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Chapter 2

Observational Evidence for
Accelerated Expansion from
Supernovae

2.3 Parameter Estimation

2.3.3 Monte Carlo Markov Chain Sampling

1 We have seen in the previous section that it takes longer and longer to
calculate the posterior likelihood, the more parameters we have. In fact the
computational time scaling of the grid based method goes like the power of
N, where N is the number of parameters. A further problem we discussed
for the grid based method is that we would actually use a finer grid in the
peak of the distribution and a coarser one in the tails, where there is not
much likelihood.

We are interested in the posterior distribution, given by Bayes’ theorem

f p(0 D|9 ) do
In order to analyse the posterior distribution we require to calculate quanti-
ties, like moments, quantiles, highest posterior density etc., which in general
is the expectation of a function of the parameters:

[ £(0)p(8)p(D|6) b
E(r(e)p] - oL

!Bibliography: Markov Chain Monte Carlo in practice, Eds. Gilks, Richardson, Spiegel-
halter, CHAPMAN & HALL/CRC.



However this can be a tricky task, particularly for a larger number of param-
eters (N > 3). Further notice, that for most applications it is only necessary
to calculate

E[/(6)|D] / £(8)p(6)p(D)6) d6

The problem is hence to calculate an integral. This can be done efficiently
by a Monte Carlo integration. In order to simplify our notation we consider
the following problem:

B[f(X)) = / f(@)n(z) de (2.2)

where X comprise of N continuous real variables and 7 () is the distribution.
The Monte Carlo method works by drawing samples {X;,t =1, ..., Ny} from
7(-) and then approximating

1 &
Bf(X)] = 5 D f(X0).
S ¢=1

Note that if N, is chosen large enough this is an adequate approximation. In
general it is not possible to draw the X; independently and directly from 7(-),
since 7(-) can be any distribution. However, the X; need not be independent,
as long as they are generated in the correct proportions according to m(-).

This is given if one can create a Markov chain which has 7 (-) as stationary
(limiting) distribution. Suppose we generate a sequence of random variables,
{Xo, X1, X2, ...}, such that the next state is sampled from a distribution
p(Xi41]|X¢), i.e. the next state only depends on the current state of the
chain and not on the entire history. This sequence is called a Markov chain
with transition kernel (probability) p(-|-). If the probability is well behaved
(regular), the chain will gradually forget about the initial state Xy and
approach a stationary (or invariant) distribution after a sufficient sequence
size. In Figure 2.16 we see an example of a sequence which approaches a
stationary distribution. That means as ¢ increases the sample points X,
will look more and more like they are drawn from a stationary distribution
¢(+). After a sufficient long burn-in the points {X;;t =m +1,...,n} will be
dependent samples approximately from ¢(-). We can now estimate E[f(z)],
where X has the distribution ¢(-)

F= 3 s (23)
t=m+1
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Figure 2.16: Markov chain sequence approaching stationary distribution.

The next step is to construct a Markov chain where ¢(-) is 7(-). One
possibility is the Metropolis-Hastings algorithm. At each time step a candi-
date point Y is chosen from a proposal distribution ¢(:|Xy), for example a
multivariate Gaussian, with mean X; and fixed covariance. The candidate
point is then accepted with probability «(Xy,Y), where

(s )Y)
a,v) = min (1A )

If the candidate point is accepted the next state becomes X;1; =Y, if the
candidate point is rejected the chain does not move, i.e. X;y1 = X;. The
Metropolis-Hastings algorithm is then:

1. Initialize to a random Xj.

2. Sample point from Y from ¢(-|X).

3. Sample a Uniform (0, 1) variable U.

4. f U < a(X,Y) set Xiyp1 =Y, otherwise set Xy = X;.

5. increment t and start again at 2.



Interestingly the proposal distribution ¢(-|-) can have any form and the
stationary distribution of the chain will be 7(-). The Metropolis algo-
rithm itself (which we will exploit later) considers only symmetric proposals
q(Y|X) =¢q(X|Y). For examples ¢(-|X) a multivariate Gaussian with mean
X and covariance matrix 3. Hence we obtain

a(X,Y) = min (1, ;rg(D .

One has to be careful how to choose X. If ¥ is too small there will be a high
acceptance rate and slow mixing, while a wide distribution will result in low
acceptance and no movement of the chain, hence resulting in slow mixing
as well. We will later discuss how to improve this.

Let us try and apply this now to the fitting of the Supernovae data, with
all three parameters 6 = (M, Qm 0, 2a0)%, where 7(0) x exp[—0.5x2(0)].

SUBROUTINE CHAIN(FILENAME)

INTEGER :: I,NP,COUNT

REAL :: CHI2GET,CHIOLD

REAL, ALLOCATABLE :: PAROLD(:),RSHIFT(:)
REAL :: ACCEPT,ATEST

CHARACTER(80) :: FILENAME

ALLOCATE (PAROLD (NPAR) ,RSHIFT (NPAR))
! SET UP INITIAL SAMPLING POINT
PAROLD=PAR
CALL GAUSSRANDOM(RSHIFT)
PAR = PAROLD+DPAR*RSHIFT
CALL CHECK(PAR)
I Calculate intial chi2 value
CALL MATCHCHI2(PAR,CHI2GET)
PAROLD=PAR
CHIOLD=CHI2GET
NP =1
COUNT=1
OPEN (UNIT=11,FILE=FILENAME, STATUS=’UNKNOWN’ ,FORM=’"FORMATTED’)
DO I=1,NSAMPLE
I get multivariate Gaussian with width RSHIFT

20f course in a realistic situation one would choose the likelihood which is analytically
marginalized over M, but for illustrational purposes we choose the three parameter fits.



