed
as

(W ∗X)i,j =

K∑
m,n=1

WmnX̃i+m−1,j+n−1,

where X̃ is the zero-padded version of X. Zero-padding helps adjust the output
dimensions of convolutional layers, which is frequently used in practical pro-
gramming.

To extend 2D convolutions for processing, for example, color images, which
have three or more channels, we need to consider higher-dimensional tensors.
Given a tensor X ∈ Rd×d×cin with cin input channels and a collection of kernels
{Wc ∈ RK×K×cin}cout

c=1, the convolution between X and each kernel Wc involves
applying a 2D convolution to each channel and summing the results.

(Wc ∗X)i,j =

cin∑
s=1

K∑
m,n=1

(Wc)m,n,sX̃i+m−1,j+n−1,s.
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The multi-channel convolution W ∗ X : Rd×d×cin → Rd×d×cout is then defined
as

(W ∗X)i,j,c = (Wc ∗X)i,j , c = 1, . . . , cout,

where W ∈ RK×K×cin×cout represents the concatenation of kernels Wc along
the output channel dimension, i.e., W:,:,:,c = Wc.

Here and in the following, we use the notation A:,i to represent the i-th
column of matrix A and Aj,: to represent the j-th row of matrix A. For a higher-
dimensional tensor A, we extend the notation: Ai,j,: denotes the vector slice
corresponding to the first two dimension indices i, j. Similarly,Ai,j,k,: denotes the
vector slice corresponding to the indices (i, j, k) along the first three dimensions
(assuming a four-dimensional tensor). We treat all the aforementioned vectors
as column vectors for convenience.

Based on the above definition and notations, we can rewrite the multi-channel
convolution in a more compact form by

(W ∗X)⊤i,j,: =

[
K∑

m,n=1

cin∑
s=1

(Wc)m,n,sX̃i+m−1,j+n−1,s

]cout
c=1

=

[
K∑

m,n=1

cin∑
s=1

(W )m,n,s,cX̃i+m−1,j+n−1,s

]cout
c=1

=

[
K∑

m,n=1

〈
(W )m,n,:,c, X̃i+m−1,j+n−1,:

〉]cout
c=1

=

K∑
m,n=1

X̃⊤
i+m−1,j+n−1,:(W )m,n,:,:.

(3)

This unveils that multi-channel convolution is equivalent to applying linear trans-
formations channel-wise. All of the aforementioned convolutions utilize a stride
of 1. Similarly, we can extend the formulation presented in, for instance, (2), to
accommodate convolutions with a stride of s by

(w ∗s x)i =
K∑

k=1

w̃kx̃(i−1)s+k,

with zero-padding adjusted accordingly.

2.4 Self-attention and Transformer

A more powerful network architecture is the attention mechanism, which orig-
inally mimics human behavior by focusing on parts of information rather than
processing the whole [81]. Among the various attention mechanisms, we shall in-
troduce the self-attention mechanism, one of the most important building blocks
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of Transformer and Vision Transformer (ViT), which have achieved great suc-
cess in many applications like natural language processing and computer vision
[106, 34]. In self-attention, the core components are the query, key, and value.
The query represents the current element and interacts with the keys to assess
similarity scores. The key acts as a sequence of identifiers that align with the
query to calculate these similarity scores. The value provides contextual data
about the elements and, when combined with similarity scores, produces the
final output.

To define self-attention, let us introduce the matrices Wqry ∈ Rcin×t, Wkey ∈
Rcin×t, Wval ∈ Rcin×cout . Attention score A ∈ Rd×d×d×d is calculated as

A(i,j),(q,k) =
〈
X⊤

i,j,:Wqry , X
⊤
q,k,:Wkey

〉
, (4)

and the attention probability P ∈ Rd×d×d×d is obtained by the normalization

P(i,j),(q,k) = exp(A(i,j),(q,k))/

d∑
q,k=1

exp(A(i,j),(q,k)),

Attention probability is used to measure the similarity between features at the
locations (i, j) and (q, k). The output of the self attention SA : Rd×d×cin →
Rd×d×cout is given by

(SA(X)i,j,:)
⊤ =

d∑
q,k=1

P(i,j),(q,k)X
⊤
q,k,:Wval.

Multi-head self-attention further generalizes this concept by concatenating
several self-attentions with additional projection matrices Wh

(SAmul(X)i,j,:)
⊤ =

Nh∑
h=1

d∑
q,k=1

P(i,j),(q,k)X
⊤
q,k,:W

(h)
val Wh. (5)

From expressions, we can see that multi-head self-attention (5) combines features
Xq,k,:, (q, k) ∈ [d]2 according to similarities and when P(i,j),(q,k) approaches
δ(i,j),(q,k), multi-head self attentions get close to multi-channel convolutions (3),
and it is the main idea for the discussion on the universality of the self-attention
and Transformer [28]. Figure 5 (a) provides an illustration of the multi-head
self-attention.

To formally define Transformers, we present the following mappings:

Td,c : Rcd2

→ Rd×d×c, Md,c : Rd×d×c → Rcd2

,

which satisfy

Md,c ◦ Td,c(Rcd2

) = Rcd2

, Td,c ◦Md,c(Rd×d×c) = Rd×d×c.

In this context, the reshape mapping Td,c reconfigures a vector of dimension cd2

into a tensor of dimension d × d × c, while the flatten mapping Md,c reduces a
tensor of dimension d× d× c into a vector of dimension cd2. Consequently, the
Transformer model can be formulated as follows.
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Fig. 5. Visualization of (a) a multi-head self-attention and (b) a Transformer.

Definition 3 (Transformers). Let d, L ∈ N, {cℓ}Lℓ=0 ⊂ N, and X ∈ Rd×d×c0 .
Let

{ψℓ : Rcℓ−1d
2

→ Rcℓd
2

}Lℓ=1,

be a sequence of fully connected neural networks, and

{SA(ℓ)
mul : R

d×d×cℓ−1 → Rd×d×cℓ−1}Lℓ=1,

be a sequence of multi-head self-attention operations. Then a Transformer model
ϕ is defined iteratively by

ϕ(1)(X) = Td,c1 ◦ ψ(1) ◦Md,c0 ◦ SA
(1)
mul(X),

ϕ(ℓ)(X) = Td,cℓ ◦ ψ(ℓ) ◦Md,cℓ−1
◦ SA(ℓ)

mul

(
ϕ(ℓ−1)(X)

)
, ℓ ∈ [L− 1],

ϕ(X) = Td,cL ◦ ψ(L) ◦Md,cL−1
◦ SA(L)

mul

(
ϕ(L−1)(X)

)
.

Figure 5 (b) provides an illustration of the Transformer. The authors of [106]
originally implemented position-wise feed-forward networks in their Transformer
architecture instead of fully connected layers. It is noteworthy that Definition 3
aligns with [106] if the weight matrices in ψ(ℓ) take the form of block diagonal
matrices under particular conditions as described in Td,cℓ and Md,cℓ . Moreover,
the first two dimensions of inputX as well as the output dimension of multi-head
self-attention can be adapted to a broader context.

2.5 Application of approximation to generalization

In machine learning, our goal is to learn a proper model ϕ(x;w) that approxi-
mates an unknown target function f(x) over a dataset {(xi, f(xi)) ∈ Rd×R}ni=1

[63, 114]. The model is parameterized by a weight w and for some learning al-
gorithms we usually only consider selecting it in a parameter space Θ, e.g.,
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Θ = {w : ∥w∥∞ ≤ B} for some constant B > 0. Given a loss function Loss(·, ·),
we estimate w by minimizing the empirical risk:

En (w) :=
1

n

n∑
i=1

Loss (ϕ(xi;w), f(xi)) ,

and we expect that the weight w can be close enough to the minimizer ŵ, given
by

ŵ := argmin
w∈Θ

En (w) .

Assuming that the data points xi are independently and identically distributed
(i.i.d.) samples from a probability measure µ, we want our model to generalize
well to new data. To do so, our aim becomes to minimize the expected loss

E (w) := Eµ (Loss (ϕ(x;w), f(x))) .

Next, we denote w∗ as its minimizer, i.e.,

w∗ := argmin
w∈Θ

E (w) .

To estimate the performance of our learned model ϕ(x;w), we decompose the
expected loss of parameter w into three parts [63, 114]

E(w)

= E(w)− En(w) + En(w)− En(ŵ) + (En(ŵ)− En(w∗))︸ ︷︷ ︸
≤0

+En(w∗)− E(w∗) + E(w∗)

≤ E(w∗)︸ ︷︷ ︸
(I)

+2 sup
w∈Θ

|E(w)− En(w)|︸ ︷︷ ︸
(II)

+ En(w)− En(ŵ)︸ ︷︷ ︸
(III)

.

Here, the first term (I) represents the approximation error, which is the best pos-
sible performance of our model. The second term (II) accounts for the variance
due to the finite sample size. The last term (III) represents the optimization error,
which is the difference between the empirical risk of our estimated weights and
the minimum possible empirical risk. The first term (I), which constitutes part
of the upper bound, highlights the importance of studying the approximation
properties of deep neural networks [63, 114, 14]. For a more detailed discussion,
the reader is encouraged to refer to [85].

2.6 Construction properties of neural networks

Estimating approximation error bounds of deep ReLU neural networks involves
progressing from simple to complex functions. It is similar to constructing a
structure using basic blocks, ultimately achieving a more intricate and diverse
function space. The simplicity and near-linearity of the ReLU activation function
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enable three efficient operations: composition, summation, and concatenation.
These operations simplify our discussions in the later sections. In the statement
of the following theorem and proof, for simplicity, we abuse the notation (v1,v2)
to represent the vertical concatenation (or stacking) of any two column vectors
v1 and v2, which is formally equivalent to (v⊤

1 ,v
⊤
2 )

⊤.

Lemma 1 ([84, 42]). Given two ReLU neural networks ϕ1 : Rd0 → Rd1 and
ϕ2 : Rd2 → Rd3 . Assume that ϕ1 is characterized by (L1,W1, N1) and ϕ2 is
characterized by (L2,W2, N2), where Li is the number of layers, Wi is the width,
and Ni is the total number of neurons. Then their operations:

(a) composition ϕ2 ◦ ϕ1 (when d1 = d2),
(b) concatenation (ϕ1, ϕ2),
(c) summation ϕ1 + ϕ2 (when d1 = d3),

can be realized by a single ReLU neural network. More specifically, the resulting
ReLU neural networks are characterized by the following parameters

(a) (L1 + L2 − 1,max{W1,W2}, N1 +N2),
(b) (max{L1, L2}, 2(W1 +W2), 2(N1 +N2)),
(c) (max{L1, L2}, 2(W1 +W2), 2(N1 +N2)).

Proof. (a). Let {(W (ℓ)
i , b

(ℓ)
i )}Li

ℓ=1 denote the weight matrices and bias vectors of
ϕi. The composition ϕ2 ◦ ϕ1 can be realized by a neural network ϕ defined as
follows:

ϕ(ℓ)(x) := ϕ
(ℓ)
1 (x), ℓ = 1, . . . , L1 − 1,

ϕ(L1)(x) := σ
(
W

(1)
2 W

(L1)
1 ϕ(L1−1)(x) +W

(1)
2 b

(L1)
1 + b

(1)
2

)
,

ϕ(ℓ)(x) := ϕ
(ℓ−L1+1)
2 (x), ℓ = L1 + 1, . . . , L1 + L2 − 1.

