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Chapter 3

Dark Energy Models

In order to explain the Type Ia Supernovae data discussed in the previous
section it is necessary that the expansion of the universe is accelerating.
Hence the deceleration parameter q0 has to be negative.

3.1 Generalized Equation of State

As it is obvious from the discussion in beginning of Section 2.1.2 the cosmo-
logical constant can be viewed as another fluid component in the universe,
like matter or radiation. If we write the 2nd Friedman equation 2.3 in terms
of ρΛ it takes the generic form

ä

a
= −

∑

i

4πG

3
(ρi + 3pi) ,

where the summation runs over all fluid components we obtain for consis-
tency reasons

pΛ = −ρΛ ,

which means the pressure in a cosmological constant fluid is negative. If we
use the conservation of energy for this fluid we obtain from Eqn. 2.4

ρ̇Λ = −3 (ρΛ + pΛ)
ȧ

a
= 0 ,

and hence as we see already from the definition of ρΛ in Eqn. 2.6 that
ρΛ = const.. As a matter of fact we could have started with this and than
showed with Eqn. 2.4 that the pressure has to be the negative of the energy
density.
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Now in general the behaviour of simple fluids (or gases) is governed by
their equation of state

p = wρ , (3.1)

with w the constant equation of state factor. Note that “ordinary” cold
dark matter has an equation of state factor w = 0, since it is pressureless.
Relativistic matter like radiation has a pressure p = ρ/3 and hence w = 1/3.
While as argued before a cosmological constant has an equation of state of
w = −1.

Let us now explore the question what type of fluid to get accelerated ex-
pansion of the universe if we drop the cosmological constant. From Eqn. 2.4
we obtain for a fluid with an equation of state factor w

ρde(a) = ρde,0a
−3(1+w) , (3.2)

with a0 = 1 where we introduced the label “de” for dark energy. The
phrase “dark energy” was coined to describe a component which does not
gravitationally clump and has no large interactions with ordinary and cold
dark matter. As before we can define the densities in units of the critical
density ρcrit and obtain the quantities Ωde and Ωde,0.

If we assume we have a flat (K = 0) universe which has only the dark
energy component it is straight forward to show

a(t) =

[

3(1 + w)

2
H0t

]
2

3(1+w)

where this solution is only valid for w 6= −11. From the 2nd Friedmann
equation 2.3 we obtain in this case

ä0

a0
= −Ωde,0H

2
0

2
(1 + 3w) ,

where Ωde,0 = 1 because we assumed K = 0. Therefore we obtain for the
deceleration parameter from Eqn. 2.22

q0 = − ä0

a0H2
0

=
1 + 3w

2

1Note however that fluids with w < −1 are very unphysical since they lead to negative

energy densities which are unstable.
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and from the condition q0 < 0 for acceleration we obtain w < −1/3. If we
include a matter component this condition generalises in a flat universe to
w < −1/(3Ωde,0) Exercise ! .

We can now as described in the previous chapter estimate the best fit
values on w, Ωm,0 and ΩΛ,0. However for this analysis it is usually assumed
the universe is flat and ΩΛ,0 = 1 − Ωm,0 is not a free parameter. In Fig. 3.1
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Figure 3.1: Joint likelihood contours in the Ωm,0−w plane. The plot is from
the Perlmutter et al. (1998) analysis for the Supernovae Cosmology Project.

we show the result of the parameter estimation procedure as performed by
the SCP collaboration (1998). Again we recognize a non-vanishing Ωde,0 =
1 − Ωm,0 component and a w < −1/3 on the 99% level, which is a clear
indication that the expansion of the universe is accelerating.
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3.2 Scalar Fields and Fine Tuning

In the last Section we have shown that an equation of state for the dark
energy component with w < −1/3 is sufficient to explain accelerated expan-
sion. For a cosmological constant with w = −1 the energy density remains
constant over the entire evolution of the universe. One way to interpret the
cosmological constant is that it corresponds to an energy of the vacuum.
This is can be seen directly from the Einstein equation, since the presence
of Λ leads to a curvature of the universe without the presence of any other
energy component. The energy density in the cosmological constant with
current measurements is

ΩΛ = 0.7 → ρΛ ≈ 10−48 GeV ≈ 10−121 M4
pl ,

where the Planck units are the characteristic scale for the initial conditions
of the universe, when the system becomes governed by a still absent theory
of quantum gravity2. The Planck mass is defined, where the de Broglie
wavelength of a particle becomes equal to its Schwarzschild radius

2π~

mPlc
=

2GmPl

c2
.

