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Zusammenfassung

Supraleitende Einzelphotonendetektoren gehören zu den fortschrittlichsten verfügbaren
Photodetektoren und bieten eine unvergleichliche Empfindlichkeit für Anwendungen, die
hohe Präzision erfordern. Hierzu zählen Kommunikation, Radioastronomie, Quantennet-
zwerke und Spektroskopie. Trotz ihrer zahlreichen Vorteile sind traditionelle supraleitende
Materialien durch ihren spektralen Bereich und ihre Empfindlichkeit gegenüber niederen-
ergetischen Photonen begrenzt.

In dieser Arbeit schlagen wir einen neuartigen Ansatz zur Weiterentwicklung der Einzelpho-
tonendetektion vor, indem wir das Potenzial von Moiré-Materialien erforschen. Moiré-
Materialien entstehen durch vertikales Stapeln zweidimensionaler Schichten mit einem
kleinen Drehwinkel, was zur Entstehung einzigartiger Quantenphasen führt. Insbesondere
konzentrieren wir uns auf magisch-winkelverdrehtes Doppelschichtgraphen (MATBG), das
aus zwei Grapheneschichten mit einem relativen, sogennanten ”magischen” Winkel von
1.1→, besteht. Mit einer Elektronendichte von etwa 1011 Ladungsträgern pro cm2, die um
fünf Größenordnungen niedriger ist als bei traditionellen Supraleitern, weist MATBG eine
extrem niedrige elektronische Wärmekapazität und eine hohe kinetische Induktivität auf.
Diese Eigenschaften positionieren MATBG als bahnbrechendes Material für Quantensen-
soranwendungen, insbesondere in der thermischen Sensorik und Einzelphotonendetektion.

Unsere Studie markiert den ersten großen Schritt zur Entwicklung eines Einzelphoto-
nendetektors auf Basis von supraleitendemMATBG.Wir demonstrieren erhebliche Fortschritte
bei der Herstellung hochwertiger MATBG-Geräre und eine Pionierstudie zur Messung des
bolometrischen E!ekts unter kontinuierlicher Laserheizung durchgeführt. Dies ermöglichte
uns die erste Messung der thermischen Leitfähigkeit im supraleitenden Zustand von MATBG.
Der größte Erfolg dieser Arbeit ist ein Durchführbarkeitsnachweis-Experiment, das die
Fähigkeit zur Detektion einzelner Photonen demonstriert. Durch die Beleuchtung des
Geräts bei Millikelvin-Temperaturen mit einer stark abgeschwächten Laserquelle und Spannungs-
Biasing eines MATBG-Geräts nahe seines supraleidenden Phasenübergangs supraleitenden
Phasenübergang konnten wir erfolgreich die Nahinfrarot-Einzelphotonendetektion demon-
strieren. Unsere Ergebnisse heben die außergewöhnliche Empfindlichkeit von MATBG
hervor und liefern wertvolle Einblicke in die Wechselwirkung zwischen MATBG und Pho-
tonen.

Diese Forschung ebnet den Weg für die Nutzung von Moiré-Supraleitern als bahn-
brechende Plattform zur Entwicklung revolutionärer Quantenbauelemente und Sensoren.



x Zusammenfassung

Die Ergebnisse dieser Studie ermutigen nachdrücklich zu weiteren Untersuchungen, um
die Einzelphotonendetektionsfähigkeiten auf noch niedrigere Energien mit MATBG und
anderen Graphen-basierten Supraleitern mit niedriger Trägerdichte auszudehnen.



Summary

Superconducting single-photon detectors are among the most advanced photodetectors
available, o!ering unparalleled sensitivity for applications requiring high precision, such
as communication, radio astronomy, quantum networks, and spectroscopy. Despite their
numerous advantages, traditional superconducting materials are limited by their spectral
range and sensitivity to low-energy photons.

In this thesis, we propose a novel approach to advance single-photon detection by ex-
ploring the potential of moiré materials. Moiré materials are formed by vertically stacking
two-dimensional layers with a slight twist angle, leading to the emergence of unique quan-
tum phases. Specifically, we focus on magic-angle twisted bilayer graphene (MATBG),
constituted by two graphene layers twisted at the so-called ’magic’ angle of 1.1→. With an
electron ensemble density of approximately 1011 carriers per cm2, which is five orders of
magnitude lower than that of traditional superconductors, MATBG exhibits ultralow elec-
tronic heat capacity and large kinetic inductance. These characteristics position MATBG
as a groundbreaking material for quantum sensing applications, particularly in thermal
sensing and single-photon detection.

Our study marks the first major steps towards developing a single-photon detector
based on superconducting MATBG. We have made substantial progress in fabricating
high-quality MATBG devices and conducted a pioneering study to measure the bolometric
e!ect under continuous laser heating. This allowed us to perform the first measurement of
the thermal conductance in the superconducting state of MATBG. The major achievement
of this thesis is a proof-of-principle experiment demonstrating the capability of detecting
single photons. By illuminating the device at millikelvin temperatures with a highly atten-
uated laser source and voltage biasing an MATBG device near its superconducting phase
transition, we successfully demonstrated near-infrared single-photon detection. Our find-
ings highlight the exceptional sensitivity of MATBG and provide valuable insights into the
interaction between MATBG and photons.

This research paves the way for utilizing moiré superconductors as a groundbreaking
platform for developing revolutionary quantum devices and sensors. The results of this
study strongly encourage further exploration to extend single-photon detection capabili-
ties to even lower energies using MATBG and other low-carrier density graphene-based
superconductors.
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Introduction

A single photon represents an elementary excitation of the electromagnetic field. This con-
cept was first introduced by Max Planck in 1900 as part of his groundbreaking quantum
theory of light[1]. Planck’s revolutionary idea suggested that light could be quantized into
discrete packets of energy, which were then called ’photons’ by Gilbert Lewis in 1926[2].
This intuition, which di!ers from the classical wave theory of light, profoundly revolution-
ized our understanding of electromagnetic radiation. Following on Planck’s work, Albert
Einstein applied the concept of quantized light to explain the photoelectric e!ect in 1905[3].
He proposed that light consists of individual photons, each carrying a specific amount of
energy proportional to its frequency. This explanation provided a clear understanding of
how light can eject electrons from a material, a phenomenon that classical physics could
not explain. These fundamental works by Planck and Einstein paved the way for the de-
velopment of modern quantum optics and photonics.

Today, more than one century after the initial theorization of photons, highly sensitive
devices known as single-photon detectors (SPDs) have been developed to generate a pulse
signal upon the absorption of individual photons[4]. These detectors are indispensable
in a myriad of applications, which vary depending on the photon wavelengths they are
designed to detect. In the near-infrared range, SPDs are crucial for quantum optics[5–
7]. Another significant application of SPDs is in radio astronomy. The far-infrared spec-
tral region, including the Therahertz (THz), constitutes approximately 98% of all photons
in the Universe. Detecting faint fluxes of photons emitted by distant stars and celestial
objects requires ultra-sensitive detectors of radiation[8, 9]. These instruments are used
by astronomers to expand our knowledge about the Universe[10]. Moreover, SPDs have
been proposed for use in dark matter searches. Recent theoretical models suggest that dark
matter axions could be converted into THz photons, which SPDs could then detect [11, 12].