In the second step, we use the result of the composition of ϕ
(1)
2 and ϕ

(L1)
1

ϕ
(1)
2 ◦ ϕ(L1)

1 (x) = σ
(
W

(1)
2 ϕ

(L1)
1 (x) + b

(1)
2

)
= σ

(
W

(1)
2 W

(L1)
1 ϕ

(L1−1)
1 (x) +W

(1)
2 b

(L1)
1 + b

(1)
2

)
.

This neural network has L1 + L2 − 1 layers, width max{W1,W2}, and no more
than N1 +N2 neurons.

(b). For concatenation (ϕ1, ϕ2), assume without loss of generality that L1 >
L2. Let x ∈ Rd0 and y ∈ Rd2 . Define a neural network ϕ with input dimension
d0 + d2 as follows:

W (ℓ) :=

[
W

(ℓ)
1 0

0 W
(ℓ)
2

]
, b(ℓ) :=

[
b
(ℓ)
1

b
(ℓ)
2

]
,
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for ℓ = 1, . . . , L2 − 1,

W (L2) :=

W
(L2)
1 0

0 W
(L2)
2

0 −W
(L2)
2

 , b(L2) :=

 b
(L2)
1

b
(L2)
2

−b
(L2)
2

 ,
for ℓ = L2,

W (ℓ) :=

W (ℓ)
1 0 0
0 I 0
0 0 I

 , b(ℓ) :=

b(ℓ)1

0
0

 ,
for ℓ = L2 + 1, . . . , L1 − 1, and for the last layer, we define

W (L1) :=

[
W

(L1)
1 0 0
0 I −I

]
, b(L1) :=

[
b
(L1)
1

0

]
.

Here I and 0 denote the identity matrix and zero matrix of appropriate dimen-
sions. Since W (ℓ) is a block diagonal matrix for ℓ = 1, . . . , L2 − 1, it is obvious

that we have ϕ(ℓ) = (ϕ
(ℓ)
1 , ϕ

(ℓ)
2 ). When ℓ = L2, we split ϕ2 into positive and

negative parts and get

ϕ(L2)(x,y) =


ϕ
(L2)
1 (x)

σ
(
ϕ
(L2)
2 (y)

)
σ
(
−ϕ(L2)

2 (y)
)
 , ℓ = 1, . . . , L2.

Notice that σ ◦ σ(c) = σ(c) for any c ∈ R. Hence, for ℓ = L2 + 1, . . . , L1 − 1, the

first block of ϕ(ℓ) is equal to ϕ
(ℓ)
1 while the second and third blocks are kept the

same, leading to

ϕ(ℓ)(x,y) =


ϕ
(ℓ)
1 (x)

σ
(
ϕ
(ℓ)
2 (y)

)
σ
(
−ϕ(ℓ)2 (y)

)
 , ℓ = L2 + 1, . . . , L1 − 1.

In the last layer, using the fact that σ(c)− σ(−c) = c for any c ∈ R, we obtain
that ϕ = (ϕ1, ϕ2). According to the definition of weight matrices, width of ϕ
is upper-bounded by max{W1 +W2,W1 + 2W2} ≤ 2(W1 +W2) and similarly
number of neurons is bounded by 2(N1 + N2). When x = y, we only need to
revise the first layer with the following parameters

W (1) :=

[
W

(1)
1

W
(1)
2

]
, b(1) :=

[
b
(1)
1

b
(1)
2

]
,

and finally can get ϕ(x) = (ϕ1(x), ϕ2(x)).
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(c). For summation ϕ1 + ϕ2, we follow similar steps as in (b) but adjust the
final layer to combine the outputs:

W (L1) :=
[
W

(L1)
1 I −I

]
, b(L1) := b

(L1)
1 , if L1 > L2.

where L = max{L1, L2}. This network has max{L1, L2} layers, width 2(W1 +
W2), and no more than 2(N1 +N2) neurons.

The proof of Lemma 1 highlights two crucial properties of ReLU neural net-
works, σ◦σ = σ and σ(·)−σ(−·) = σ(·). These properties facilitate the straight-
forward calculation of the structure of the resulting neural networks when ap-
plying these operations. Notably, the depth, width, and number of neurons of
the resulting networks increase linearly. In subsequent sections, we will leverage
this lemma frequently without further mentioning it.

3 Universality of neural networks

The universal approximation property serves as the theoretical foundation of the
expressivity of neural networks, explaining their ability to approximate general
functions within any error tolerance when the number of neurons increases. Un-
derstanding universality is important, as the target mapping in many real-world
problems is highly complex. The richness of neural networks allows researchers
and engineers to design a neural network for various tasks as long as sufficient
neurons are employed.

In this section, we shall introduce the universality of two types of neural net-
works: those with bounded depth and those with bounded width. These results
demonstrate that, provided a neural network is wide enough or deep enough, it
would be able to approximate general functions to arbitrary accuracy.

3.1 Universality of shallow neural networks

We will first consider shallow neural networks, as shown in Fig. 3, which have
only one hidden layer and are a linear combination of several neurons.

Definition 4 (Shallow neural networks). A shallow neural network is a neu-
ral network with only one hidden layer (i.e., L = 2), defined as

ϕ(x) =

N∑
i=1

βiσ (⟨wi,x⟩+ bi) , x ∈ Rd, (6)

for some wi ∈ Rd and bi, βi ∈ R.

One of the remarkable universality results of shallow neural networks was
developed in [55]. The density considered in this subsection is in the topology
of uniform convergence on compact sets. Let C∞(R) be the collection of in-
finitely differentiable functions. The subsequent theorem outlines the condition
for an activation function σ ∈ C∞(R) to guarantee the validity of the universal
approximation theorem.
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Theorem 1 ([55]). If σ ∈ C∞(R) is not a polynomial, then shallow neural
networks are dense in C(Rd).

Proof. It is easy to see that when σ is a polynomial, then the corresponding
shallow neural networks are polynomials with the same degrees, which cannot
be a universal approximator.

When σ is not a polynomial, we observe that linear functions can be arbi-
trarily well-approximated by shallow neural networks

σ ((w + h)x+ b)− σ (wx+ b)

h

h→0−−−→ x · σ′(wx+ b)
w→0−−−→ x · σ′(b),

where we use the definition of the derivative. Similarly, we can generalize this
idea to polynomials. That is, any polynomials xk ·σ(k)(bk) where σ

(k) denotes the
k-th derivative of σ can be well approximated. Since σ ∈ C∞, one can always find
a bk such that σ(k)(bk) ̸= 0 for any k ∈ N. Hence, any polynomial can be arbi-
trarily well approximated by shallow neural networks. Using Stone–Weierstrass
theorem, we conclude that shallow neural networks are dense in C(R).

To extend the density result from R to Rd, we can use the universality of ridge
functions, which is well studied, e.g., in [22, 60, 107], stating that span{g(w ·x) :
w ∈ Rd, g ∈ C(R)} is dense in Rd. With the above result that g ∈ C(R) can be
well approximated by shallow neural networks, we conclude the universality of
shallow neural networks in C(Rd).

Then we wonder whether we can extend the above result to more general
activation functions like ReLU. We can utilize the properties of mollifications
to achieve this goal. Subsequently, we consider activation functions σ that are
locally essentially bounded on any compact subset of R, i.e., σ ∈ L∞

loc(R). Ad-
ditionally, we require that σ is continuous on some interval Ui which forms a
finite partition of R (their measures are positive). We denote the set M as the
collection of all activation functions that satisfy the above properties.

Let C∞
0 (Ω) be the space of continuous functions that have compact support

inΩ ⊂ R. The following theorem shows that the convolution of σ and ω ∈ C∞
0 (R)

is smooth.

Theorem 2 ([4, 25]). Given σ ∈M . Then σ ∗ω ∈ C∞(R) for any ω ∈ C∞
0 (R).

Theorem 2 tells us that we can always refine σ through convolutions, and
any continuous activation functions like ReLU are included. However, there are
still two crucial aspects we need to verify. Firstly, we have to determine whether
the convolution σ ∗ ω is not a polynomial. Secondly, we need to ensure that
the convolution σ ∗ ω can be approximated by shallow neural networks. If both
are met, we can then conclude the universality of σ-activated shallow neural
networks. Theorem 2 is a classical result in functional analysis, with complete
proofs available in [4, 25].

Lemma 2 ([55]). Let σ ∈M . If σ ∗ω is a polynomial for all ω ∈ C∞
0 (R), then

there exists an m ∈ N+ such that σ ∗ ω is a polynomial of degree at most m for
all ω ∈ C∞

0 (R).



16 Jianfei Li, Gitta Kutyniok

Proof. It is sufficient to prove the claim for any ω ∈ C∞
0 ([a, b]) for some interval

[a, b]. To see this, consider ω ∈ C∞
0 (R) with a general support [c, d]. Then there

exists a decomposition of ω =
∑k

i=1 ωi such that ωi ∈ C∞
0 ([ci, di]) with supports

satisfying [c, d] ⊂ ∪i[ci, di] with di = b+ ti, ci = a+ ti for some ti ∈ R. Thus we
obtain

k∑
i=1

σ ∗ ωi(x) =

k∑
i=1

∫
σ(x− y)ωi(y)dy

=

k∑
i=1

∫
σ(x− (y + ti))ωi(y + ti)dy

=

k∑
i=1

[σ ∗ ωi(·+ ti)](x− ti),

where ωi(· + ti) has the support [a, b]. This implies that there exists some uni-
versal constant m such that σ ∗ ω is a polynomial with degree ≤ m for any
ω ∈ C∞

0 (R) if the statement degree(σ ∗ ω) ≤ m holds for any ω ∈ C∞
0 ([a, b]).

Now let us show the result for C∞
0 ([a, b]). For this, define the metric

ϱ(ω1, ω2) :=

∞∑
n=0

2−n ∥ω1 − ω2∥n
1 + ∥ω1 − ω2∥n

,

where ∥ω∥n :=
∑n

j=0 supx∈[a,b] |ω(j)(x)|. Then C∞
0 ([a, b]) becomes a complete

metric space. Define Vk = {ω ∈ C∞
0 ([a, b]) : degree(σ ∗ ω) ≤ k}. According to

the definition and assumption, Vk has the following properties

(a) Vk is a closed subspace,
(b) Vk ⊂ Vk+1,
(c) ∪∞

k=0Vk = C∞
0 ([a, b]).

By Baire’s category theorem, there exists m such that there is an open set
contained in Vm. Hence Vm = C∞

0 ([a, b]). The proof is completed.

The theory of distribution and convolution indicates that σ is a polynomial
under the conditions of Lemma 2 [40, 25]. It implies that once σ is not a poly-
nomial, then there always exists at least one ω ∈ C∞

0 (R) such that σ ∗ ω is not
a polynomial.

Now, the last result to show the universality is to prove σ ∗ ω can be well-
approximated by shallow neural networks.

Lemma 3 ([55]). Let σ ∈M . If ω ∈ C∞
0 (R), then

σ ∗ ω ∈ span {σ(wx+ b) : w, b ∈ R}.

