
From Documents to Data: AI for Digitizing Local Land Use Plans (*Bebauungspläne*)

Laia Domenech Burin¹, Felicitas Sommer², Sebastian Riznik³, Hope Ewudor²

Introduction – Scope

- Local land use plans provide valuable insights into environmental development and serve as key data sources for regional statistics.
- However, accessibility is limited due to their dispersion across various online platforms in non-standardized, unstructured PDF formats.
- Efforts to address this gap include the development of a regulatory information system for real estate, currently led by the Institute for Financial Services at HLSU Switzerland.
- We introduce an open-source data extraction pipeline designed to systematically extract and analyze data from German municipal land use plans (*Bebauungspläne*).

The main goal is to create a dataset with structured information from local land use plans, enabling the analysis of economic land

utilization, sustainability requirements, and ESG-driven location

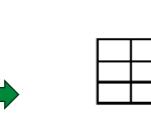
decisions.

PDF building plans were

downloaded in bulk,

processed, and parsed

into structured JSON.


Methodology

Building plan links were scraped from regional **Geoservices portals** like BayernAtlas.

Sustainability and urban planning experts **defined key** terms of interest.

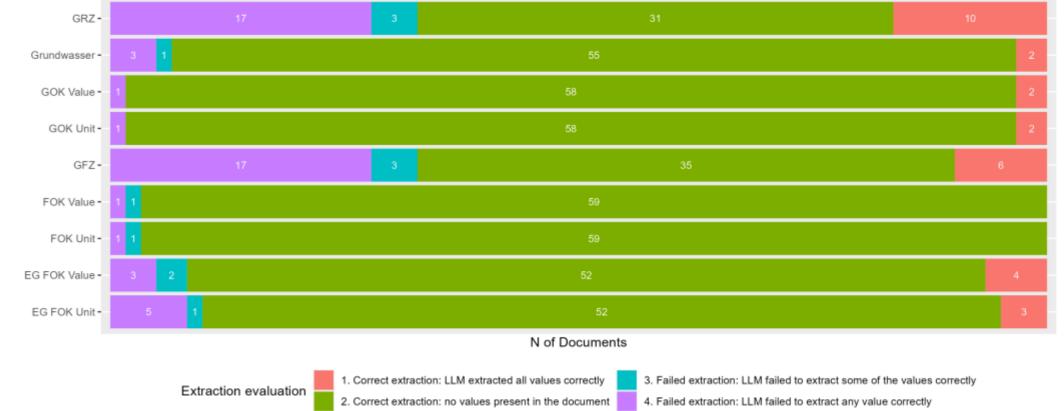
Relevant metrics were manually annotated by three expert annotators to serve as a benchmark for LLM performance.

Term	Examples					
GFZ (Geschossflächenzahl)	Art der baul. Mittaren GRZ 072 Sudfählenstell Bandelfährenden					
GRZ (Grundflächenzahl)	FUR GE und GE _A -GEBIETE 10 GFZ Het 1 Vollgeschod 1,0 GFZ 16 GFZ Dei 2 Vollgeschossen 1,6 GFZ FOR HI-GEBIETE 05 GFZ Het 1 Vollgeschod 0,5 GFZ GB GFZ Het 2 Vollgeschossen 0,8 GFZ					
GOK (Geländeoberkante)						
EG FOK (Erdgeschossfußbodenoberkante)	SD *36 22 Gaststätte EG FQK *355 538.50 Back Status FOK 535.50					
FOK (Fußbodenoberkante)						
HW100 (Jahrhundertwasser)	3.4 IVIISCNGEDIET IVII 2.2 (ZWISCHEN HARTWEG UND STICHST HQ 100 = ca. 140,45 m.üNN. + 50cm Freibord = 140,95 m.ü.NN Die Euchedenhähen (LOEL) und die Cehäudeäffnungen eind üb					
HW10 (10-Jährliches HW)	m m 0. NN Mittleres Niedrigwasser MNW 1.97 308,97 Mittelwasser MW 3.22 310,22 Höchster schiltbarer Wasserstand HNN 5.98 312,98 Mittleres Hochwasser MHW 6,47 313,47 Hochwasser 1999 und 2002 7,45 314,45					
GW (Grundwasser)	Hundertjährliches Hochwasser HW toe 8,40 315,40 ABSTANDSREGELUNG Nach Art. 6+7 BayBO. GRUNDMASSER Auf den hohen Grundwasserstand wird hingewiesen.					

over 18	L.J., Bacamat Die Abstechtliktung genätik Ar, 6 Aps. 5 Apr. 1	 De linesanighter seit de George source marketse	 -		Di Best	Horach, In Ditable 2	62H	M. Jone
2 5	der Baugenzein sielzeg.							

Figure 1. Example of a Bebauungsplan, which includes a map, Festsetzungen (stipulations), and Bauordnungsrechtliche Festsetzungen (building code regulations). Information and values may appear in any section, with some terms having multiple values.

Performance and Error Patterns


- The most common category across all terms was the correct absence of values in the document, indicating that the pipeline
 effectively minimizes hallucinated values (false positives).
- Most extraction errors arised from missing values.
- A smaller subset of errors occurred when multiple values were present in the building plan. In these cases, the model extracted only one value per metric, **leading to incomplete extractions.**
- Grundflächzahl and Geschossflächenzahl had the highest number of extractions and errors, reflecting their frequent occurrence in Bebauungsplan documents. However, for these terms most documents had at least a partial or complete extraction.

Learnings, discussion and future research

- Bebauungsplan documents show to be a challenge in information extraction even for the case of LLMs, likely due to their complex structure and the multiple ways information can appear
- The pipeline based solely on text extraction has shown limited success in fully capturing this information. However, it demonstrates promising results for utilizing LLMs to digitize unstructured documents, laying a foundation for further optimization.
- Future implementations to **enhance the pipeline** and the value of extraction:
 - Split document elements (map, text, legends) for separate processing.
 - Implement vision models
 - Enhance **prompt engineering** (e.g., few-shot learning).

Table 1. Key Terms and Their Representation in BebauungsplanDocuments. The terms were grouped into three categories: land sealing(GFZ and GRZ), height (GOK, EG FOK and FOK), and flooding prevention(HW100, HW10 and Grundwasser)

Fig. 2. Evaluation of extracted values across 61 documents, categorized into four levels: (1) fully correct extraction (pink), (2) correct absence of the term (green), (3) failed extraction (blue), and (4) partial extraction (purple). Each term could appear in multiple *Bebauungspläne*, with results referring to the total extractions per document.

¹Department of Statistics, LMU Munich, ² Technische Universität München ³ Bundeswehr University Munich

Large Language

Model (LLM) prompts

were applied to the

JSON text to extract

information and

construct the database.

LUDWIG-MAXIMILIANS-UNIVERSITÄT

MÜNCHEN

Laia.DomenechBurin@stat.uni-muenchen.de

ReferencesHochschule Luzern – Informatik. (n.d.). Green Buildings: Datenbanken für nachhaltige Standortentscheide.Retrieved October 8, 2023, from https://www.hslu.ch/de-ch/hochschule-luzern/forschung/projekte/detail/?pid=6490DSSGx Munich. (2023). Land sealing dataset and analysis for better understanding of climate change.Retrieved October 8, 2023, from https://www.dssgxmunich.org/dssgx-munich-2023/projects-fellows-2023