Single-photon detection is typically achieved using superconducting materials. In a
superconductor, electrons are bound in Cooper pairs and are protected from external exci-
tations by the superconducting gap[13]. When a photon with energy higher than the gap
impinges on a superconducting device, the deposited energy breaks Cooper pairs and gen-
erates quasiparticles, introducing a change in impedance. Harnessing this mechanism,
superconductor-based detectors, such as transition-edge sensors[14, 15], superconduct-
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Figure 1: Novel moiré materials for quantum sensing. Moiré superlattices open new
avenues for quantum sensing and single-photon detection. By stacking two or more two-
dimensional layered materials with a specific twist angle, one can engineer the band structures
to achieve novel quantum phases. In the case of MATBG, rotating two graphene layers to
the magic angle of 1.1→ results in the formation of ultra-flat bands. This leads to a supercon-
ducting phase with a carrier density about five orders of magnitude lower than conventional
superconductors. These unique properties result in ultra-low heat capacity and high kinetic
inductance, making MATBG revolutionary for quantum sensing applications.

ing nanowires[16–19], hot electron bolometers[20], kinetic inductance detectors[21], and
Josephson junctions[22–25], o!er unrivaled performance in terms of sensitivity, e”ciency,
spectral resolution and signal-to-noise ratio[4].

However, while SPDs in the visible and near-infrared range are commercially available
and achieve excellent performance, extending these capabilities to the mid-infrared and
terahertz regions remains a significant challenge due to the extremely low energy of these
photons[26]. Extending SPD capabilities to the far-infrared range is an intense area of
investigation, focusing on new detector concepts and novel materials. For instance, on the
device side, di!erent detector concepts to detect THz photons have been demonstrated
using superconducting qubits at microwave frequencies[27, 28], quantum dots[29, 30] and
quantum capacitance detectors[31].
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In this thesis, we address the challenge of advancing superconducting SPDs from a ma-
terial science perspective and propose exploring novel material platforms beyond conven-
tional superconductors. As schematically illustrated in Figure 1, we focus on the recently
discovered moiré materials. A moiré pattern refers to a new, long-wavelength structural
modulation that arises from the interference between two or more periodic templates. In
condensed-matter physics, moiré patterns can be generated by vertically stacking two or
more two-dimensional layered materials with a relative twist angle, allowing the engineering
of the band structure[32, 33]. Over the past few years, moiré material superlattices have
exhibited numerous intriguing quantum phases and states that were previously unattain-
able, making them highly promising for applications in photonics and optoelectronics[32].

For instance, when two graphene layers are twisted relative to each other, the resulting
long-wavelength moiré periodic potential can fold the electronic band structure into a mini-
Brillouin zone. This folding leads to the formation of flat bands at the magic angle of 1.1→,
which in turn give rise to a novel superconducting phase characterized by an exceptionally
low carrier density of only 1011 electrons per cm2. This material, known as magic-angle
twisted bilayer graphene (MATBG), exhibits an electron density approximately five or-
ders of magnitude lower than that of conventional superconductors (Fig. 1, [P1]), thereby
holding great promise for low-energy SPD. In MATBG, even a minute number of quasi-
particles generated by a single low-energy photon can induce a substantial perturbation of
the superconducting state, thereby opening a promising avenue for extending SPD across
a broader spectral range[P1, 34]. In this doctoral work, we have explored for the first
time the potential of moiré materials for photodetection and demonstrated SPD using the
superconducting state of MATBG.

Outline of the thesis

This doctoral thesis is structured in 7 Chapters. Chapter 1 and 2 are purely introductory,
while Chapter 3 and 4 focus on the fabrication and experimental techniques used in this
thesis work and the last three Chapters 5, 6, 7 concentrate on the results obtained.

In Chapter 1, we provide the theoretical background on superconducting single-photon
detectors. We first introduce the concept of photons and explain the counting statistics for
a coherent source (Section 1.1). We then cover superconductivity (Section 1.2) and expand
on the non-equilibrium superconductivity resulting from the photon-superconductor inter-
action (Section 1.2.2). In the last section, we explain how this non-equilibrium state can
be exploited to detect single-photons and review the key superconducting photon detector
types, focusing on the material properties that determine their sensitivities (Section 1.3).

In Chapter 2, we introduce MATBG, starting from the analytical calculation of the band
structure of single-layer graphene (Section 2.1) and describing the emergence of flat bands
when two graphene layers are rotated at the magic angle (Section 2.2). Then, we outline the
transport characterization measurements typically performed on MATBG samples (Section
2.3) focusing on the ultra-low carrier density superconducting state (Section 2.4).

In Chapter 3, we detail the fabrication protocol developed over the years, starting from
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the preparation of the two-dimensional flakes (Section 3.1) to the assembling of the van
der Waals heterostructure (Section 3.2). In Section 3.3, we also quantify the twist-angle
homogeneity achieved with our fabrication protocol and propose strategies to mitigate
twist-angle disorder.

In Chapter 4, we extensively describe the optoelectronic setup employed in our exper-
iments. We discuss how to experimentally ensure low electronic temperature to perform
transport measurements of two-dimensional materials (Section 4.1) and the electronic setup
used for low-frequency transport as well as the one used for single-photon detection (Sec-
tion 4.2). Section 4.3 details the optical setup employed to shine radiation at the sample
stage and calculate the photon density incident on the MATBG device.

In Chapter 5, we explore the first experiment in which we measured the bolometric
response of the superconducting state. We start by presenting our picture of interaction
between near-infrared photons and MATBG (Section 5.1) and examine the measurement
of thermal conductivity in the superconducting state (Section 5.2), which is a powerful
probe of the symmetry of the superconducting gap (Section 5.3).

In Chapter 6 we describe the proof-of-principle experiment performed to demonstrate
near-infrared SPD by superconducting MATBG and detail the measurements (Section 6.1,
6.2, 6.3) and analysis conducted (Section 6.4).

In Chapter 7, we outline the first steps towards using the superconducting state of
MATBG to detect THz photons, covering both the implementation of a THz millikelvin
setup (Section 7.1) and the design of THz antennas for e”cient light coupling (Section
7.2).



1
Superconducting single-photon

detectors

1.1 Photon counting statistics

In the introduction, we provided a brief historical overview of the quantum theory of light,
as introduced by M. Planck and A. Einstein. Their pioneering work predicted that light
is composed of discrete packets of energy known as photons. In this section, we derive the
statistical properties of a photon stream from first principles. Specifically, we demonstrate
through two distinct methods that the photon counting statistics for a coherent light source
obeys the Poisson distribution. The first method is based on the derivation by M. Fox[35].
This heuristic approach, that postulates the existence of photons and combines classical
electromagnetic equations with combinatorial analysis, provides an intuitive understanding
on the photon counting statistics. The second method is based on the derivation by L. I.
Schi![36] and the seminal paper by R. J. Glauber[37]. This more conventional approach,
involves the quantization of the electromagnetic field and the use of coherent states. This
formalism rigorously derives the Poissonian photon counting statistics from the principles
of quantum mechanics. Both demonstrations indicate that, although the average photon
flux has a well-defined constant value, the number of photons detected over short time
intervals fluctuates due to the discrete nature of photons. These fluctuations, described by
Poisson statistics, result in shot noise in photodetectors.

This result is particularly significant for single-photon detection (SPD). By conducting
a statistical analysis of detection events triggered by a highly attenuated coherent source
at extremely low power levels, ensuring that only single photons are likely to be absorbed
by the detector, it is possible to demonstrate the detector’s sensitivity to single-photons[5,
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35, 38, 39]. This method does not rely on single-photon emitters, whose experimental re-
alization presents significant challenges. The chapter concludes by discussing the practical
implications of Poisson statistics, demonstrating how the photon counting statistics for a
dim, coherent source can be used to verify single-photon sensitivity.