Proof. Assume that the support of ω is within [a, b]. Let us define

yi := a+ i∆yi, ∆yi :=
b− a

m
, i = 0, . . . ,m,



Approximation theory of neural networks 17

and Ii := [yi, yi+1]. Then we can decompose the error between σ ∗ ω =
∫
σ(x−

y)ω(y)dy and a shallow neural network
∑m

i=1 σ(x − yi)ω(yi)∆yi (which is the
discretization of the integral) into two parts over each interval Ii, namely∣∣∣∣∫

Ii

σ(x− y)ω(y)dy − σ(x− yi)ω(yi)∆yi

∣∣∣∣
≤

∣∣∣∣∫
Ii

σ(x− y)ω(y)dy −
∫
Ii

σ(x− yi)ω(y)dy

∣∣∣∣+ ∣∣∣∣∫
Ii

σ(x− yi)ω(y)dy − σ(x− yi)ω(yi)∆yi

∣∣∣∣
≤

∫
Ii

|σ(x− y)− σ(x− yi)| |ω(y)|dy︸ ︷︷ ︸
(I)

+

∫
Ii

|σ(x− yi)| |ω(y)− ω(yi)| dy︸ ︷︷ ︸
(II)

.

Let us consider x ∈ [−c, c] for some c > 0. Notice that σ is locally bounded
and ω ∈ C∞

0 (R). Then we can find some C <∞ such that max|x|≤b+c |σ(x)| ≤ C
and max|x|≤b |ω(x)| ≤ C. For any ε > 0, we choose a large enough m such that
|ω(y)− ω(yi)| ≤ ε. Hence, the quantity (II) can be upper-bounded by

(II) ≤ C∆yiε.

According to the definition of σ, there exist finitely many discontinuous points
of σ over the interval [a−c, b+c]. Let us denote U as the collection of some small
enough open intervals with each interval containing one discontinuous point of
σ on [a − c, b + c]. The interval U can be chosen to have a measure arbitrarily
small, e.g. |U | ≤ ε/m. Then we have

(I) ≤
∫
Ii∩U

|σ(x− y)− σ(x− yi)| |ω(y)|dy +

∫
Ii∩Uc

|σ(x− y)− σ(x− yi)| |ω(y)|dy

≤ 2C2ε/m+ C∆yiε,

where we use the fact that σ is uniformly continuous on Ii ∩ U c (set m large
enough) and the boundedness of σ and ω. Summing the above bound with respect
to i = 1, . . .m, we have

|σ ∗ ω(x)−
m∑
i=1

σ(x− yi)ω(yi)∆yi| ≤ 2C(b− a)ε+ 2C2ε ≤ C ′ε,

where C ′ is independent of x and ε. The proof is completed

Combining the above result with Lemma 1 and Theorem 2, we derive the
following well-known universality result.

Theorem 3 ([55]). Let σ ∈ M . Then the family of shallow neural networks is
dense in C(Rd) if and only if σ is not a polynomial.

3.2 Universality of deep ReLU neural networks with bounded width

We now analyze the constrained-width regime to determine if deep neural net-
works have universal approximation capabilities in L1(Rd).
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Fig. 6. Visualization of h1(x; [−2,−1]) (red line), h2(x; [1, 2]) (green line), and
h(x; [−2, 2], 1) (blue line).

The idea is to utilize the ReLU activation function to approximate simple
functions on cubes.

Intuitively, any characteristic function χ[a,b] given by

χ[a,b](x) :=

{
1, x ∈ [a, b],

0, x ̸= [a, b],

can be well approximated by hat functions. Let us construct the clipped version
of ReLU with two neurons, as shown in Fig. 6, which is defined as

h1(x; [a, a+ δ]) = −1

δ
(σ(−x+ a)− σ(−x+ a+ δ))

=


1, x < a,

linear, x ∈ [a, a+ δ],

0, x > a+ δ,

and

h2(x; [b− δ, b]) =
1

δ
(σ(x− b+ δ)− σ(x− b))

=


0, x < b− δ,

linear, x ∈ [b− δ, b],

1, x > b.

When the linear part is not crucial for analysis, both here and subsequently,
we will exclude its explicit expression. Now we can define the following “hat
function”

h(x; [a, b], δ) := 1− (h1(x; [a, a+ δ]) + h2(x; [b− δ, b]))

=


1, x ∈ [a+ δ, b− δ],

linear, x ∈ (a, a+ δ) ∪ (b− δ, b),

0, x /∈ [a, b].

(7)



Approximation theory of neural networks 19

In Fig. 6, we show an example of h(x; [−2, 2], 1) which has support [−2, 2]. We
can see that compared with χ[−1,1], the difference only appears at the linear part
of h. It is similar when we consider an error analysis between a general χ[a,b] and
h(x; [a, b], δ) and difference only over the interval (a, a+δ)∪(b−δ, b) matters. We
have

∥∥h(x; [a, b], δ)− χ[a,b]

∥∥
L1(R)

→ 0 as δ → 0. It implies the density of shallow

ReLU neural networks in L1(R). In the following theorem, we extend this simple
example to higher dimensions and show the universality of deep ReLU neural
networks with bounded width.

Theorem 4 ([65]). The family of deep ReLU neural networks with a width no
more than O(d) is dense in L1(Rd).

Proof. Let us consider the following iteration

L1 := σ (1− h1(x1; [a1, a1 + δ])− h2(x1; [b1 − δ, b1])) ,

L2 := σ (L1 − h1(x2; [a2, a2 + δ])− h2(x2; [b2 − δ, b2])) ,

Lk := σ (Lk−1 − h1(xk; [ak, ak + δ])− h2(xk; [bk − δ, bk])) ,

(8)

which aims to approximate χ∏d
i=1[ai,bi]

.

The function L1 is equal to h(x1; [a1, b1], δ). When x1 ∈ [a1 + δ, b1 − δ], i.e.
L1 = 1, then L2 is equal to h(x2; [a2, b2], δ). Since h1 and h2 are nonnegative,
we have L1 = 0 and hence L2 = 0 for any x1 /∈ [a1, b1]. Utilizing these results
we obtain the expression of L2, which approximates 2D characteristic function
χ[a1,b1]×[a2,b2],

L2 =


1, (x1, x2) ∈ [a1 + δ, b1 − δ]× [a2 + δ, b2 − δ],

0, (x1, x2) /∈ [a1, b1]× [a2, b2],

linear, otherwise.

We assume that Lk is equal to 1 on
∏k

i=1[ai + δ, bi − δ] and equal to 0 outside

the square
∏k

i=1[ai, bi].
Then for k + 1, if

(x1, . . . , xk) ∈
k∏

i=1

[ai + δ, bi − δ], xk+1 ∈ [ak+1 + δ, bk+1 − δ],

then we get Lk = 1 and hence have

Lk+1 = σ(h(xk+1; [ak+1, bk+1], δ)) = 1.

If we have

(x1, . . . , xk) /∈
k∏

i=1

[ai, bi], xk+1 /∈ [ak+1, bk+1],

then Lk = 0 and hence

Lk+1 = σ(−h1(xk+1; [ak+1, ak+1 + δ])− h2(xk+1; [bk+1 − δ, bk+1])) = 0.
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By induction, we prove that Ld is equal to 1 on
∏d

i=1[ai + δ, bi − δ] and equal to

0 outside the square
∏d

i=1[ai, bi]. We can similarly show the quantity Lk+1 has
the upper bound 1

|Lk+1| ≤ |Lk − h1 − h2| ≤ |1− h1 − h2| ≤ 1,

where in the first step we use the fact that |σ(x)| ≤ |x|, x ∈ R and apply (7) to
the last equality.

For each iteration of Lk, the formula can be represented by a shallow neu-
ral network with input Lk−1, h1(xk; [ak, ak + δ]) and h2(xk; [bk − δ, bk]). For
h1(xk; [ak, ak + δ]), we need two neurons σ(−xk + ak) and σ(−xk + ak + δ).
Hence, we have to keep Lk and xi, i = 1, . . . , d via σ(xi) − σ(−xi) from the
input layer to subsequent layers and it is easy to see the depth of this block is
finite and width is no more than O(d).

Now we shall construct a deep neural network to approximate a given g ∈
L1(Rd). Notice that the family of simple functions is dense in L1(Rd). For any
ε > 0, one can always find a sequence of hyperrectanglesΩi and constants ai ∈ R,
i = 1, . . . ,m, such that ∥

∑m
i=1 aiχΩi − g∥

L1(Rd)
≤ ε. According to (8), we need

m such iterations to produce each χΩi
. For the summation between χΩi

, we
only need to add two more neurons σ(x) − σ(−x) = x to keep it accumulating
until the output layer. Together with the above discussion of the neural network
Ld(x;Ωi) which has the property ∥Ld−χ∏

Ωi
∥L1(Rd) → 0, δ → 0. This completes

the proof.

The “hat function” h in this subsection simulates the characteristic functions
on hyperrectangles in a compositional manner (8). We will show later that deep
ReLU neural networks can efficiently interpolate polynomials and approximate
local Taylor expansions.

3.3 Related works

In the 20th century, the universal approximation properties of neural networks
garnered a lot of attention, particularly for those equipped with sigmoidal func-
tions [23, 9, 48], which satisfy limx→+∞ σ(x) = 1 and limx→−∞ σ(x) = 0 in gen-
eral. On compact sets, sigmoidal shallow neural networks can approximate any
continuous function to any prescribed error as measured by the supremum norm
[23]. Furthermore, universality results for measurable functions were discussed
in [48]. In [72], multilayer neural networks activated by certain sigmoidal func-
tions were shown to be capable of approximating any continuous function and
achieving the Jackson rate. For characteristic functions and functions possess-
ing smoothness properties, the work [72] also explored related approximation

algorithms. When the target function f has Fourier transform f̂ and satisfies
∥w∥2f̂(w) being integrable, error analysis was given in [9], with the error at a
rate of O(N−1/2) when given N neurons. The survey paper [86] comprehensively
reviewed the related results.
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As research progressed, attention to the approximation theory of neural net-
works shifted to ReLU neural networks. Error bounds of shallow ReLU neural
networks were investigated in [53]. Given a target function f with ∥w∥21f̂(w) ∈
L1(Rd), they achieved an error rate of O(

√
logNN−1/2−1/d). However, for ap-

proximating Hölder functions with regularity r > 2+ d/2, the results in [53] are
not applicable. This limitation was addressed in [70] and the provided bounds
are close to optimal when d is large. Korobov functions were considered in [62],
which belong to an important function space for understanding the curse of
dimensionality, and achieved a rate of O(

√
NN−(2d+4)/(5d)). By constructing

wavelet frame with ReLU networks, in [93], the depth-4 ReLU neural networks
were studied, giving optimal rates of approximation O(N−2/d) for C2 functions
on some manifolds. The discussion on shallow neural networks with ReLUk ac-
tivation functions (ReLUk(x) = (ReLU(x))k) has been provided in [53, 109, 98,
7, 73]. These works have extended our understanding of expressivity of neural
networks with different activation functions. The studies [55, 48, 29] focused on
the networks with general activation functions and established the foundation
for widespread applications.

4 Approximation properties of ReLU neural networks

This section details the convergence rates of deep ReLU neural networks for
some basic functions and operations. While deeper or wider neural networks en-
sure the universality of neural networks, it remains unclear which configuration
is superior and how to choose an optimal neural network for real-world applica-
tions. The findings of this study illuminate a fundamental question arising from
observations in practice: why are deep neural networks more important? We
will present some foundational results that demonstrate that increasing depth
could be more efficient than increasing width regarding the expressivity of neural
networks.

4.1 Efficient approximation of polynomials

First, we observe that neural networks can effectively approximate x2 by utiliz-
ing sawtooth functions. Given that ReLU neural networks are piecewise linear
functions, it is natural to employ linear interpolation to derive error bounds.
Intuitively, a more refined approximation—with tighter error bounds—can be
achieved if ReLU neural networks can represent a larger number of ‘pieces’.
Thus, our primary challenge lies in determining how to efficiently increase the
number of these pieces.