Note that in the notes here it is more convenient to talk in terms of the
reduced Planck mass

MPl =

√

~c

8πG
≈ 2 × 1018 GeV , (3.3)

and hence the initial conditions for the cosmological constant need to be
fined tuned to a quite unnatural number, which is about 120 (!) orders of
magnitude lower than the natural expected value. This is one of the biggest
embarrassments of modern cosmology.

Now as mentioned above the cosmological constant can be viewed as
the vacuum energy present in the universe. If we believe in supersymmetric
fundamental theories there is no vacuum energy, which is one of it strength.
This is because each fundamental particle has a fermionic or bosonic partner
which cancels the vacuum energy exactly to zero. However we know that
supersymmetry must be broken at some stage in the universe, because we
do not observe it at low energies today. Models for supersymmetry breaking

2Although string theory looks as a very promising candidate.
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roughly predict a scale of 1 TeV which is still too large to explain the
observed values.

Still looking for a field which has a vacuum energy of the cosmological
constant might still bring valuable insights. The simplest field we can thin
about is a scalar field with the Lagrangian

L =
1

2
∂µφ∂µφ − V (φ) ,

which has the usual form of kinetic minus potential energy, with the action

A =

∫

d4x
√
−gL .

Note the
√−g factor is the Jacobian due to the integration over the 4-

dimensional space-time volume in the action. Now in order to look at the
cosmological consequences we need the energy-momentum tensor for a the
scalar field. It can be obtained by applying Noether’s theorem3. The con-
served quantity corresponding to infinitesimal changes in time and space
parameters is

Tµν =
∂L

∂(∂νφ)

∂φ

∂φµ
− Lgµν .

If we assume we have a homogeneous scalar field, which we have to have from
a cosmological point of view in order to fulfill the cosmological principle, we
can show that in Minkowski space (gµν = ηµν) we have for the energy density

T00 = ρφ =
1

2
φ̇2 + V (φ) (3.4)

and for the momentum density (pressure)

Tij = pφ =
1

2
φ̇2 − V (φ) . (3.5)

From this we see that the equation of state is given by

w =
1
2 φ̇2 − V (φ)
1
2 φ̇2 + V (φ)

.

If the kinetic part is much smaller than the potential energy (φ̇2/2 � V (φ))
the equation of state factor w → −1 if V 6= 0. This again stating that a

3Noether’s theorem is powerful tool which states that each symmetry of the Lagrangian

has a corresponding conserved quantity. Symmetry in time results in energy conservation

and the homogeneity in space in momentum conservation.
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cosmological constant corresponds to a constant vacuum energy. Hence in
order to obtain accelerated expansion we need a scalar field whose kinetic
energy is negligible compared to the potential4. In Fig. 3.2 we see two

Figure 3.2: Typical potential for scalar field dark energy models
(Quintessence). On the left a “slow roll” configuration and on the right
a “false vacuum” configuration.

typical potentials for dark energy configurations. On the left is a “slow
roll” configuration where the scalar field is still dynamically evolving, but
its kinetic energy is negligible compared to the potential. On the right
is a configuration where the scalar field is actually frozen in, in a “false
vacuum” state (false vacuum, because the “true “ vacuum represents the
lowest energy state). In general dark energy models with (canonical) scalar
field are called Quintessence to describe the fifth element character (besides,
gravitational, electro-magnetic, weak and strong interactions). Besides of
describing a dynamical approach there is hope that these fields can be linked
with fundamental theories, like string theory.