1.1.1 Poissonian statistics for a coherent source

Semi-classical derivation

Classically, a perfectly coherent and monochromatic light beam, for example emitted by a
laser source, can be described as:

E(x, t) = E0 sin(kx→ ωt+ ε) (1.1.1)

Where E(x, t) is the electric field associated with the light wave with wave vector k = ω/c.
If the source is coherent, the phase ε is stable in space and time [35], and therefore the
intensity I ↑ |E(t)|2 is constant. In this approximation, there will be no fluctuation of
the laser intensity. If we postulate that packets of energy ⊋ω intrinsically constitute the
light beam, this implies that the average photon flux (number of photons passing through
a cross-section of the beam in unit time) is also constant and can be expressed as:

# =
IA

⊋ω =
P

⊋ω photons per second (1.1.2)

Where A is the beam’s cross-sectional area and P is the power. Therefore, the average
number of photons in a time window T is constant and given by n̄ = #T . In this scenario,
it is possible to demonstrate that the Poisson distribution describes the photon statistics
for a coherent light source with constant intensity.

L

F

L/N

Figure 1.1.1: Ideal light beam segment for a coherent source. Section of a beam light
with photon flux !, which has n̄ = !L/c photons on average. In the limit of N ↓ ↔, the
probability of finding n photons within such segment is given by P(n) = n̄

n

n!
e
↑n̄.

To do that, we consider a beam segment of length L, with constant average photon
number n̄ = #L/c and divide it into N sub-segments of length L/N (see Fig. 1.1.1). We
assume L to be su”ciently large to have an integer n̄ in the segment. Simultaneously, we
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assume N to be large enough that the probability of finding a photon within a particular
segment (p = n̄/N) is much smaller than the probability of finding zero photons. The
probability of finding n photons within such segment P(n) is then given by the probability
of finding n sub-segments containing one photon and (N → n) containing no photons in
any possible combination. Using the binomial distribution:

P(n) =
N !

n!(N → n)!
pn(1→ p)N↑n (1.1.3)

Which can be rewritten by substituting p = n̄/N :

P(n) =
N !

n!(N → n)!

( n̄

N

)n (
1→

n̄

N

)N↑n

(1.1.4)

Given this expression for the probability, we can take the limit of infinitesimally small
sub-segments, i.e. N ↓ ↔. In this limit:

lim
N↓↔

P(n) =
n̄n

n!

N !

Nn(N → n)!︸ ︷︷ ︸
= 1

(
1→

n̄

N

)N↑n

︸ ︷︷ ︸
exp(↑n̄)

(1.1.5)

Specifically, by using the Stirling’s formula limN↓↔[lnN !] = N lnN →N we obtain:

lim
N↓↔

[
ln

(
N !

Nn(N → n)!

)]
= 0 (1.1.6)

From which:

lim
N↓↔

[
N !

Nn(N → n)!

]
= 1 (1.1.7)

Moreover:

lim
N↓↔

(
1→

n̄

N

)N↑n

= lim
N↓↔

[
1→ (N → n)

n̄

N
+

1

2!
(N → n)(N → n→ 1)

( n̄

N

)2

+ ...

]
=

= lim
N↓↔



1→
(
1→

n

N

)

︸ ︷︷ ︸
=1

n̄+
1

2!

(
1→

n

N

)(
1→

n

N
→

1

N

)

︸ ︷︷ ︸
=1

n̄2 + ...



 = exp(→n̄)

Finally Eq. 1.1.3 can be rewritten as:

P(n) =
n̄n

n!
e↑n̄, n = 0, 1, 2, ... (1.1.8)

From this derivation, we have demonstrated that for a coherent light source, the probability
of finding n photons in a segment of length L follows the Poisson distribution (Fig. 1.1.1).
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This implies that while the average photon number in the beam segment is fixed by fixing
the laser power n̄ = PL/⊋ωc, the actual photon number n fluctuates above and below
the mean value due to the randomness originated from chopping the continuous beam into
discrete energy packets (photons)[35]. Statistical fluctuations in photon number around
their mean value arise not only in photon counting processes but also in any experiments
where the discrete nature of the observable plays a role (electric charge or the particle-like
behavior of light, etc.). This ”noise” is typically referred to as shot noise.

The mean of the Poisson distribution is given by:

Mean(n) ↗ µ =
↔

n=0

nP(n) = n̄ (1.1.9)

And the variance:

Var(n) ↗ ϑ2 =
↔

n=0

(n→ n̄)2P(n) = n̄ (1.1.10)

Notably, the Poisson distribution is characterized by having an equal mean and variance.

Quantum-mechanical derivation

In the above section, we derived the photon counting statistics starting from the classical
expression for a coherent monochromatic source (Eq. 1.1.1) and assuming that the light
is constituted by energy quanta, the photons. In the following, we demonstrate that the
same result can be obtained by quantization of the electromagnetic field in vacuum using
the formalism provided by quantum mechanics[36, 37]. The main steps of this derivation
are finding the Lagrangian expression for the electromagnetic field starting from Maxwell’s
equations and defining the canonical momenta, which leads to the Hamiltonian. Using this
formalism, it is possible to apply the commutation rules by replacing the classical Poisson
brackets with commutator brackets. For this purpose, we start by writing the Maxwell
equations in empty space:

↘ ·E = 0 (1.1.11)

↘ ·H = 0 (1.1.12)

↘≃E +
1

c

ϖH

ϖt
= 0 (1.1.13)

↘≃H →
1

c

ϖE

ϖt
= 0 (1.1.14)

To construct the Lagrangian density L, we make use of the definition of the vector A and
scalar potential ε[40]:

H = ↘≃A (1.1.15)

E = →
1

c

ϖA

ϖt
→↘ε (1.1.16)
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These potentials are not specified completely and can be transformed by changing gauge
choice without altering the resulting electric and magnetic field strengths. The Lagrangian
density can be constructed using the Euler-Lagrange equations, where we define the four-
component vectors ω = (A,ε) and x = (r, t):

ϖL

ϖϱi

→



j

ϖ

ϖxj

[
ϖL

ϖ(ϖϱi/ϖxj)

]
= 0 (1.1.17)

From which the Lagrangian density reads:

L =
1

8ς

(
1

c

ϖA

ϖt
+↘ε

)2

→
1

8ς
(↘≃A)2 (1.1.18)

As it can be demonstrated that using the Lagrangian density in Eq. 1.1.18 and the def-
inition of A and ε provided in Eq. 1.1.17, Maxwell’s equations can be obtained[36], this
formalism is equivalent to Maxwell’s equations. To construct the Hamiltonian, we need to
identify the momentum canonically conjugated to A which is:

P =
ϖL

ϖ(ϖω/ϖt)
=

1

4ςc

(
1

c

ϖA

ϖt
+↘ε

)
(1.1.19)

Having defined P , the Hamiltonian density H can be constructed as[36]:

H = P ·
ϖω

ϖt
→ L = 2ςc2|P |

2 +
1

8ς
|↘≃A|

2
→ cP ·↘ε (1.1.20)

To obtain the Hamiltonian from Eq. 1.1.20, we compute the volume integral:

H =


d3r

[
2ςc2P 2 +

1

8ς
(↘≃A)2

]
(1.1.21)