We call a function f : R → R t-sawtooth if it is piecewise affine with t
piecewise, i.e. there exists a partition {Ii : Ii are intervals, i ∈ [t]} of R such that
f(x) = aix+ bi, x ∈ Ii for some ai, bi ∈ R.

Given a 2n-sawtooth function, it can be easily implemented by a ReLU shal-
low neural network with 2n neurons. In [104], it was found with a compositional
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Fig. 7. Visualization of sawtooth functions h(k) (9), k = 1, 2, 3, 4.

structure, a deep ReLU neural network can efficiently produce functions with
more segments. Consider the function h(x) := h(x; [0, 1], 12 ), given by

h(x) =

{
2x, x ∈ [0, 12 ],

2( 12 − x) + 1, x ∈ ( 12 , 1].

Obviously, h(x) can be represented by a neural network with three neurons and
itself is a 4-sawtooth function. The k-times composition of h(x) results in a
(2k +2)-sawtooth function, which can be realized with only O(k) neurons [104].

Lemma 4 ([110]). Let f(x) = x2. For any ε > 0, there exists a ReLU neural
network ϕ with bounded width and at most O(| ln ε|) layers and neurons such
that ∥f − ϕ∥L∞([0,1]) ≤ ε and ∥ϕ∥L∞([0,1]) ≤ 1. Besides, ϕ(x) = 0 when x = 0.

Proof. The proof leverages the efficient compositional structure of the sawtooth
function. We shall first show that h(k)(x) = h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸

k

has the following form:

h(k)(x) =

{
2k
(
x− 2i

2k

)
, x ∈

[
2i
2k
, 2i+1

2k

]
, i = 0, 1, . . . , 2k−1 − 1,

2k
(
2i+1
2k

− x
)
+ 1, x ∈

[
2i+1
2k

, 2i+2
2k

]
, i = 0, 1, . . . , 2k−1 − 1,

(9)

where h(k) takes the value 1 at points 2i+1
2k

and 0 at points 2i
2k
, i = 0, 1, . . . , 2k−1−

1. In other words, h(k) is linear over intervals
[
2i+j
2k

, 2i+j+1
2k

]
, j = 0, 1. Figure 7

provides an illustration of this function.

The basic case for k = 2 is straightforward. For k > 2, assume that the claim
holds for k. Consider x ∈

[
2i
2k
, 2i+1

2k

]
for k + 1. Notice that we can rewrite h as

h(x) = 2x · χ[0,1/2](x) + 2(1− x) · χ(1/2,1](x).
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Fig. 8. Visualization of linear interpolation fn, n = 1, 2, 3 of x2.

Thus,

h(k+1) = h ◦ h(k) = 2h(k)χ[0, 12 ]

(
h(k)

)
+ 2(1− h(k))χ( 1

2 ,1]

(
h(k)

)

=


2h(k), x ∈

[
2i
2k
, 2i
2k

+ 1
2k+1

]
,

2(1− h(k)), x ∈
[
2i
2k

+ 1
2k+1 ,

2i+1
2k

]
,

2h(k), x ∈
[
2i+1
2k

, 2i+1
2k

+ 1
2k+1

]
,

2(1− h(k)), x ∈
[
2i+1
2k

+ 1
2k+1 ,

2i+2
2k

]
,

(10)

where on each interval
[
2i
2k

+ j
2k+1 ,

2i
2k

+ j+1
2k+1

]
, j = 0, . . . , 3, h(k) is linear and

takes value {0, 1/2} or {1/2, 1} at endpoints. Direct calculation shows that h(k+1)

is linear and takes values {0, 1} at the endpoints of these intervals, proving the
claim by induction.

Define fk as the piecewise linear interpolation of f on points i
2k
, i = 0, 1, . . . , 2k,

i.e. fk is linear on [ i
2k
, i+1

2k
] and fk(

i
2k
) := ( i

2k
)2. Note that fk−fk+1 is also piece-

wise linear with breakpoints i
2k+1 , i = 0, 1, . . . , 2k+1, with the value

fk(
2i

2k+1
)− fk+1(

2i

2k+1
) = 0,

and

fk(
2i+ 1

2k+1
)− fk+1(

2i+ 1

2k+1
)

=

(
i

2k

)2

+

(
i+1
2k

)2 − ( i
2k

)2
1
2k

1

2k+1
−
(
2i+ 1

2k+1

)2

=
1

22(k+1)
.
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Therefore, (9) implies that 22(k+1)(fk − fk+1) is equal to h
(k+1). Summing over

k, we derive

n∑
k=1

2−2kh(k)(x) =

n∑
k=1

(fk−1(x)− fk(x))

= f0(x)− fn(x)

= x− fn(x),

yielding:

fn(x) = x−
n∑

k=1

2−2kh(k)(x).

It is then straightforward to show that

|x2 − fn(x)| ≤ 2−2n and |fn(x)| ≤ 1, ∀x ∈ [0, 1].

Since h(n) has a compositional structure with intermediate layers producing h(k),
k < n, we now only need to add σ(x) − σ(−x) to keep their summation to the
last layer. This implies that fn can be realized by a neural network with bounded
width and O(n) layers. By choosing ε = 2−2n, we derive n = O(| ln ε|) and fn
has at most c| ln ε| layers and c| ln ε| neurons for some constant c > 0.

Combining the above lemma with Lemma 1, extension to general univariate
polynomials is rather straightforward. Employing xy = 1

2 (x+ y)2 − 1
2x

2 − 1
2y

2,
we are able to further approximate multivariate polynomials efficiently.

Theorem 5 ([110]). Given M > 0 and let f(x, y) = xy, (x, y) ∈ [−M,M ].
Then for any ε > 0, there exists a ReLU neural network ϕ with bounded width
and at most O(| ln ε|)) layers and neurons such that

∥f − ϕ∥L∞([−M,M ]2) ≤ ε.

In addition, ϕ satisfies ϕ(x, y) = 0 if xy = 0.

Proof. Firstly, we rewrite f(x, y) as

f(x, y) = 2M2

((
x+ y

2M

)2

−
( x

2M

)2
−
( y

2M

)2)
.

Let ϕε be a ReLU neural network from Lemma 4 such that ∥ϕε−x2∥L∞([0,1]) ≤
ε/6M2. Define

ϕ(x, y) = 2M2

(
ϕε

(
x+ y

2M

)
− ϕε

( x

2M

)
− ϕε

( y

2M

))
.

Using the triangle inequality, we obtain ∥f − ϕ∥L∞([−M,M ]2) ≤ ε. The proof is
completed.
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One can immediately extend Theorem 5 to higher-order products by

ψ1 = x1,

ψ2 = ϕε (ψ1, x2) ,

ψ3 = ϕε (ψ2, x3) ,

...

ψd = ϕε (ψd−1, xd) ,

(11)

where we take ϕε to be able to approximate x · y within error tolerance ε over a
large enough domain [−M,M ]2. Notably, we can show ψk(x1, . . . , xk) = 0 when
x1 × x2 × · · · × xk = 0 by induction. Then∣∣∣∣∣

d∏
i=1

xi − ψd

∣∣∣∣∣ ≤
∣∣∣∣∣

d∏
i=1

xi − xd · ψd−1

∣∣∣∣∣+ |xd · ψd−1 − ϕε (ψd−1, xd)|

≤ |xd|

∣∣∣∣∣
d−1∏
i=1

xi − ψd−1

∣∣∣∣∣+ ε.

Iteratively, we can prove that the ReLU neural network ψd has O(| ln ε|)
layers and O(| ln ε|) neurons and is capable of realizing

∏d
i=1 xi within error ε.

Similar techniques were employed by [105] for approximating rational functions
with ReLU neural networks. More specifically, to approximate a rational function
of degree no more than r, we can find a ReLU neural network with no more than
O(| ln ε|3) neurons that achieves error tolerance ε, which is also very efficient.
Conversely, for some ReLU neural networks with bounded width and 2k layers,
any rational function with O(2k) terms in both the numerator and denominator
in total have a lower bound 1

64 to approximate the functions given by ReLU
neural networks in terms of L1 norm, indicating the power of the compositional
structure in neural networks.

4.2 Approximating locally with ReLU neural networks

The partition of unity is an important tool for establishing approximation results
of deep neural networks [110, 61]. Let us set parameters in (7) as a := m

N − 2
3N ,

b := m
N + 2

3N , δ = 1
3N . Then

h
(
x;
m

N

)
: = h(x; [a, b], δ)

=


1, x ∈

[
m
N − 1

3N ,
m
N + 1

3N

]
,

linear, x ∈ (mN − 2
3N ,

m
N − 1

3N ) ∪
(
m
N + 1

3N ,
m
N + 2

3N

)
,

0, x /∈
[
m
N − 2

3N ,
m
N + 2

3N

]
.

(12)
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Summing over all m ∈ [N ]0 where we recall [N ]0 = {0, 1, . . . , N}, we obtain the
following equality holds for any x ∈ [0, 1],

N∑
m=0

h
(
x;
m

N

)
= 1.

To see this, let us consider the interval between m
N and m+1

N with break points
m
N + i

3N , i = 1, 2. Notice that the localization property indicates that only h(x; m
N )

and h(x; m+1
N ) are nonzero over [mN ,

m+1
N ]. When x is within the distance 1

3N of
m
N or m+1

N , then the summation is equal to one. Between m
N + 1

3N and m
N + 2

3N ,
the linearity implies the summation equals one. Hence, we conclude the above
equality.

Similarly, we have the following extended partition of unity on higher-dimensional
cubes ∑

m∈[N ]d0

hm(x) = 1,

where

hm(x) =

d∏
i=1

h
(
xi;

mi

N

)
.

The above partition of unity has several properties, namely:

(a) ∥hm∥L∞([0,1]d) = 1,

(b) supp hm ⊂
∏d

i=1

[
mi

N − 1
N ,

mi

N + 1
N

]
.

Using (11), we can construct a neural network that approximates hm well in
the sense of∥∥∥hm(x1, . . . , xd)− ψd

(
h
(
x1;

m1

N

)
, . . . , h

(
xd;

mi

N

))∥∥∥
L∞([0,1]d)

≤ ε, (13)

where the neural network has depthO(| ln ε|) and number of parametersO(| ln ε|).
Now we can decompose f and consider the approximation on each small patch

f(x) =
∑

m∈[N ]d0

hm(x)f(x)

=
∑

m:|xi−
mi
N |≤ 1

N

hm(x)f(x),

and for any fixed x ∈ [0, 1]d, there are at most 2d terms in the summation of
(N + 1)d terms that make hm nonzero, which is efficient.
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4.3 Neural networks and sawtooth functions

The following lemma indicates that depth could be more important than width.

Lemma 5 ([104]). Let f and g be tf -sawtooth and tg-sawtooth, respectively.
Then f + g and g ◦ f are (tf + tg)-sawtooth and tf tg-sawtooth respectively.

Proof. Let {(xf,i, xf,i+1) : i ∈ [tf ]} be non-overlap intervals such that on each
interval f is an affine function. Denote xj , j ∈ [tg − 1] be break points of g.
Without loss of generality, we assume that tg < tf . Then there are at most tg−1
intervals, let us say, (xf,ij , xf,ij+1), j ∈ [tg − 1] such that xj ∈ (xf,ij , xf,ij+1). It
indicates that f + g is affine linear on both (xf,ij , xj) and (xj , xf,ij+1). Hence,
there are at most tf + tg intervals, with the form of (xf,i, xf,i+1), (xf,ij , xj), or
(xj , xf,ij+1) such that f + g is affine on them. It completes the claim for f + g.