3.2.1 The Exponential Potential

One of the earliest studies of scalar fields and their influence on the evolution
on the late universe, was done in 1988 for an exponential potential (Ratra &
Peebles; Wetterich). In general we obtain from the conservation of energy

4This is the same requirement as for so called inflationary models, which describe a

phase of exponential expansion in the early universe. As a matter of fact the dark energy

scalar field dark energy models we are going to discuss represent some sort of late time

inflation.
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in Eqn. 2.4
φ̈ + 3Hφ̇ + V ′ = 0 , (3.6)

with the prime denoting the derivative with respect to the field and

H2 =
1

3M2
Pl

(

1

2
φ̇2 + V (φ) + ρn

)

, (3.7)

Let us start with the simple example where there is no other component.
We then would like to answer the question if there are any potentials which
would lead to an equation of state pφ = wρφ with w constant. By subtracting
and adding Eqns. 3.4 and 3.5 we obtain

V =
1 − w

2
ρφ

and
φ̇2 = (1 + w)ρφ .

If we then use again Eqn. 3.4 we get

φ̇2 = 2
(1 + w)

1 − w
V

and from the time derivative of this equation we obtain

φ̈ =
1 + w

1 − w
V ′ ,

where we have used V̇ = V ′φ̇. From Eqn. 3.7 with ρn = 0 we obtain then

H2 =
2V

3M2
Pl

1

1 − w
.

Combining this into the equation of motion, Eqn. 3.6 for the scalar field φ
we obtain finally

2V ′ +
V

MPl

√

12(1 + w) = 0 ,

which is a simple 1st order differential equation we can solve with the ansatz

V (φ) = V0e
−λφ/MPl . (3.8)

We then obtain
λ =

√

3(1 + w) ,
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and if we require −1 < w < 1 we get λ <
√

6. With this we can easily obtain
the solution for a generic exponential potential V = V0 exp[−λφ/MPl]

φ(t) = φ0 +
2MPl

λ
ln(tMPl) ,

w =
λ2

3
− 1 ,

ρφ ∝ a−λ2
,

a ∝ t2/λ2
. (3.9)

Note that the second last relation is a trivial consequence of ρφ ∝ a−3(1+w)

for constant w. These are attractor solutions, where small perturbations
around it decay like t−1 and t1−6/λ2

. To show this is an Exercise ! in the
stability of nonlinear differential equations which is beyond the scope of this
lecture. For λ >

√
6 there is not a single attractor and ρφ ∝ a−6, with

w → 1, which corresponds to kinetic domination of the energy density.
We will now consider the behaviour when a second component with

ρ̇n + nHρn = 0 ,

is present, with n = 3 (w = 0) for matter and n = 4 (w = 1/3) for radiation
with ρn ∝ a−n. There are now two different cases: Those potentials in which
the scalar energy density scales slower than a−n (λ <

√
n) and those where

the scalar energy density scales faster (λ >
√

n). Adding an extra component
increases the damping term in Eqn. 3.6 and it follows that the scaling in
ρφ ∝ 1/aλ2

−δ is always slower (than without an extra component ρn) with
λ2 ≥ δ ≥ 0. For λ <

√
n the dark energy component scales slower than

the other component and will eventually become dominant and reaches the
attractor solution in Eqns. 3.9. For λ >

√
n there is a different behaviour. If

the field would scale like in the ρn = 0 case it would be arbitrarily damped
(by the present ρn component and hence its kinetic energy will be so far
reduced that it reaches the w → −1 branch and begins to catch up again
and the final behaviour is that the field mimics the dominant component
with the attractor

Ωde ≡ ρφ

ρφ + ρn
=

n

λ2
,

ρφ ∝ 1

an
,

w =
n

3
− 1 . (3.10)
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Figure 3.3: Attractor behaviour for exponential dark energy (Ferreira &
Joyce 1998). In the left panel we plot the evolution of the energy density in
the scalar field (ρφ) and in a component of radiation-matter as a function
of scale factor for a situation in which the scalar field (with λ = 4) initially
dominates, then undergoes a transient and finally locks on to the scaling
solution. In the right panel we plot the evolution of the fractional density
in the scalar field.