Where we have eliminated the term cP ·↘ε which contributes nothing to the field Hamilto-
nian. Indeed, by partial integration we get a term c


d3ε↘ ·P which, using the definition

of A in Eq. 1.1.16 and Eq. 1.1.11, leads to zero.
Having derived a classical expression for the Hamiltonian in terms of the canonical

variables A and P , we can convert the classical electromagnetic field into a quantum field
by using the commutation rules. As a first step, we find a proper basis to expand the
canonical variables, which will then be turned into operators. As in many applications and
experiments involving electromagnetic fields, the plane wave approximation is often used,
we expand A and P in the basis of plane waves polarized perpendicular to the propagation
vectors so that ↘ ·A = ↘ · P = 0:

ukω =
1

⇐

L3
εkωe

ik·r (1.1.22)

Where φ = 1, 2. εkω are two polarization vectors perpendicular to the propagation vector
k, such that k · εkω = 0 and to each other ↘ · ukω = 0. Here, L is the lateral size of a
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cubical box which delimits the boundary conditions. Using the plane wave according to
Eq. 1.1.22, A and P can be rewritten in terms of ukω as:

A(r, t) =
↗

kω


q̂kω(t)ukω(r) + q̂†kω(t)u

↘
kω(r)


(1.1.23)

P (r, t) =
↗

kω


p̂kω(t)ukω(r) + p̂†kω(t)u

↘
kω(r)


(1.1.24)

Where q̂†kω and p̂†kω are the hermitian adjoints of the expansion operators q̂kω and p̂kω. Here
the prime in the summation indicates that the summation extends over half of the k space
to avoid double-counting of u↘

kω and u↑kω. The commutation relations between the q̂’s
and the p̂’s are: 

q̂kω(t), p̂
†
k→ω→(t)


=


q̂†kω(t), p̂k→ω→(t)


= i⊋↼kk→↼ωω→ (1.1.25)

While all the other pairs commute. Substituting the relations 1.1.23, 1.1.24 into Eq. 1.1.21
and using the commutation relations, the Hamiltonian can be rewritten as:

Ĥ =
↗

kω

(
4ςc2p̂kωp̂

†
kω +

k2

4ς
q̂kωq̂

†
kω

)
(1.1.26)

This Hamiltonian can be further rewritten introducing new operators of the form:

âkω =
1

2

(
q̂kω +

4ςic

k
p̂kω

)
eikct (1.1.27)

â↗†kω =
1

2

(
q̂kω →

4ςic

k
p̂kω

)
e↑ikct (1.1.28)

Where we have omitted the similar relations for their respective hermitian adjoints. The
commutation relations for these operators are:


âkω, â

†
k→ω→


=


â↗kω, â

↗†
k→ω→


=

2ς⊋c
k

↼kk→↼ωω→ (1.1.29)

And all the other pairs commute. Substituting the operators âkω and â†kω in Eq. 1.1.26,
we get an Hamiltonian Ĥ fo the form:

Ĥ =
↗

kω

k2

2ς

(
âkωâ

†
kω + â↗†kωâ

↗
kω

)
(1.1.30)

The relations and commutation rules derived here are formally equivalent to the ones of
the quantum-mechanical harmonic oscillator, allowing an immediate analogy:

â =
1

⇐
2m⊋ω

(mωq̂ + ip̂) (1.1.31)

â† =
1

⇐
2m⊋ω

(mωq̂ → ip̂) (1.1.32)

[â, â†] = 1 (1.1.33)
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Where â and â† are the destruction and creation operators. Therefore, the quantum
mechanical properties of the electromagnetic field can be described completely by adopting
the commutation relations from independent quantum harmonic oscillators. Adopting the
definitions of number operators:

N̂kω =
k

2ς⊋câ
†
kωâkω (1.1.34)

N̂ ↗
kω =

k

2ς⊋câ
↗†
kωâ

↗
kω (1.1.35)

The Hamiltonian reads:
Ĥ =

↗

kω

⊋ck
(
N̂kω + N̂ ↗

kω + 1
)

(1.1.36)

Where we can identify â↗kω with â↑kω and N̂ ↗
kω with N̂↑kω an extend the summation over

the whole k space:

Ĥ =


kω

⊋ck
(
N̂kω +

1

2

)
(1.1.37)

This equation is formally equivalent to Planck’s hypothesis discussed in the introduction,
which states that discrete pockets of energy constitute light. We got a Hamiltonian H
for the electromagnetic field, which is formally equivalent to the sum of the energies of
harmonic oscillators. Each plane electromagnetic wave with wave vector k has a energy
which is an integer multiple of a fundamental quantum of energy ⊋ω = ⊋kc.

Having established the analogy with the quantum harmonic oscillator, we now aim
to derive the photon counting statistics for a coherent source as previously done using
the semi-classical method. To achieve this, we introduce coherent states, a convenient
set of states that naturally facilitate the discussion of photon statistics and are widely
used in quantum optics [37]. First introduced by Schrödinger in 1926, the significance of
coherent states in quantum optics was later recognized by R. Glauber in 1963, for which he
was awarded the Nobel Prize in Physics in 2005 [37]. These states represent the quantum-
mechanical counterpart of a classical monochromatic electromagnetic wave and are essential
for describing the output of lasers and other coherent light sources [37]. Specifically, the
light emitted by a single-mode laser source can be expressed as a superposition of n-photon
states, |n⇒ [39]:

|ϱ⇒ = e↑
|ω|2
2

↔

n=0

ϱn

⇐
n!
|n⇒ (1.1.38)

Where ϱ is a complex number. Here we have also simplified the notation by dropping
the mode index kφ as a subscript and to the amplitude parameters and operators. By
definition, the coherent state is an eigenstate of the destruction operator â:

â |ϱ⇒ = e↑
|ω|2
2

↔

n=0

ϱn

⇐
n!

⇐
n |n→ 1⇒︸ ︷︷ ︸

â|n≃=
⇐
n|n↑1≃

= ϱ e↑
|ω|2
2

↔

n=0

ϱn↑1


(n→ 1)!

|n→ 1⇒

︸ ︷︷ ︸
|ε≃

= ϱ |ϱ⇒ (1.1.39)
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Remembering the definition of number operator n̂ = â†â, we can calculate the average
occupation number in the coherent state as:

n̄ ↗ ⇑ϱ| n̂ |ϱ⇒ = ⇑ϱ| â†︸ ︷︷ ︸
⇒ε|â†=⇒ε|ε↑

â |ϱ⇒ = |ϱ|2 (1.1.40)

Where |ϱ|2 represents the average photon number in the coherent state. Therefore, in a
coherent state there is not a well-defined number of photons but instead an average number
of photons. As the light is constituted by a discrete number of photons with energy ⊋ω, n̄
is related to the laser power through the relation: n̄ = P/⊋ω ·T . The probability of finding
n photons in the state ϱ can be calculated as:

P(n) = |⇑n|ϱ⇒|2 = e↑|ε|2 (|ϱ|
2)m

m!
= e↑n̄

n̄n

n!
(1.1.41)

This corresponds to the Poisson distribution previously derived in Eq. 1.1.8, demonstrat-
ing that the quantum-mechanical derivation leads to the same result of the semi-classical
approach presented above[35, 39].

1.1.2 Single-photon detection with a dim coherent source

Having derived the photon-counting statistics for a coherent laser source, we now explore its
implication for SPD. Specifically, we discuss how single-photon sensitivity can be demon-
strated by analyzing the statistics of counts of a detector illuminated by a dim coherent
source. Similarly to the previous demonstration, we can visualize the SPD experiment with
a highly attenuated continuous-wave (CW) laser source as dividing the incoming laser beam
into numerous time windows (Fig. 1.1.2). As we continuously measure the device over time
for detection events, the number of detected events per bin follows the statistics of photon
shot noise or Poisson distribution. The events measured in a time window T have a mean
µ = n̄ and a standard deviation ϑ =

⇐
n̄. In Chapter 6, we measure the ’clicks’ recorded by

the MATBG detector under illumination with a highly attenuated CW laser source over
time. By dividing the traces into time intervals, we demonstrate that the experimentally
registered counts are in excellent agreement with the Poisson distribution. However, while
this observation is consistent with the quantized nature of light, the fact that the counting
statistics follow the Poisson distribution alone does not prove SPD, as multi-photon events
(2-photons, 3-photons) would lead to similar observations.