Then let us consider g ◦ f ((xf,i, xf,i+1)). We assume that f(x) = ax + b,
x ∈ (xf,i, xf,i+1) for some a > 0, b ∈ R. Then f ((xf,i, xf,i+1)) = (axf,i +
b, axf,i+1 + b). The fact that g is tg sawtooth implies that g ◦ f is at most tg-
sawtooth on (axf,i + b, axf,i+1 + b). Applying the above analysis for any i, we
conclude that g ◦ f is tf tg-sawtooth.

Lemma 6 ([104]). Every ReLU neural network with depth L and width W is
(2W )L-sawtooth.

Proof. This is a direct consequence of Lemma 5.

Equation (9) provides an example that there exists a ReLU neural network
with bounded width and L layers such that it is O(2L)-sawtooth. For a deeper
analysis of the number of affine regions that neural networks can generate when
partitioning the input space, please refer to [78, 50].

4.4 Lower bounds for approximating C2 functions

In the following, we consider the rate of approximating C2 functions that provide
a lower bound. In practice, it could be an advantage to increase depth instead
of width.

Theorem 6 ([110]). Let f ∈ C2([0, 1]d) be a non-affine function. Consider
a neural network ϕ with depth L and width W . If |f(x) − ϕ(x)| ≤ ε for any
x ∈ [0, 1]d, the network ϕ satisfies ε ≥ c(2W )−2L where the constant c > 0 is
independent of L and W .

Proof. Since f is non-affine, there exists a point x0 such that f ′′(x0) ≥ c0 > 0 for
some constant c0. Due to the regularity of f , there exists a direction d ∈ Rd such
that for any t ∈ [0, 1], we have x0 + td ∈ [0, 1]d and function f1(t) := f(x0 + td)
is strictly convex, satisfying

min
t∈[0,1]

|f ′′1 | ≥ 2c > 0,
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for some constant c. Now let us consider a neural network ϕ1(t) := ϕ(x0 + td).
Lemma 6 implies that there exists an interval [a, b] ⊂ [0, 1] such that ϕ1 is

affine linear on [a, b] and b − a ≥ (2W )−L. Let g = f1 − ϕ1. Then we have
∥g∥L∞([0,1]) ≤ ∥ϕ− f∥L∞([0,1]d) ≤ ε and mint∈[a,b] |g′′| ≥ 2c. Hence, g is strongly
convex, and it follows that

g(b) ≥ g

(
a+ b

2

)
+ g′

(
a+ b

2

)(
b− a+ b

2

)
+ c

(
b− a+ b

2

)2

,

g(a) ≥ g

(
a+ b

2

)
+ g′

(
a+ b

2

)(
a− a+ b

2

)
+ c

(
a− a+ b

2

)2

Combining the above inequalities, we obtain

ε ≥ max {g(a), g(b)} − g

(
a+ b

2

)
≥ c

(
b− a

2

)2

≥ c′(2W )−2L,

where c′ = c/4.

Notice that the total number of neurons is N = WL. Hence in the case of
L = 1, Theorem 6 implies that N = W ≥

√
c
4ε . When a network has bounded

width W = C for some constant C ∈ N+, then we can estimate the number of
layers and neurons by

L ≥ log(c/ε)

2 log 2C
= O(| log ε|), N = CL ≥ C log(c/ε)

2 log 2C
= O(| log ε|).

The lower bound on N is O(| log ε|) for deep neural networks and O(ε−1/2)
for shallow neural networks. It implies that increasing depth could be much
better for approximation. The lower bound also implies that the construction
for approximating x2 in Lemma 4 is optimal.

Other works have also attempted to explain the power of depth in neural
networks. Specifically, in the work [37], it was demonstrated that there exists
a function on Rd that is expressible by a depth-3 neural network with width
O(d19/4) but cannot be approximated arbitrarily well by any 2-layer network
with width O(ecd) for some c > 0. Additionally, the contributions [84, 110] con-
sidered general target function spaces on investigating the relationships between
the accuracy and layers.

5 Convergence rates of deep neural networks

In this section, we shall explore the approximation properties of deep ReLU
neural networks with various architectures for smooth functions developed in a
series of recent works [110, 116, 76, 28, 15, 42, 99]. Smoothness is crucial for ma-
chine learning tasks, as highlighted in [84]. To illustrate this, consider an image
classification task over a dataset of cats and dogs labeled by 0 or 1. Deep learn-
ing models are designed to estimate the probability distribution across possible
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labels. When presented with an image of a dog, neural networks should indi-
cate a probability of over 0.5 for the label 1. Furthermore, when the images are
perturbed by noise, our model should remain stable and provide similar predic-
tions, demonstrating that the model’s outputs should not fluctuate significantly
within any small region. Consequently, target functions with smoothness are of
paramount importance in the expressivity of neural networks.

First, we introduce the ability of ReLU neural networks to approximate
Sobolev functions nearly optimally. Subsequently, we extend to the Korobov
space to see how to alleviate the curse of dimensionality. Besides, we consider
the universality of convolutional neural networks and low bounds for sparsely
connected neural networks. Finally, we discuss the universality of self-attention,
which exhibits at least the same expressive power as deep fully connected neural
networks.

5.1 Near optimal error bounds for approximating Sobolev functions

In the following, we denote by Lp(Ω) the standard Lebesgue space equipped with
∥ · ∥Lp

:= ∥ · ∥Lp(Ω) norm [4]. We shall first introduce the Sobolev spaces, which
are important smooth function spaces and are widely studied in approximation
theory.

Definition 5 (Sobolev spaces). Let r ∈ N and p ∈ [1,∞]. The Sobolev space
W r

p ((0, 1)
d) is defined as a subspace of Lp((0, 1)

d)

W r
p ((0, 1)

d) := {f ∈ Lp((0, 1)
d) : Dnf ∈ Lp((0, 1)

d), ∥n∥1 ≤ r},

with the following norm for p ∈ [1,∞)

∥f∥W r
p
:=

 ∑
∥n∥1≤r

∥Dnf∥pLp((0,1)d)

1/p

,

and

∥f∥W r
∞

:= max
∥n∥1≤r

ess sup
x∈(0,1)d

|Dnf |,

where Dnf is the corresponding weak derivative.

Under the hypothesis of continuous weight selection assumption, any map-
ping that approximatesW r

∞ functions should have at least O(ε−d/r) free param-
eters [32]. The following result shows that ReLU neural networks can achieve the
optimal rate up to a logarithmic term.

Theorem 7 ([110]). Let d, r ∈ N+ and f ∈ W r
∞([0, 1]d) with ∥f∥W r

∞
≤ 1.

For any ε > 0, there exits a ReLU neural network ϕ with depth O(| ln ε|) and
O(ε−d/r| ln ε|) neurons such that ∥f − ϕ∥L∞([0,1]d) ≤ ε.
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Proof. Let Pm be the (r − 1)-degree Taylor polynomial of f at xm = m/N =
(m1/N, . . . ,md/N),

Pm(x) =
∑

∥n∥1<r

Dnf(xm)

n!
(x− xm)n,

where n! =
∏d

i=1 ni! and (x−xm)n =
∏d

i=1(xi−(xm)i)
ni . Then there exists

a localized approximation fN of f , defined as

fN (x) =
∑

m∈[N ]d0

hm(x)Pm(x)

=
∑

m∈[N ]d0

∑
∥n∥1<r

Dnf(xm)

n!
hm(x)(x− xm)n.

(14)

where hm forms the partition of unity of [0, 1]d, as discussed in Sect. 4.2. Apply-
ing the localization property of hm and Taylor expansion of f , we obtain that
the approximation error is bounded by

|f(x)− fN (x)| ≤
∑

m∈[N ]d0

hm(x) |f(x)− Pm(x)|

≤
∑
m∈Λ

|f(x)− Pm(x)|

≤ 2d max
m:|xi−

mi
N |< 1

N

|f(x)− Pm(x)|

≤ 2ddr

r!

1

Nr
,

where Λ = {m ∈ [N ]d0 : hm(x) ̸= 0}. Next, we only need to construct a neural
network ϕ that is built with similar terms in fN by approximating products. For
this, denote

ϕ(x) =
∑

m∈[N ]d0

∑
∥n∥1<r

am,nϕm(x),

where am,n is the coefficient in fN and ϕm(x) approximates the product between
and within (x−xm)n and hm(x). Within error tolerance δ, we can approximate
the (d+ r−1)-dimensional product hm(x)(x−xm)n with a neural network ϕm
with depth at most O(| ln δ|) and at most O(| ln δ|) neurons, as shown in (11)
and (13).

Combing (13) and Lemma 4, we obtain the error of using ϕ to approximate
fN as

|fN (x)− ϕ(x)| ≤
∑

m∈[N ]d0

∑
∥n∥1<r

|am,n| |hm(x)(x− xm)n − ϕm(x)|

≤ 2ddrδ.
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Let us now choose

N :=

⌈(
r! · ε
2d+1dr

)−1/r
⌉
, δ :=

ε

2d+1dr
. (15)

Then we can conclude that

|f(x)− ϕ(x)| ≤ |f(x)− fN (x)|+ |fN (x)− ϕ(x)| ≤ ε,

where ϕ has depth O(| ln ε|) and O((N + 1)ddr| ln ε|) = O(ε−d/r| ln ε|) neurons.
The proof is completed.

The core concept of proving Theorem 7 involves utilizing Taylor polynomial
approximation. Analogously, developing averaged Taylor polynomials, one can
generalize approximation results for functions belonging to the W r

p space with
the error measured by W s

p norm, where 1 ≤ p ≤ ∞ and s ∈ [0, 1]. Let us first

introduce the fractional-order spaces W s
p ((0, 1)

d).

Definition 6 (Sobolev-Slobodeckij spaces). Let s ∈ (0, 1) and p ∈ [1,∞].
The Sobolev-Slobodeckij space W s

p ((0, 1)
d) is defined as a subspace of Lp((0, 1)

d)

W s
p ((0, 1)

d) := {f ∈ Lp((0, 1)
d) : ∥f∥W s

p
<∞},

equipped with the norm

∥f∥W s
p
:=

(
∥f∥p

Lp((0,1)d)
+

∫
(0,1)d

∫
(0,1)d

(
|f(x)− f(y)|
∥x− y∥s+d/p

2

)p

dxdy

)1/p

,

for p ∈ [1,∞), and

∥f∥W s
∞

:= max

{
∥f∥L∞((0,1)d), ess sup

x,y∈(0,1)d

|f(x)− f(y)|
∥x− y∥s2

}
.

The Sobolev-Slobodeckij spaces defined in Definition 6 are Banach spaces.
The generalized result with W s

p norm developed in [42] aligns with Theorem 7
when s = 0 and p = ∞, as described below.

Theorem 8 ([42]). Let d, r ∈ N+ with r ≥ 2, p ∈ [1,∞], s ∈ [0, 1], let f ∈
W r

p ((0, 1)
d) with ∥f∥W r

p
≤ 1. For any 0 < ε < 1/2, there exists a ReLU neural

network ϕ with depth O(| ln εr/(r−s)|) and O(ε−d/(r−s)| ln εr/(r−s)|) neurons such
that ∥f − ϕ∥W s

p ((0,1)
d) ≤ ε.