In Fig. 3.3 we show the behaviour for λ = 4 how the attractor works.
Initially the scalar field is domination over radiation and matter and is ki-
netically dominant and scales like 1/a6, until the energy density in radiation
is undershot. Then it turns around scaling much slower than radiation or
matter until it has caught up and settles down to the fraction given in
Eqns. 3.10.

The big advantage of this attractor solutions is that they can start of
on an energy scale at early times which is of the order of the Planck scale
ρφ,i = O(M4

Pl) and still reaches the attractor. However the attractor given
here with Ωde = n/λ2 can not explain a universe where the dark energy
component dominates. But this is exactly what is required in a flat universe
with Ωde,0 = 0.7 and Ωm,0 = 0.3.
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3.3 Tracker Solution

We have seen in the previous Section that although while a exponential po-
tential provides an elegant way to avoid the fine tuning of initial conditions,
it unfortunately does not explain why the matter and dark energy density
today roughly coincide. One would want that the energy density in the dark
energy component somehow tracks below the the other components for most
of the evolution of the universe and then suddenly dominates and leads to
an accelerated expansion.

The difference of the tracker solutions to the previously discussed expo-
nential potential is that its energy density is changing steadily with φ and
evtl. manages to overtake the background fields. So we can write down the
following two conditions:

(a) As for the self-adjusting exponential potential a wide range of initial
conditions should be drawn towards a common cosmic history; but
(b) these tracking solutions should not “self-adjust to th background
equation of state, but, instead, maintain some finite difference in the
equation-of-state such that the dark energy ultimately dominates and
the universe enters a period of acceleration.

Two potentials which fulfill this are

V (φ) = M4+αφ−α

and
V (φ) = M4eMPl/φ ,

where M is a free parameter which needs to be adjusted in order to obtain
ΩΛ,0 = 0.7 today. The tracker solutions fulfils

V ′′ = (9/2)
(

1 − w2
)

[(α + 1)/α] H2 (3.11)

at all times. Sine ρφ should begin to dominate today we need φ to be
O(MPl) since V ′′ ≈ ρφ/φ2 and H2 ≈ ρφ/M2

Pl. In order to obtain ΩΛ,0 = 0.7
or ρφ,0 ≈ 10−47 GeV we obtain with V (φ) ≈ ρφ imposes the constraint

M ≈ (ρφ,0M
α
Pl)

1/(α+4). For low values of α the mass M has to be as small
as 1 meV. However M > 1 GeV - comparable to particle physics scales -
is possible for α ≥ 2. In Fig. 3.4 we show the evolution of the dark energy
density and the equation of state for the exponential tracker. If initially ρφ is
smaller than the tracker solution the field remains frozen until H2 decreases
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Figure 3.4: Left: Evolution of energy densities for exponential tracker.
Right: The evolution of the equation of state [Zlatev et al. 1998].

that the tracker equation 3.11 is fulfilled. Then the field rolls down the
potential maintaining Eqn. 3.11. If the energy density ρφ is larger than the
tracker solution, the field starts rolling down the potential immediately and
very fast, so that the kinetic energy dominates and shifts as a−6 (w = 1)
until φ falls below the tracker and is frozen until it follows it. The equation
of state initially is minutely smaller than radiation (w = 1/3) and then drops
at matter radiation equality below zero and approaches w → −1 when the
dark energy becomes to dominate.

To conclude our discussion about dark energy we mention that there is
now a plethora of valid dark energy models and we show in Fig. 3.5 the
low redshift evolution of the dark energy equation for a sample of models.
One of the biggest challenges in modern cosmology is to test which of these
models fits the data best and to find out more about the nature of dark
energy.
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Figure 3.5: Low redshift evolution of the equation of state for a sample of
dark energy models [Weller and Albrecht 2001].
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