CALL GAUSSRANDOM(RSHIFT)
I Shift parameter values
PAR = PAROLD+DPAR*RSHIFT
I Check if parameter values are within given bounds,
I otherwise shift to bound
CALL CHECK(PAR)
I calculate chi2 value
CALL MATCHCHI2(PAR,CHI2GET)
I calculate uniform random number
CALL RANDOM_NUMBER (ACCEPT)
I ratio of likelihoods
ATEST = EXP(-0.5*(CHI2GET-CHIOLD))
I Metropolis - Hastings criteria
IF (MIN(1.0,ATEST)>=ACCEPT) THEN
write(11,*) COUNT,NP,CHIOLD,PAROLD
PAROLD=PAR
CHIOLD=CHI2GET
NP=1
COUNT=COUNT+1
ELSE
! do not move and increase counter
NP=NP+1
END IF
END DO
CLOSE(11)
DEALLOCATE (PAROLD,RSHIFT)

END SUBROUTINE CHAIN

Example code for fitting Supernovae data with an MCMC chain. We
choose as the initial values for the chain: M = 16, 0,0 = 0.1 and Q¢ =
0.1, the covariance of the proposal distribution are chosen AM = 0.05, and
AQ) = 0.02 for the densities. The bounds are chosen to be 14 < M < 17,
0<Qno<30and -2 < Qp o < 3. We stop the algorithm at an overall of
100.000 samples (accepted and unaccepted). Figure 2.16 shows the begining
of the chain in the Q,, ¢ variable. In Figure 2.17 we show the number of
samples of the Markov chain sequence, within bins of the parameters.

In Figure 2.18 we show the two dimensional joint likelihoods.

The next question to address how we know for how long to run the chain?
This is the question if the sequence has converged and is truly stationary.
One of the simplest methods to address this question, is by running several
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Figure 2.17: Histogram of the MCMC sampled distributions.

chains in parallel, with over-dispersed starting values and compare estimates
f.

The fundamental problem of inference from a Markov chain simulation
is that there will always be areas of the target distribution that have not
been covered by the finite chain. First we have to set up multiple chains
(maybe run in parallel), with over-dispersed initial points. This is essential
for a successful diagnostic. Over-dispersion can be achieved after running
a single chain initially and get an idea about the distribution of this chain.
One can then use the variance of this chain to achieve over-dispersion.

Figure 2.19 shows the results for three over-dispersed chains for our
Supernovae fitting procedure with over-dispersed initial points. It is evident
from the Figure that all three chains begin to converge already at 1000
(accepted) steps. Let us assume we are interested in a quantity ¢ from the
chain. These can be the parameters or any function of the parameters. Let
us further assume that we run m parallel sequences of length n and label
the quantities (¢45), j=1,...,nand i =1,...,m.

We hence compute two quantities: The between sequence variance B
and the within-sequence variances W.

n

(QZi - @5)2 )

=1

B =
m—1

1.5
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Figure 2.18: Joint likelihoods of the various parameter combinations. The
color scheme correspond to the density of the sample over the parameter
space, while the solid line are the 68% and 95% marginalized joint likeli-
hoods. This figure has been produced from the chains with the getdist
program provided with the COSMOMC package by Lewis and Bridle (2003).
Note that this is for the entire sample compiled by Riess et al. 2004, not
just the so called Gold Sample.

where

7j=1 =1
Further we define .
1
W = E Z 822 5
i=1
where
1 — .2
2 _ oy
Si_n—ljz_;(w” wz) .

So W is just the average wvariance of all the chains, while B measures the
variance of the averages of the chains. Note that the between-sequence
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Figure 2.19: Start of three chains with over-dispersed initial conditions.

variance B contains a factor n because it is based on the variance of the
within-sequence means, 1;, each of which is an average of n values v;;.
One estimate of the variance of ¥ in the target distribution is

11
" wilB,
n

var () =

n

which is an overestimate. Further W is an underestimate of the target vari-

ance, because individual chains had not have time to cover the target dis-

tribution. For n — oo both estimates approach the target variance var(y).
Convergence can now be established by monitoring

Vi = % , (2.4)

which approaches 1 at convergence. Note that there are many other conver-
gence criteria some of which are discussed in Gilks et al. (1996). For our
example we ran 5 chains with over-dispersed initial conditions and obtained
R2(M) — 1 = 0.0446, R2(Qp0) — 1 = 0.0118, R2(Qp0) — 1 = 0.0529, while
Gelman (1996) recommends values below 0.1. Finally the marginalized pa-
rameters are: M = 15.93 £0.03, 2,0 = 0.473+0.10 and Qp ¢ = 1.02£0.17.



Again we want to emphasize that this is for the entire sample, not just the
Gold sample.

Finally we want briefly discuss, how to improve the efficiency of the
sampling. This is essentially achieved by choosing appropriate parameters
and sampling directions and step size. Gaussian distribution theory suggest
that the most efficient proposal density is shaped like the target distribution
scaled by a factor of about 2.4/ V/d, where d is the number of parameters.
The scale and shape of the target distribution can be estimated from early
simulation draws and then the proposal density can be adaptively altered.
In Figure 2.20 we show an example of a target distribution. In general we
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Figure 2.20: If we choose the proposal density as the target distribution, we
can increase the efficiency immensely

would calculate the covariance matrix for early samples, and calculate the
eigenvalues and eigenvectors. We hence would choose a proposal Gaussian
density according to the eigendirections and eigenvalues, which guarantees
that most samples lie within the estimated target distribution. This step
will then be updated at later stages of the sampling. However one has to be
careful if there are large non-linear (or non-Gaussian) parameter degenera-
cies. In this case it is sometimes useful to analyse the covariance matrix of
the logarithm of the parameters and work in this mapped parameter space.
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