As highlighted in [42], if we set s = 1 and p = ∞, both the target function f
and its weak derivative can be uniformly approximated by ϕ and the correspond-
ing weak gradient, thereby demonstrating the expressive power of deep neural
networks.
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The main idea for proving Theorem 8 is similar to that of Theorem 7. We
need to construct a local polynomial approximator fN which is similar to (14)
to decompose the error into two parts

∥f − ϕ∥W s
p
≤ ∥f − fN∥W s

p︸ ︷︷ ︸
(I)

+ ∥fN − ϕ∥W s
p︸ ︷︷ ︸

(II)

. (16)

The challenge here is how to derive the analysis forW s
p -error. The key technique

to solve this problem relies on the properties of interpolation spaces.
Given two Banach spaces B0, B1. We call (B0, B1) an interpolation couple

if B1 is continuously embedded in B0.

Definition 7 (Interpolation spaces). Let (B0, B1) be an interpolation couple.
Let s ∈ (0, 1) and p ∈ [1,∞]. The interpolation space Bs,p is defined as a subspace
of B0

Bs,p := (B0, B1)s,p := {f ∈ B0 : ∥f∥(B0,B1)s,p <∞},

equipped with the norm

∥f∥(B0,B1)s,p :=


(∫ ∞

0
t−spK(t, f, B0, B1)

p dt
t

)1/p
, p ∈ [1,∞),

sup
t∈(0,∞)

t−sK(t, f, B0, B1), p = ∞,

where K(t, f, B0, B1) is defined as

K(t, f, B0, B1) := inf
g∈B1

(∥f − g∥B0
+ t∥g∥B1

) , t > 0.

If we define the interpolation space

W̃ s
p ((0, 1)

d) :=
(
Lp((0, 1)

d),W 1
p ((0, 1)

d)
)
s,p
,

then
W s

p ((0, 1)
d) = W̃ s

p ((0, 1)
d),

with equivalence of the norms [42, Theorem B.14]. This indicates that the analy-
sis ofW s

p can benefit from the properties of interpolation spaces. Particularly, the
analysis of both terms (I) and (II) in (16) can be reduced to the case s ∈ {0, 1}.

To see this, we denote L(X,Y ) the space of all linear bounded operators from
X to Y equipped with the norm ∥T∥L(X,Y ) := {∥Tx∥Y : ∥x∥X = 1}. The results
[66, Theorem 1.6] and [66, Proposition 1.4] imply that we only need to consider
the case s ∈ {0, 1} for the term (I) in (16) if we can construct a linear operator
Tf := f − fN that satisfies conditions of the following result.

Theorem 9 ([66]). Let (Lp((0, 1)
d),W 1

p ((0, 1)
d)) be an interpolation couple. If

T ∈ L(W r
p , Lp) ∩ L(W r

p ,W
1
p ), then T ∈ L(W r

p ,W
s
p ) for any s ∈ (0, 1) and

p ∈ [1,∞] and

∥T∥L(W r
p ,W s

p )
≤ ∥T∥1−s

L(W r
p ,Lp)

∥T∥sL(W r
p ,W 1

p )
.
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For the term (II), instead, we can utilize the following result [66, Corollary
1.7] to relax the condition on s to be s ∈ {0, 1}.

Corollary 1 ([66]). Let (Lp((0, 1)
d),W 1

p ((0, 1)
d)) be an interpolation couple

and s ∈ (0, 1) and p ∈ [1,∞]. Then there is a constant c := c(s, p) such that for
any f ∈W 1

p ((0, 1)
d), we have

∥f∥W s
p
≤ c∥f∥1−s

Lp
∥f∥sW 1

p
.

The proof details of Theorem 8 can be found in [42], while additional properties
of interpolation spaces are discussed in [66]. For the main properties of localized
polynomials, please refer to [18, Chapter 4].

5.2 Alleviating the curse of dimensionality with Korobov functions

One significant challenge in considering Sobolev spaces is the curse of dimen-
sionality. As the number of neurons grows rapidly, proportional to ε−d/r, these
spaces often become impractical for image processing tasks, where images typi-
cally consist of around 100× 100 pixels, leading to approximately 30, 000 input
dimensions when considering color channels. This limitation emphasizes the im-
portance of research aimed at overcoming the curse of dimensionality. To address
this issue, two main remedies have been proposed.

One approach involves considering function spaces that are smaller than
Sobolev spaces but still reasonably large for practical applications. Examples
include Korobov functions [76, 62, 59], bandlimited functions [77], and other
function classes [53, 84]. Another strategy leverages the manifold assumption,
which helps reduce the intrinsic dimension of inputs. By doing so, the rate of
growth depends primarily on the manifold dimension rather than the high input
dimension [61, 24, 93, 92, 80, 20, 115].

In the following, we shall investigate why the Korobov space can help to
alleviate the curse of dimensionality.

Definition 8. Let 2 ≤ p ≤ ∞. The Korobov space X2
p([0, 1]

d) is defined as the

space of Lp functions which vanish on the boundry of [0, 1]d

X2
p([0, 1]

d) := {f ∈ Lp([0, 1]
d) : f |∂[0,1]d = 0, Dnf ∈ Lp([0, 1]

d), ∥n∥∞ ≤ r},

with the seminorm

|f |n,∞ := ∥Dnf∥L∞ , ∥n∥∞ ≤ r.

From the definition, we can see Korobov spaces require more conditions on
derivatives ∥n∥∞ ≤ r compared to ∥n∥1 ≤ r and hence are subspaces of Sobolev
spaces W r

p . The benefit of considering the Korobov space is that any Korobov
function can be approximated well by a very few number of piecewise linear
functions.
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Let us consider tensor product functions on each grid point xℓ,i = i ·∆ℓ :=
(i1∆ℓ1 , . . . , id∆ℓd), 0 ≤ ij ≤ 2ℓj , ∆ℓj = 2−ℓj , ℓ ∈ Nd,

hℓ,i(x) :=

d∏
j=1

h

(
xj − ij∆ℓj

∆ℓj

)
:=

d∏
j=1

hℓj ,ij (xj),

which can be generated by a mother hat function h(x) := h(x; [−1, 1], 1), defined
in (7) as

h(x) = h(x; [−1, 1], 1) =

{
1− |x|, x ∈ [−1, 1],

0, otherwise,

We further consider the function space spanned by these hℓ,i with index i
belongs to Λℓ := {i ∈ Nd, 1 ≤ ij ≤ 2ℓj − 1, ij odd}

Wℓ = span {hℓ,i : i ∈ Λℓ}

and

V (1)
n :=

⊕
∥ℓ∥1≤n+d−1

Wℓ.

The support of hℓ,i inWℓ is mutually disjoint since the support of hℓ,i is centered
at xℓ,i with radius controlled by∆ℓ and we only take odd i. The grid corresponds

to the space V
(1)
n is the so-called sparse grids [19]. The number of grid points of

V
(1)
n was shown to be O(2nnd−1) in Lemma 3.6 [19]. Define f

(1)
n ∈ V

(1)
n as

f (1)n :=
∑

∥ℓ∥1≤n+d−1

∑
i∈∆ℓ

vℓ,ihℓ,i,

with coefficients

vℓ,i :=

∫
[0,1]d

d∏
j=1

(
−2−ℓj−1hℓj ,ij (xj)

) ∂2df

∂x21 · · · ∂x2d
dx.

[19, Lemma 3.13] shows that given f ∈ X2
p([0, 1]

d), for any ε > 0, we can achieve

∥f − f
(1)
n ∥∞ ≤ ε with O(ε−1/2| ln ε|3(d−1)/2) sparse grids. However, by setting

(15), Theorem 7 utilizes full grids (N+1)d = O(ε−d/r) for localized polynomials
to approximate Sobolev functions, which grows much faster than using sparse
grids. The simple expression hℓ,i also helps improve the approximation rates.
These benefits lead to the following improvement for the curse of dimensionality.

Theorem 10 ([76]). Let f ∈ X2
p([0, 1]

d) with |f |2,∞ ≤ 1. Then there exists a

ReLU neural network ϕ with depth O(| ln ε|) and O(ε−1/2| ln ε|3(d−1)/2+1) neu-
rons such that ∥f − ϕ∥L∞([0,1]d) ≤ ε.
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Proof. Naturally and similarly as the proof of Theorem 7, let us define a ReLU
neural network ϕ as

ϕ(x) :=
∑

∥ℓ∥1≤n+d−1

∑
i∈∆ℓ

vℓ,ih̃ℓ,i(x),

where we construct h̃ℓ,i(x) such that it can ε-approximate hℓ,i, defined as

h̃ℓ,i(x) := ψd (hℓ1,i1(x1), . . . , hℓd,id(xd)) .

Here we use the network ψd defined in (11). The compact support of h̃ℓ,i is
originated from the property of ψd and hℓj ,ij , which leads to

|f (1)n (x)− ϕ(x)| ≤
∑

∥ℓ∥1≤n+d−1

∑
i∈∆ℓ

|vℓ,i||hℓ,i(x)− h̃ℓ,i(x)|

≤
∑

∥ℓ∥1≤n+d−1

|vℓ,iℓ ||hℓ,iℓ(x)− h̃ℓ,iℓ(x)|

≤ ε
∑

∥ℓ∥1≤n+d−1

|vℓ,iℓ |,

where in the second step, we use the fact that supports of elements in Wℓ are
mutually disjoint. [19, Lemma 3.3] gives an estimation |vℓ,i| ≤ 2−d−2∥ℓ∥1 |f |2,∞.
Then we can further relax the bound to∑

∥ℓ∥1≤n+d−1

|vℓ,iℓ | ≤
∑

∥ℓ∥1≤n+d−1

2−d−2∥ℓ∥1 ≤ 1.

Finally, we have

|f (1)n (x)− ϕ(x)| ≤ ε,

Together with the fact that |f(x)− f
(1)
n (x)| ≤ ε, we obtain

∥f − ϕ∥∞ ≤ ∥f − f (1)n ∥∞ + ∥f (1)n − ϕ∥∞.

The depth of ϕ is O(| ln ε|), given by the depth of ψd and it contains O(| ln ε| ×
ε−1/2| ln ε|3(d−1)/2) = O(ε−1/2| ln ε|3(d−1)/2+1) neurons.

5.3 Approximation error of convolutional neural networks

As illustrated in Fig. 3, convolutional layers can be regarded as specialized fully
connected neural networks characterized by Toeplitz-type weight matrices (1).
The primary advantage of convolutional neural networks for image processing
lies in their sparsity and efficiency, as they rely solely on the parameters of
convolutional kernels. Despite utilizing fewer parameters, CNNs are not mathe-
matically a proper subset of fully connected neural networks. In fact, as we will
demonstrate, with sufficient layers, CNNs can become equally powerful, capable
of producing dense affine transformations in fully connected networks.
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Theorem 11 ([116]). Let 2 ≤ s ≤ d, m ∈ N+, and Ω = [−1, 1]d. Given a set
of vectors ai ∈ Rd with ∥ai∥1 = 1 and ti ∈ R, i ∈ [m]0. There exists a ReLU

CNN ϕ with depth L < (m+1)d−1
s−1 + 1 and kernel size s + 1 such that for any

x ∈ Ω, some elements of its outputs are equal to σ(⟨ai,x⟩ + ti) and others are
zero.

Proof. Define a sequence w := [a⊤
m, . . . ,a

⊤
0 ] with components of ai reversed.