To demonstrate SPD, it is crucial to turn down the incident CW laser power to a
regime in which only isolated photons will likely arrive at the detector one at a time. As
shown in Fig. 1.1.2a, we can imagine dividing the incoming laser beam into many time
windows with a typical timescale given by the detector reset time or dead time, ↽reset. In
this configuration, if the average number of photons in ↽reset is n̄ << 1, the probabilities
of having zero, one, or multiple photons in a time bin will follow the relation:

P(n = 0|n̄) >> P(n = 1|n̄) >> P(n ⇓ 2|n̄) (1.1.42)
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For instance, considering a time window of 5 ms (which is the typical detector reset
time in our device; see Chapter 6), a laser power density of PL = 1 aW/µm2 corresponds
to n̄ = 0.04 photons incident per µm2. In Fig. 1.1.2c we plot the probability of detecting
n photons for di!erent values of n̄ according to the Poisson distribution. We notice that if
n̄ << 1, the highest probability is to have 0 or 1 photon per time bin, while the probability
of having multi-photon events is negligible. Specifically, for n̄ = 0.04, 96% of the time bins
contain 0 photons, 3.8% contain 1 photon and less than 0.08% contain 2 or more photons.
In this configuration, we can expand Eq. 1.1.8 for n̄ << 1 and rewrite it as:

P(n) ⇔
n̄n

n!
, n = 0, 1, 2, ... (1.1.43)

For single-photon states, n = 1 and P(n) ↑ n̄. Therefore, the proof of SPD is that
in this regime of powers, the detection probability scales linearly with the average photon
number, i.e., the incident laser power[5, 23, P1].
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Figure 1.1.2: Poisson distribution for a coherent source. (a) The CW experiment is
equivalent to divide the time T in small bins of duration comparable to the reset time of the
detector ”T ↑ ωreset. If the average number of photons in ”T is n̄ << 1, then all the bins
have either 0 or 1 photon with a negligible probability of multiple photons. (b) In a pulsed
experiment, the laser power is divided into pulses whose temporal separation is given by the
laser repetition rate fRR. Analogously to the CW experiment, if the average photon number
per pulse is << 1, the pulses will carry mostly 0 or 1 photon, and the probability of carrying 2
photons is negligible. (c) Poisson distribution calculated for an average of 0.04 photon (blue),
0.55 (red) and 2 photons (yellow) per time bin or pulse.

A complementary experiment to demonstrate single-photon sensitivity involves mea-
surements with pulsed light excitation (see Fig. 1.1.2b). Unlike the CW experiment, where
a continuous stream of photons constitutes the incident beam, the pulsed laser beam is
chopped into pulses of short time duration. These pulses are separated by intervals deter-
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mined by the inverse of the laser repetition rate, fRR, as schematically illustrated in Fig.
1.1.2b. Each pulse has a probability of containing a certain number of photons within its
duration. By employing a pulsed laser source, it is possible to tune the average power and
the laser repetition rate to a regime where the average number of photons per pulse, µ is
much less than 1:

µ =
PL

h⇀
·

1

fRR

<< 1 (1.1.44)

Given that the photon counting statistics for a coherent source follow Poisson statistics, this
configuration ensures that most pulses carry either zero or one photon, with the probability
of a pulse carrying two or more photons being negligible. Similar to the CW experiment,
also for the pulsed experiment we calculate the Poisson distributions for µ = 0.04, 0.55, 2
and plot them in Fig. 1.1.2c.
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1.2 Detecting radiation with superconductors

Due to their unique properties, superconducting materials are central to modern quantum
technologies[41–43]. Superconductivity, first observed in a mercury wire by H. K. Onnes
in 1911[44], is characterized by zero electrical resistance and perfect diamagnetism (the
Meissner e!ect) when the material is cooled below its critical temperature, Tc. One of the
most promising applications of superconducting materials is the ultra-sensitive detection of
light[4]. At cryogenic temperatures, superconductors exhibit extremely low thermal noise
and a gap that shields the state from external fluctuations, providing sensitivity down to
the quantum limit. The idea of using superconducting materials as photodetectors was
first proposed by D. H. Andrews in 1938 [45] and A. Goetz in 1939 [46]. The initial
experiment in this field was performed in 1941 when D. H. Andrews utilized a tantalum
wire to measure resistance changes caused by incoming infrared radiation [15, 47]. This
pioneering work was further advanced in 1949 with the detection of alpha particles [15, 48].
The development of superconducting detectors, which have since become crucial in many
scientific and technological applications, started with these seminal studies. In this section,
we introduce the fundamental concepts of superconductivity and superconductor-photon
interaction, which are necessary to understand the working principles of superconducting
photodetectors. The general idea is that electrons in a superconductor are bound in Cooper
pairs. When such a device absorbs a photon, it breaks some Cooper pairs, generating free
electrons (quasiparticles) above the superconducting gap, leading to a change in impedance.
This change in impedance, whether in electrical resistance, kinetic inductance, or other
forms, can be used to detect photons.

1.2.1 Superconductivity

When a superconductor is cooled below its critical temperature, Tc it undergoes a phase
transition where electrons condense into a coherent quantum state. According to the BCS
theory, which successfully describes a large class of superconductors, electrons can form
bound states (Cooper pairs) thanks to an e!ective attractive potential. In the simplest
case, the pairs have opposite momenta and spins[4, 13]. As the pairs have zero net spin,
they obey the Bose-Einstein statistics and can occupy the lowest energy state with the
same center of mass momentum, behaving coherently as a single condensate. As a result,
the Cooper pairs form a phase-locked state that can be described by a single macroscopic
wave function ϱ(r, t), the order parameter[49]:

ϱ(r, t) = ϱ0(r, t)e
iϑ(r,t) (1.2.1)

As superconductivity is a coherent phenomenon, the wave function describes the whole
ensemble of electrons. In this formalism, the total number of superconducting electrons
Ns and the local density of superconducting electrons ns(r, t) are given by[49]:
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
ϱ↘(r, t)ϱ(r, t)dV = Ns (1.2.2)

|ϱ(r, t)|2 = ϱ↘(r, t)ϱ(r, t) = ns(r, t) (1.2.3)

The formation of a condensate results in a state with zero electrical resistance, allowing
electric current to flow unimpeded. The origin of a zero resistance state and, consequently,
of a persistent current in a superconductor can be intuitively understood by comparing
the scattering processes in a superconductor and a normal metal[49, 50]. Considering the
kxky-plane, all the allowed k-states are represented as discrete points (Fig. 1.2.1). Ideally,
at T = 0, all states within the Fermi sphere are fully occupied, and in the absence of
any current, the Fermi sphere is centered in the origin. A finite current applied to the
sample, e.g., in the x-direction, results in a shift of the Fermi surface by ↼kx along the
kx-direction. In a normal metal, when the Fermi sphere is shifted, it leaves available lower-
energy states to which the charge carriers can relax. Due to these scattering processes, the
Fermi sphere can rapidly return to its centered position, causing the current to decay (Fig.
1.2.1). On the contrary, in a superconductor, all Cooper pairs are condensed in the lowest
energy state with the same center of mass momentum. Consequently, the movement of an
electron in a direction results in the movement of another electron in the opposite way,
i.e., the scattering processes occur only around the sphere (as depicted in Fig. 1.2.1b).
Importantly, this process does not shift the center of the Fermi sphere, resulting in a
persistent supercurrent. Other scattering processes become possible only by disrupting the
Cooper pairs[49].