Theorem 3 [116] implies there exists a sequence of filter masks {w(ℓ)}Lℓ=1 with

support [s+1] and L < (m+1)d−1
s−1 +1 such thatw = w(L)∗· · ·∗w(0). The definition

of convolution and w implies that Tw ∈ R(d+(m+1)d−1)×d and its (i+1)d-th row
of Tw is exactly the transpose of ai. Denote M = maxℓ

∑∞
k=−∞ |w(ℓ)| and

T (ℓ) = Tw(ℓ)

. Then we have

∥T (ℓ) ∗ · · · ∗ T (1)x∥∞ ≤M ℓ, ∀x ∈ Ω, ℓ ≥ 1.

Let us choose b(1) = M1d1
and b(ℓ) = −M ℓ−1T (ℓ)1dℓ−1

+M ℓ1dℓ
, ℓ > 1. Then

the ℓ-th layer of CNN ϕ parameterized by T (ℓ), b(ℓ), ℓ = 1, . . . , ℓ is equal to

ϕ(ℓ)(x) = T (ℓ) ∗ · · · ∗ T (1)x+M ℓ1dℓ
,

Define the last bias vector b(L) according to the following rule{
−ML−1(T (L)1dL−1

)k + ti, k = (i+ 1)d,

−ML−1(T (L)1dL−1
)k −ML, k ̸= (i+ 1)d.

We finally get

ϕ
(L)
k (x) =

{
σ(⟨ai,x⟩+ ti), k = (i+ 1)d,

0, k ̸= (i+ 1)d,

which completes the proof.

Theorem 11 indicates that with enough convolutional layers, any inner prod-
uct can be realized. In the following, we apply the convergence rate of shallow
neural networks presented in [53] to demonstrate the universality of CNNs. To
make CNNs functions, we apply a linear combination to elements in the outputs
of CNNs in Definition 2.

Theorem 12 ([116]). Let d ∈ N+, 2 ≤ s ≤ d and Ω = [−1, 1]d. Given f = F |Ω
with F ∈ Hr(Rd) and r > 2 + d/2. For any small enough ε > 0, there exists a
ReLU CNN ϕ with depth

O(ε−2d/(d+2)| ln ε|2d/(d+2))

and
O(ε−2d/(d+2)| ln ε|2d/(d+2))

kernels with kernel size s+ 1 such that ∥f − ϕ∥C(Ω) ≤ ε.
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Proof. We apply the results of [53] that there exists a ridge approximation Fm

of the form

Fm(x) = t0 + ⟨a0,x⟩+
v

m

m∑
i=1

βiσ (⟨a0,x⟩ − tk) ,

with βk ∈ [−1, 1], ∥ai∥1 = 1, 0 ≤ tk ≤ 1, t0 = F (0), a0 = ∇F (0) and |v| ≤
2vF,2 = 2

∫
Rd ∥w∥21|F̂ (w)|dw such that

∥F − Fm∥C(Ω) ≤ cvF,2

√
d+ lnm m−1/2−1/d,

Together with Theorem 11, we can find a convolutional neural network that
realizes Fm, i.e.

∥f − ϕ∥C(Ω) ≤ cvF,2

√
d+ lnm m−1/2−1/d,

Let L̃ := ⌈ (m+1)d−1
s−1 ⌉+1 and w(L) = w(L+1) = · · · = w(L̃) be the delta sequence

which takes the value 1 at only one position and zero otherwise. Then we can

extend ϕ with kernelsw(ℓ), ℓ > L from L layers to L̃ layers. Since L < (m+1)d−1
s−1 +

1 ≤ L̃, we have m < L̃s/d and the upper bound can be controlled by

∥f − ϕ∥C(Ω) ≤ cs,d

√
ln L̃ L̃−1/2−1/d

Choose L̃ = ε−2d/(d+2)| ln ε|2d/(d+2). Finally we obtain ∥f − ϕ∥C(Ω) ≤ ε.

In Theorem 11, we focus on single-channel CNNs and establish a depth bound
O(d). We shall see that by using multi-channel CNNs, we can improve the bound
on the convolutional layers to O(ln d), explaining the power of multi-channel
convolutions.

Theorem 13 ([57]). Let L ∈ N+, d = 2L, and Ω ∈ [−1, 1]d. Given a set of
vectors ai ∈ Rd with ∥ai∥1 = 1 and ti ∈ R, i ∈ [m]0. Then there exists a ReLU
multi-channel CNN ϕ with depth L and kernel size 2 such that for any x ∈ Ω,
its i-th channel satisfies ϕ(x)i = σ(⟨ai,x⟩+ ti).

Proof. First, we define a sequence of vectors

{rℓ,k ∈ R2ℓ , k = 1, . . . , nℓ}

such that their linear combination can generate any length-2ℓ piece of ai, i.e.{(
(ai)j2ℓ+1, (ai)j2ℓ+2, . . . , (ai)(j+1)2ℓ

)⊤}
j∈[2L−ℓ−1]0,i∈[m]0

.

Then, we split rℓ+1,k into two length-2ℓ vectors r
(1)
ℓ+1,k, r

(2)
ℓ+1,k. There exists

w
(ℓ)
j,k = (w

(ℓ,1)
j,k , w

(ℓ,2)
j,k ) such that

r
(1)
ℓ+1,k =

nℓ∑
j=1

w
(ℓ,1)
j,k rℓ,j ,

r
(2)
ℓ+1,k =

nℓ∑
j=1

w
(ℓ,2)
j,k rℓ,j .
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Hence, we can reorganize the column vector rℓ+1,k

r⊤ℓ+1,k =

((
r
(1)
ℓ+1,k

)⊤
,
(
r
(2)
ℓ+1,k

)⊤)
=

nℓ∑
j=1

w
(ℓ)
j,k

([
r⊤ℓ,j 0

0 r⊤ℓ,j

])
.

(17)

Notice that convolution (1) becomes a diagonal matrix when both kernel size
and stride are equal to 2. Let

Diagk(x) :=



z⊤ 0 0 · · · 0
0 z⊤ 0 · · · 0
...

. . .
. . .

. . . 0
... · · · 0 z⊤ 0
0 0 · · · · · · z⊤

 ∈ Rk×2k,

for any z ∈ R2. Then we can write (17) in matrix product

Diag2L−ℓ−1(rℓ+1,k) =

nℓ∑
j=1

Diag2L−ℓ−1(w
(ℓ)
j,k)Diag2L−ℓ(rℓ,j),

In particular, when ℓ+1 = L, we have Diag2L−ℓ−1(rℓ+1,k)x = ⟨rℓ+1,k,x⟩. We now

can choose rL,k as ak and {w(ℓ)
j,k, r1,k} as convolutional kernels. Iteratively, we

show that there exists a sequence of multi-channel convolutional operators such
that in the i-th channel, the final output equals ⟨ai,x⟩. Similar to Theorem 11,
we conclude the result by choosing proper bias b(ℓ).

The number of neurons in each layer in Theorem 12 is linearly increasing,
which can be easily seen from (1). It was found that by utilizing the down-
sampling operation, neurons in each layer can be reduced [115]. Besides, for
approximating ridge functions, the upper bound of free parameters is O(ε−1/α)
where α only depends on the Lipschitz property of the target functions. This
bound is independent of the input dimension, which shows the nice approxima-
tion properties of CNNs. It has also been shown that for various target functions
that have compositional structures, the curse of dimensionality can also be cir-
cumvented [69, 68, 39, 57, 8]. Notably, when approximating radial basis functions,
CNNs were proved theoretically better than shallow neural networks [68]. Be-
yond Theorem 11 for single-channel CNNs, many results also considered the
multichannel CNNs [8, 57, 44, 61, 82]. In [61, 82], the analysis considered the re-
lationship between fully connected neural networks and multichannel CNNs with
residual connections and extended the results for approximating functions from
Barron space, Hölder space, and Besov space. In addition, [44] considered multi-
channel 2D convolutional neural networks, which are more popular in image
processing and cannot be directly deduced from, for example, Theorem 11. The
idea is also first to realize a kernel decomposition result as Theorem 3 in [116]
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for 2D cases and then explore the corresponding L2 approximation property. In
[57], the realization of the inner products can be extended to higher-dimensional
convolutions, like 3D convolutions, which are also widely used in 3D MRI volume
image segmentation [74].

To understand the superiority of CNNs in applications, convolutional layers
are connected with layered thresholding algorithms for approximating sparse out-
puts of deep sparse coding problems [83]. The special structure of convolutional
operators requires mild sparsity conditions. Other variants were considered in
[1, 89, 101, 102]. Recently, it was shown that the error bound for approximating
deep sparse features is O(ecL) for some c > 0, where L is the depth of the CNN
[58]. This demonstrates the efficiency and expressivity of CNNs.

5.4 Approximation error of sparsely connected neural networks

In the previous subsection, we considered CNNs and noted that convolution
operators have special sparse structures, as given by Equation (1), which make
them efficient in various applications. In this subsection, we will discuss the
results for general sparsely connected neural networks. The connectivity of a
neural network ϕ is defined as the total number of nonzero elements in weight
matrices {W (ℓ)}Lℓ=1. We denote this connectivity of ϕ as M(ϕ). Analyzing the
bounds on M(ϕ) can provide insights into the relationship between the memory
requirements of deep neural networks and their expressivity. The corresponding
approximation results for deep neural networks were developed based on the
min-max rate-distortion framework, as presented in [15]. The central concept in
this framework is the minimax code length, which quantifies the optimal minimal
coding length required to achieve a given error during data compression.

Definition 9. Let d ∈ N, Ω ∈ R, and C ⊂ C(Ω). For each ℓ ∈ N, we denote by

Eℓ := {E : C → {0, 1}ℓ}, Dℓ := {D : {0, 1}ℓ → L2(Ω)},

the set of binary encoders and the set of binary decoders of length ℓ, respectively.
Then, for ε > 0, the minimax code length L(ε, C) is defined as

L(ε, C) := min

{
ℓ ∈ N : ∃(E,D) ∈ Eℓ ×Dℓ : sup

f∈C
∥D(E(f))− f∥ ≤ ε

}
.

Moreover, the optimal exponent γ∗(C) is defined as

γ∗(C) := sup
{
γ ∈ R : L(ε, C) ∈ O(ε−1/γ), ε→ 0

}
.

The optimal exponent γ∗(C) describes the asymptotic behavior of the minimax
code length L(ε, C) as the required error tends to zero. When we have a larger
γ∗(C), the growth rate of L(ε, C) is smaller and the minimal necessary code
length could be much shorter and result in better memory requirements.

The following theorem describes the lower bound of the connectivity of a
neural network by the optimal exponent.
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Theorem 14 ([15]). Let d ∈ N, Ω ⊂ Rd, c > 0, and C ⊂ L2(Ω). If for any
pair (ε, f) ∈ (0, 12 ) × C there exists a neural network ϕε,f with weights being
representable by no more than ⌈c(ln ε)−1⌉ bits and ∥f − ϕε,f∥L2 ≤ ε, then we
have

sup
f∈C

M(ϕε,f ) /∈ O(ε−1/γ), ε→ 0, for all γ > γ∗(C).

As pointed out in [15], the optimal exponent γ∗(C) has been studied in [27,
33, 41] for Besov spaces and cartoon-like functions. Combining these results with
Theorem 14, lower bounds can be given for approximating these functions.

For the optimal approximation results, the idea is to consider utilizing the
classical approximation results of representation systems.

Definition 10 ([15]). Let d ∈ N, Ω ⊂ Rd, and D := {gi}i∈I ⊂ L2(R) be a rep-
resentation system. Then D is said to be representable by neural networks if there
exist L,M ∈ N such that for all ε > 0, there is a sequence of neural networks
{ϕi,ε}i∈I with exactly L layers and connectivity no more than M , satisfying

sup
i∈I

∥gi − ϕi,ε∥L2
≤ ε.

Based on the above definition, we can transfer the approximation results of
representation systems to the approximation results of deep neural networks.

Theorem 15 ([15]). Let d ∈ N, Ω ⊂ Rd, and D := {gi}i∈I ⊂ L2(R). We
assume that D is representable by neural networks. Let f ∈ L2(Ω) and for M ∈
N, let fM =

∑
i∈IM

cigi, IM ⊂ I, #IM =M satisfy

∥f − fM∥L2
≤ ε,

where ε ∈ (0, 1/2). Then there exists a neural network ϕ with L (depending only
on D) layers and connectivity O(M) such that

∥f − ϕ∥L2
≤ 2ε.

This theorem shows that for any f ∈ L2(Ω), the connectivity of neural networks
has at least the same order as the M -term approximation by D. This result can
also be generalized to neural networks with quantized weights [15]. Combining
these results, one of the key contributions in [15] can be concluded: if a func-
tion class is optimally represented by an affine system, then it is also optimally
represented by neural networks. Readers who are interested in this topic are
encouraged to refer to [15].

5.5 Expressivity of self-attention and Transformer

In the paper [28], the relationship between self-attention and convolutional layers
was discussed with the following revised attention score

Ã(i,j),(q,k) =
〈
X⊤

i,j,:Wqry , X
⊤
q,k,:Wkey

〉
+
〈
X⊤

i,j,:Wqry , R
⊤
q−i,k−jŴkey

〉
(18)

+
〈
u⊤ , X⊤

q,k,:Wkey

〉
+
〈
v⊤ , R⊤

q−i,k−jŴkey

〉
, (19)
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where u ∈ Rt and v ∈ Rt′ are unique for heads and Rq−i,k−j ∈ Rt′ is the
relatively positional encoding shared by all layers and heads. Matrices Wkey

and Ŵkey are separately applied to the input vectors and relative positional
encoding. The above attention score differs from (4), aiming at learning the
position difference between key vectors and query vectors [30].

Theorem 16 ([28]). Let d,K, cin, cout ∈ N and W ∈ [0, 1]K×K×cin×cout . For
any ε > 0, there exists a multi-head self-attention layer SAmul with Nh = K2

heads and a relative positional encoding such that for any X ∈ [0, 1]d×d×cin , we
have∥∥∥∥∥(SAmul(X)i,j,:)

⊤ −
K∑

m,n=1

X⊤
i+m−1,j+n−1,:Wm,n,:,:

∥∥∥∥∥
∞

≤ ε, ∀(i, j) ∈ [d]2

Proof. Let us set

Wqry = Wkey = 0, Ŵkey = I.

Then Ã(i,j),(q,k) = v⊤R(q−i,k−j). Define

µ = (q − i, k − j)⊤,η ∈ [K − 1]20,

v = −α(1,−2η1,−2η2), Rq−i,k−j = (∥µ∥22, µ1, µ2).

Substituting the above vectors in the attention score with relative positional
encoding, we get the following form

Ã(i,j),(q,k) = −α(∥µ∥22 − 2µ⊤η) = −α(∥µ− η∥22 − ∥η∥22).

Denote µ′ = (q′ − i, k′ − j)⊤. Then when µ = η, the corresponding attention
probability tends to 1 since

P̃(i,j),(q,k) =
exp

(
−α(∥µ− η∥22 − ∥η∥22)

)∑
q′,k′ exp (−α(∥µ′ − η∥22 − ∥η∥22))

=
1

1 +
∑

(q′,k′ )̸=(q,k) exp (−α(∥µ′ − η∥22))

→ 1, α→ +∞.

When µ ̸= η, we have P̃(i,j),(q,k) → 0, α → +∞. Notice that µ = η implies
q = i + η1 and k = j + η2. Therefore, the summation over q, k in (5) only has
one non-zero term and multi-head self attention becomes

(SAmul(X)i,j,:)
⊤ →

Nh∑
h=1

X⊤
i+η1,j+η2,:W

(h)
val Wh, α→ +∞
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Let g be a bijective mapping between head indices [Nh] and convolutional kernel
indices [K − 1]20 (here we assume that #[Nh] = #[K − 1]20). Now if we set W

such that Wη1+1,η2+1,:,: = W
(h)
val Wh = W

(g(η1,η2))
val Wg(η1,η2), then

(SAmul(X)i,j,:)
⊤ →

K−1∑
η1,η2=0

X⊤
i+η1,j+η2,:Wη1+1,η2+1,:,:

=

K∑
m,n=1

X⊤
i+m−1,j+n−1,:Wm,n,:,:, α→ +∞,

which is a multi-channel convolution.

Combining the above results with existing analysis for CNNs as discussed in
the previous section, we can obtain the universality of self-attention. Since the
Transformer is built by iteratively performing multi-head self-attention and fully
connected layers, similarly, we have that the Transformer is also a universal
approximator. The contribution [6] also considered the universal approximation
property of different variants of Transformers.

5.6 A look into the future of expressivity

In recent years, the field of deep learning approximation has been widely studied
for functions with different properties, such as smooth/piecewise smooth func-
tions [110, 84, 43, 112, 97, 103, 63, 108] and continuous functions [111, 94, 96, 95].
Yarotsky provided in [110] an in-depth discussion on upper and lower bounds
for the approximation of deep neural networks. Specifically, as introduced in the
previous subsection, a theoretical analysis was developed for Sobolev spacesW r

∞
and achieved nearly optimal approximation rate O(ε−d/r| ln ε|) in terms of the
number of neurons within approximation error ε. Subsequently, this was refined
to O(ε−d/r) with respect to the Lp norm, p ∈ [1,∞) in [84] and [43] with respect
to L∞. The contribution [42] provided a general upperbound O(ε−d/(r−s)| ln ε|)
with respect to the W s

p norm, s ∈ [0, 1]. Beyond considering an error analy-
sis in terms of the number of neurons, other contributions have focused on the
characterization in terms of depth L and width W . For instance, in [112], the
rate O(L−2r/d| lnL|2r/d) was achieved for L-layer neural networks with bounded
width (only depends on the input dimension) and the work [103] instead consid-
ered those networks with finite layers. Furthermore, these results were improved
in [96, 63, 97] and recent work [108] proved the rateO(W−2r/dL−2r/d) for Sobolev
and Besov spaces.

For approximating continuous functions, the modulus of continuity is often
used for error analysis, which is defined as

ωf (r) = max{|f |(x)− f(y)| : |x− y| ≤ r}.

Bounded-width neural networks were considered in [111] and they provided an
approximation rate O(ωf (O(L−2/d))) for continuous functions. For any L ∈
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N+ and W ∈ N+, the techniques in [94] helped achieving a better result: a
nearly optimal rate O(ωf (W

−2/dL−2/d)). Later this was further improved to
O(ωf (W

−2/dL−2/d| lnW |−1/d)) [96].
As we discussed in Sect. 4, the approximation theory of ReLU neural networks

relies on efficient interpolation, which inspired the work [17] to explore rational
functions as activation functions. They discovered that for an error ε > 0, the
number of neurons required in rational neural networks to approximate ReLU is
O(ln ln ε). Rational neural networks incorporate x2 term. However, as mentioned
in Sect. 4, the lower bound O(ln ε) is achieved for approximating x2 by ReLU
neural networks. These suggest that rational neural networks could offer better
performance. SignReLU, a ReLU-type activation function, has been proven to
be even stronger than rational activations, with an upper bound O(1) for ap-
proximating both rational functions and ReLU, implying that it could be a good
choice [59].

Quadratic neurons represent another approach to improving the approxima-
tion results. For example, quadratic neuron defined in [38] is given by

x → σ
(
(w⊤

1 x+ b1)(w
⊤
2 x+ b2) +w⊤

3 (x⊙ x) + b3
)
,

where ⊙ denotes Hadamard product. Given that x2 is straightforward to im-
plement, parametric efficiency is observed for approximating various functions
[38].

In [114], it was further found that with a class of elementary universal ac-
tivation functions, neural networks are dense in C([0, 1]d) with depth O(1) and
width O(d2). This implies that even with finite many neurons, neural networks
could serve as universal approximators. In particular, one interesting finding is
that this result can be applied to certain sigmoidal activation functions.

Nowadays, deep learning is actively employed in solving Partial Differential
Equations (PDEs). One such example is DeepOnet, which is based on the uni-
versal approximation theorem for operators [64, 21]. Let us consider a compact
set V of C(Ω) and a nonlinear continuous operator G : V → C(Ω). For any
ε > 0, there exist parameters cki , θ

k
i , bk ∈ R, wk,xj ∈ Rd such that∣∣∣∣∣∣G(u)(y)−

p∑
k=1

n∑
i=1

cki

 m∑
j=1

ξki,ju(xj) + θki

σ(w⊤
k y + bk)

∣∣∣∣∣∣ ≤ ε,

for all u ∈ V,y ∈ Ω. This approximation result underscores the potential of
powerful neural networks like DeepOnet as PDE solvers and demonstrates the
remarkable capabilities of neural networks.

Spiking neural networks (SNNs) represent a pioneering computational model
inspired by the behavior of biological neurons in the brain. SNNs are designed
to mimic the neural coding and information processing mechanisms observed
in biological systems. Unlike traditional artificial neural networks (ANNs) that
rely on continuous-valued activations, SNNs utilize discrete spikes or pulses to
transmit information. These spikes can be seen as the neuronal action potentials
emitted at specific time points.
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Definition 11. A spiking neural network ϕ is a simple finite directed graph
(V,E) and consists of a finite set V of spiking neurons and a set E ⊂ V × V of
synapses. Each synapse (u, v) ∈ E is associated with a tuple (wuv, duv, εuv) where
wuv > 0 is a synaptic weight, duv is a synaptic delay, and εuv : R+ → R is a
response function. Each non-input neuron v is associated with a firing threshold
θv > 0 and a membrane potential Pv : R → R

Pv(t) :=
∑

(u,v)∈E

∑
tfu∈Fu

wuvεuv(t− tfu),

where Fu :=
{
tfu : f ∈ [1, n], n ∈ N

}
denotes the set of firing times of a neuron

u, i.e., times t whenever Pu(t) reaches θu from below.

As shown in [99], SNNs can realize any continuous piecewise linear functions.
Furthermore, it was also shown that a two-layer SNN can realize ReLU on a
compact set and this is not true for a one-layer SNN. For a general deep ReLU
neural network, the following characterization describes the connection between
SNNs and ReLU neural networks.

Theorem 17 ([99]). Let d, L ∈ N, [a, b]d ∈ Rd and ϕReLU be an arbitrary ReLU
neural network with L layers, width d and N neurons in total. Then there exists
response functions εuv, (u, v) ∈ E such that there is an SNN ϕSNN with 3L− 2
layers and N + (2d + 3)L − (2d − 2) neurons satisfying ϕSNN(x) = ϕReLU(x),
∀x ∈ [a, b]d.

This result indicates that SNNs could be more powerful than deep ReLU
neural networks in terms of the flexibility of the choice of the response function.
It was also proved that SNNs can effectively realize continuous piecewise linear
functions with fewer neurons compared with that of ReLU neural networks [99].
This further demonstrates the expressivity of SNNs.
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