Superconducting properties for photodetection

The formation of a condensate leads to a range of unique properties that can be exploited
in photodetection[4]. The properties listed here can be utilized for the di!erent detector
types described in section 1.3.1.

1. Sharp resistance vs. temperature transition curve. The superconducting state
vanishes abruptly above the superconducting transition temperature Tc, resulting in
a sharp resistance versus temperature transition curve between the superconducting
and normal states (Fig. 1.2.2a). The steepness of this transition is particularly useful
for bolometric detectors, which operate on the principle that the temperature increase
of electrons ($T ) upon light absorption leads to an increase in electrical resistance
($R).

2. Sharp voltage vs. current (I-V ) curve. The zero resistance state in super-
conductors can be disrupted if the flowing DC current exceeds a critical value, Ic.
Therefore, the typical I-V curve in superconductors is characterized by a flat region
(R = 0, V = 0) when the DC current applied is lower than the critical current
(Idc < Ic). However, once Idc > Ic, the system transitions from the superconducting
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Figure 1.2.1: Schematic picture for the decay of a current in the normal and
superconducting state of a metal. (a) In the normal state, the charge carriers can relax
to the lower energy states, and the Fermi sphere can rapidly return to its centered position,
causing the decay of the current. (b) In the superconducting state, the electrons are bounded
in Cooper pairs, which have the same center of mass momentum. Since the scattering processes
are allowed only around the sphere, this Fermi sphere does not shift back to its origin, resulting
in a persistent current. Figure inspired by ref. [50] and [49].

to the normal state, and the I-V characteristic acquires a slope defined by the normal
state resistance (Fig. 1.2.2b). The critical current is strongly temperature depen-
dent; therefore, when a superconductor is biased close to Ic, it becomes extremely
sensitive, and even a small external perturbation can lead to high voltage output.
This property is exploited in superconducting nanowire single-photon detectors.

3. Kinetic inductance. Superconductors also exhibit nonzero impedance for AC cur-
rents. An electric field applied to a superconductor causes the Cooper pairs to ac-
celerate, allowing energy storage in the form of kinetic energy[4]. This inertia of
the Cooper pairs leads to a phase lag between current and voltage, described by the
kinetic inductance Lk = m↘/nse2, where ns is the density of Cooper pairs and m↘ is
the e!ective mass. The variation in superfluid density induced by external radiation
can also be exploited by kinetic inductance detectors[21].

Superconducting gap

While in conventional (or BCS) superconductors, the attractive potential is provided by the
lattice deformation induced by the electrons, i.e., the attraction is mediated by phonons[51],
in unconventional superconductors, the mechanism of this pairing is still under debate[13].
However, regardless of the pairing mechanism, an attractive potential gives rise to a bound
state, which results in an energy gap ($) in the density of states around the Fermi level
EF (Fig. 1.2.3). Microscopically, the gap can be interpreted as a binding energy, i.e., the
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Figure 1.2.2: Superconducting properties for photodetection. (a) Sketch of the
resistance vs. temperature transition curve for a superconductor. Given the steepness of the
superconducting transition, the temperature increase of the electrons induced by the incident
photons (”T ) leads to an abrupt rise in the electrical resistance (”R). (b) Sketch of the voltage
vs. current characteristic for a superconductor. The critical current strongly depends on the
temperature; therefore, when a superconductor is biased close to Ic, the incident radiation can
reduce the critical current, leading to a high voltage output. (c) and (d) are the R vs. T and
I-V curves measured for a MATBG superconducting sample.

energy required to excite each electron in the Cooper pair. The typical binding energy of
Cooper pairs is of the order of ↑ meV, which is hundreds to thousands of times smaller
than semiconductors (↑ eV)[4]. As we will discuss in section 1.2.2, the superconducting
gap is the most important energy scale for superconducting photodetectors. In the most
straightforward picture, the photodetection process occurs when the energy of the incident
photon is large enough to overcome the binding energy hω > 2$ and, therefore, therefore to
break Cooper pairs, resulting in a measurable change in the superconducting properties[4].
As it is impossible to detect photons with energy smaller than the binding energy, the
magnitude of $ sets the ultimate theoretical limit for superconducting photodetectors.

Thermal quasiparticles

At intermediate temperatures 0 < T < Tc, due to thermal fluctuations, it is possible to
excite some unpaired electrons (quasiparticles) above the superconducting gap. The energy
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Figure 1.2.3: Superconducting gap. Schematics representation of the superconducting
gap. When the superconductor is cooled below Tc the electrons form bound states (Cooper
pairs) with a binding energy 2”. The binding energy results in a gap in the density of
states close to the Fermi level, EF . Some quasiparticles are thermally excited above the
superconducting gap at intermediate temperatures 0 < T < Tc. The probability of having
these excitations depends on the symmetry of ” and, therefore, of the order parameter. Figure
inspired by ref. [4]

of this elementary fermionic excitation of momentum ⊋k is given by[4, 13]:

Ek =


⇁2k + |$k|
2 (1.2.4)

Where ⇁k = ε → EF is the distance in energy from the Fermi level, and $k is the energy
gap. Consistently, at the Fermi level ⇁k = 0 and Ek = |$k| > 0, indicating that a positive
energy $k is required to generate the quasiparticle excitation. In thermal equilibrium, the
probability of a fermionic quasiparticle excitation is given by the Fermi-Dirac distribution:

f(Ek) =
1

eϖEk + 1
(1.2.5)

Where β = 1/kBT . Notably, the excitation probability of a fermion quasiparticle depends
on both temperature and $k. Specifically, the symmetry in the k-space of the supercon-
ducting gap (and consequently of the order parameter) rules the temperature dependence
probability of exciting the quasiparticles. As for a BCS superconductor, the gap is isotropic
(|$k| = $), Ek ⇓ $ for all k, and the probability of thermally excited quasiparticles drops
exponentially to zero at T = 0: f(Ek) ↑ 1/e↔ ↑ 0. On the contrary, for a non-BCS
superconductor, the gap is not isotropic (e.g. $k = kx/k$ for a p-wave symmetry). The
presence of nodal points in the order parameter implies that Ek can be zero along some
specific k directions. As a result, the excitation probability of a fermion quasiparticle, in
this case, does not exhibit an exponential decay but rather a power law dependence[51,
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52]. As we will discuss in Chapter 5, the quasiparticles thermally excited above the gap are
responsible for heat di!usion in the superconducting state. As a result, the temperature
dependence behavior of the thermal conductance in the superconducting state is a sensitive
probe of the symmetry of the order parameter[52–56].

1.2.2 Superconductor-photon interaction

In this section, we describe a simple picture of superconductor-photon interaction. Under-
standing the behavior of the superconducting state upon photon absorption is crucial to
identify the most important material requirements for SPDs. When a photon with energy
(h⇀ > 2$) is absorbed by the superconductor, it breaks Cooper pairs, creating a certain
number of quasiparticles Nqp:

Nqp = ▷
h⇀

$
(1.2.6)

where ▷ ⇔ 0.57 is the down-conversion e”ciency, nearly independent of the material[57].
Eq. 1.2.6 indicates that photons with lower energy will generate fewer quasiparticles, mak-
ing their detection more challenging. The generation of quasiparticles induces a perturba-
tion in the superconductor, driving it into a non-equilibrium state. All superconducting
detectors operate on the principle of quasiparticle generation but vary in their methods of
utilizing the non-equilibrium state resulting from photon absorption[4]. Thermal dynamics
in a superconducting film can be described in terms of three coexisting subsystems: Cooper
pairs, electrons (and quasiparticles generated by Cooper pair breaking), and phonons (in
the superconductor and the substrate). Without external perturbations, these subsystems
are in thermal equilibrium, characterized by equilibrium distribution functions at the same
temperature. The external perturbation induced by the incident photon with h⇀ > 2$,
drives the electronic sub-system out-of-equilibrium. The excess energy is then redistributed
among the other degrees of freedom to restore thermal equilibrium. This energy down-
conversion process (for photons of energy E0 = h⇀ ↑ 1 eV, which is close to the one used
in our experiments) occurs in four distinct stages [4, 58–61]:

1. Hot electrons. The absorption of radiation with an energy E0 = h⇀ by the super-
conductor produces energetic photoelectrons (↑ E0), generating a certain number
of secondary photoelectrons. Through electron-electron interactions with timescales
↽e↑e ↖ 10↑15 s, the photoexcited electrons thermalize to a hot Fermi-Dirac distribu-
tion. These hot electrons have a temperature higher than equilibrium Te > T0 and
therefore will release the excess of energy to the other sub-systems. In this first stage,
given the ultra-fast timescale of electron-electron interactions compared to electron-
phonon (↽e↑e << ↽e↑ph), the thermalization process occurs only within the electronic
ensemble (in Fig. 1.2.4b the phonon and quasiparticle population is zero). It is also
possible that hot electrons interact with optical phonons, which have higher energies
than acoustic phonons, and the probability of this process depends on the specific
material. As we will discuss in section 5.1, the conversion e”ciency of light into hot
electrons for graphene is close to 100% (at excitations in the visible and near-IR).
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Therefore, all the energy the system absorbs is kept in the electronic ensemble [62,
63].

2. Phonons. The first stage ends when the thermal distribution of hot electrons reaches
an energy comparable to the Debye energy E1 ⇔ ⊋ωD, which typically occurs in a
few ↽e↑e. At this point (between the fs and ps range) the electrons start transferring
the energy to the phonon sub-system, and the phonon population increases (see Fig.
1.2.4b). At this stage, the electronic distribution passes from an energy E1 ⇔ ⊋ωD

to an energy E2 ⇔ 3$.

3. Cooper pair breaking. At this point, the high energy phonons with energies > 2$
can be absorbed by the Cooper pairs, creating excited quasiparticles[61] (see Fig.
1.2.4b the abrupt increase in the quasiparticle density). At this stage, there is a
mixed distribution of quasiparticles and phonons which approach an energy E3 ↑ $.
When the energy of the phonons is < 2$, no more quasiparticles can be excited
through phonon absorption, and the energy of the quasiparticle distribution reaches
equilibrium at ↑ $.

4. Thermal phonons. In the last step, the phonon sub-system, constituted only by
phonons with energies < 2$, equilibrates through phonon-phonon scattering and
phonon escape to the substrate[58] restoring thermal equilibrium in all the sub-
systems.

We highlight that the general superconductor-photon interaction described here may
vary slightly for specific materials. In particular, for moiré superconductors, the details of
the down-conversion processes have not yet been investigated and may di!er. However,
regardless of the details, we emphasize once again that the generation of quasiparticles
is determined by the ratio of incident photon energy to superconducting gap energy, as
summarized in Eq. 1.2.6 and that the down-conversion e”ciency remains unchanged across
a wide range of superconductors[57].
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Figure 1.2.4: Schematics of the thermalization process in a superconductor upon
photon absorption. (a) Schematics of the energy down-conversion process from the incident
photon with energy E0 ↑ 1 eV to the equilibrium. The thermalization within the 3 sub-systems
(Cooper pairs, electrons and phonons) occurs in four distinct stages. (b) Sketch of the sub-
system population density for a superconductor that relaxes towards equilibrium. The blue
line represents the population of phonons while the red one the population of quasiparticles.
Figure inspired by ref. [4].
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1.3 Material properties for superconducting photon
detectors

As discussed in the introduction of this thesis, our goal is to advance superconducting
SPDs from a material science perspective by exploring novel material platforms. To achieve
this, it is crucial to understand the material properties that determine SPDs’ sensitivities.
Therefore, this section reviews some of the main types of superconducting detectors and
discusses the key material parameters relevant to their operation.

1.3.1 Review of superconducting detector types

Transition edge sensors

Transition Edge Sensors (TES) exploit the steepness of the superconducting transition[14,
15, 64]. These highly sensitive detectors typically consist of an absorber, thermometer,
and thermal link, which can be composed of either the same or di!erent materials (typi-
cally tungsten, W). When the TES absorbs a photon, the energy is converted into heat by
the absorber, and the superconducting material acts as a sensitive thermometer, i.e., the
temperature increase induced by the photon results in a change of its electrical resistance
(Fig. 1.3.1). TES devices operate in a voltage bias scheme so that the excess of resis-
tance results in a change of the bias current within the device, which can be accurately
measured by a Superconducting Quantum Interference Device (SQUID). The advantage
of the voltage bias is using an electro-thermal feedback to stabilize the detector within
the superconducting transition and reduce the e!ective time constant[65, 66]. The TES
typically operates in the fourth stage of the energy down-conversion process and relies on
detecting equilibrium phonons, making it relatively slow (↑ µs)[67]. The following heat
balance equation can describe the dynamics of a TES detector[4]:

C(T )
dT

dt
= Popt + Pdc →


T

Tb

G(T )dT (1.3.1)

Where C(T ) is the heat capacity, G the thermal conductance and Popt and Pdc are the
optical and dc power absorbed by the TES. These equations point out the thermal quan-
tities relevant for the operation of a TES: heat capacity and thermal conductance. The
heat capacity, which ultimately depends on the density of states, determines the instanta-
neous temperature change upon photon absorption, according to $T ⇔ h⇀/C. Therefore
the lower C, the higher the temperature increase for a fixed amount of energy. The heat
capacities of TES detectors are carefully engineered to reach extremely low values[15, 68].
The thermal conductance, on the other hand, determines the isolation of the electrons
from the thermal bath[69]. This parameter determines the ultimate theoretical perfor-
mance, Noise Equivalent Power (NEP), achievable by a TES[4, 70]:

NEPTEF =

◁4kBT 2G (1.3.2)
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Where ◁ is a numerical factor between 0.1 to 1. The ratio between these two quantities gives
the time resolution in the linear approximation regime: ↽ = C/G. TES detectors, as well as
hot electron bolometers, give an output signal that is proportional to the energy deposited
in the material, enabling photon number resolution[4, 5, 20]. This feature is di!erent
from ’clicking’ detectors (such as superconducting nanowires) in which the signal does
not contain information of the amount of energy deposited. Additionally, TES detectors
provide extremely high quantum e”ciency[71, 72].
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Figure 1.3.1: Transition-edge sensors. (a) The incident photon is absorbed by the ab-
sorber with heat capacity C. The energy of the radiation is converted into heat and increases
the electronic temperature. This temperature increase is readout by the TES thermometer
which is a superconducting material operated within the superconducting transition, provid-
ing an extremely sensitive temperature readout. The heat is then dissipated to the bath
through a thermal link with thermal conductance G. (b) Optical image of a SiN suspended
TES detector. Adapted from ref. [73].

Hot electron bolometers

A di!erent version of the TES is constituted by the hot electron bolometer[20, 74, 75].
The main di!erence of this detector type is that it exploits the hot electron e!ect in
thin superconducting films[76, 77]. While TES operates in the fourth stage of the energy
down-conversion process, hot electron bolometers operate in the first stage, which makes
them much faster than typical TES[78]. In this detector, the thermalization of the hot
electrons can be engineered to occur either through the phonon emission or by di!usion
through the metallic contacts. Additionally, the absorber, thermometer, and thermal link
are all made of the same material. Specifically, the thin superconducting film (in this
case, Nb, NbN, Al, Ti) is cooled just below Tc, where electrons and phonons can be
treated as two thermal distributions with e!ective temperatures for each sub-system. In
this scenario, the thermalization time within the sub-systems (↽th for the electrons and
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↽ph↑ph for the phonons) is smaller than the time of exchange between sub-systems (↽e↑ph).
Therefore, it can be assumed that the temperature is almost uniform throughout the
detector[4]. The incoming radiation elevates Te above the bath, inducing a large increase
of the electrical resistance due to the sharpness of the superconducting transition close to
Tc[78]. Analogously to the TES, the increase of the electronic temperature is ruled by the
heat capacity $T ⇔ h⇀/C, and the thermal conductance determines the minimum NEP
achievable[4]:

NEPTEF =


⇁kBTeGe↑ph (1.3.3)

Where ⇁ is a numerical factor lying between 2 and 4. Notably, Ge↑ph can be reduced
by reducing the volume of the detector. The speed of the detector is given by: ↽e↑ph =
Ce/Ge↑ph.

Superconducting nanowires single-photon detectors

Superconducting nanowire single-photon detectors (SNSPDs) o!er exceptionally high de-
tection e”ciency in the visible and near-infrared range, combined with low dark count
rates and excellent time resolution. Since G. Gol’tsman’s first experimental demonstration
in 2001[16], SNSPD’s technology has rapidly advanced, making them arguably the most
widely adopted type of SPDs. They are constituted by a thin superconducting nanowire
(NbN or NbTiN), typically around 5 nm thick and 100 nm wide (see Fig. 1.3.2b), which
is cooled below its superconducting critical temperature and biased with a DC current
(Ibias < Ic). Even a single photon can switch the SNSPD to the normal state in this
geometry, enabling SPD. Specifically, when a photon is absorbed in the nanowire, it gen-
erates a localized non-superconducting region (hotspot) forcing the supercurrent to flow
around it[79]. As the nanowire is narrow, this increases the local current density around the
hotspot, which exceeds the superconducting critical current and creates a resistive barrier
across the nanowire (see Fig. 1.3.2a). Joule heating resulting from the DC bias contributes
to the expansion of this resistive region until the current is blocked and a fast voltage pulse
is generated[79]. The increase of resistance induced by the absorption event redirects the
current to the shunt resistor and allows to reset the detector in a timescale given by the
ratio between the kinetic inductance of the material (Lk) and the shunt resistor (Rs) placed
in parallel to the device: ↽ ↑ Lk/Rs ↭1 ns[80]. As SNSPDs rely on generating quasipar-
ticles, they operate in the second stage of the down-conversion process. Even though the
first demonstration of SNSPDs dates back to 2001, so far, the exact detection mechanism
in SNSPDs, which is crucial to identify the key material requirements, is still not fully
understood[4, 81]. One of the most accredited models, allows estimating the lower limit
on detectable photon energy as[17, 81, 82]:

h⇀ =
N0$2wd

⇐
ςD↽th

0

(
1→

Ibias
Ic

)
(1.3.4)

Where N0 is the normal metal density of states at the Fermi level, $ the superconducting
gap, D the normal state di!usivity, ↽th the electron thermalization time, and 0 the multi-
plication e”ciency of quasiparticles. w and d are the width and thickness of the nanowire.
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This model indicates that the material parameters needed to lower the cut-o! wavelength
and enable low-energy photodetection are primarily the thickness and the normal metal
density of states. From the material perspective, two-dimensional superconductors, char-
acterized by a low carrier density and thickness (< 1 nm), could represent a promising
pathway to extend the spectral range of SNSPDs. As the output signal of SNSPDs is
the normal state resistance across the wire, which is the same regardless of the number of
photons absorbed, they do not provide energy resolution. This capability can be achieved
using array architectures[83].

ba

Figure 1.3.2: Superconducting nanowires single-photon detectors. (a) Schematics of
the hotspot generation in a SNSPD after absorption of a single photon: (1) a supercurrent flows
in the SNSPD; (2) the absorbed photon shares its energy to the other electrons, generating a
hotspot of excited quasiparticles; (3) the hotspot grows across the nanowire; (4) the normal
domain of quasiparticles breaks down superconductivity across the width of the SNSPD; (5)
the current is redirected to the shunt resistor and the SNSPD is reset to the initial state.
Adapted from ref. [84]. (b) Microscope image of a SNSPD. Adapted from ref. [85, 86].

Kinetic inductance detectors

Kinetic Inductance Detectors (KID) harness the increase of kinetic inductance of a super-
conducting resonating circuit upon photon absorption and were initially proposed by P.
Day in 2003[21]. The incident photon breaks Cooper pairs in the superconductor according
to Eq. 1.2.6 (Fig. 1.3.3a). The reduction in the Cooper pair density ns results in an in-
crease of kinetic inductance Lk = m↘/nse2. KID detectors rely on generating quasiparticles
and operate in the second and third stages of the down-conversion e”ciency, illustrated in
Fig. 1.2.4b. As the superconducting material is embedded in a resonator with resonance
frequency f0, the change in kinetic inductance induces a shift of the resonance frequency
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(Fig. 1.3.3b) according to the equation[21, P1]:

|↼f |

f0
↙

↼Lk

Lk

↙
↼nqp

ns

(1.3.5)

The sensitivity of this detector (|↼f |/f0) is therefore proportional to the ratio between
the density of quasiparticles generated by the incident photon (↼nqp) to the total density
of Cooper pairs (ns). Hence, the key parameters to increase the detector sensitivity and
spectral range are the carrier density of the superconducting material (required to be as
low as possible) and the resonator’s quality factor. Analogously to TES and hot electron
bolometers, KIDs intrinsically provide energy resolution[87].

Lk

ba

2D

E

DOS

Po
w

er
 (d

B)

f

δf

f0

Figure 1.3.3: Kinetic-inductance detectors. (a) The incident photon with energy
hε > 2”, breaks Cooper pairs, generating quasiparticles above the superconducting gap.
As the kinetic inductance is inversely proportional to the density of superconducting electrons:
Lk ↑ 1/ns, the suppression of Cooper pair density increases Lk. (b) If the superconduc-
tor is embedded in a microwave resonating circuit, the change in Lk can be read out as a
shift in the resonance frequency ϑf . The sensitvity of such detector is primarily given by:
|ϑf |/f0 ↙ ϑLk/Lk ↙ ϑnqp/ns.

1.3.2 A new platform: magic-angle twisted bilayer graphene

We reviewed the key superconducting detectors in the previous section and highlighted the
relevant material parameters for these applications. The key physical quantities for ther-
mal detectors (such as TES and hot electron bolometers) are the electronic heat capacity
and the thermal conductance. The first determines the increase of the electronic temper-
ature for a fixed photon energy $Te ↙ h⇀/Ce, the second the thermal isolation of the
electrons from the thermal bath and consequently the ultimate theoretical performance
achievable by the detector[4]. The ratio between the two, sets the detector timescale:
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↽ = Ce/G. Low heat capacity is desirable for these detectors to induce a measurable in-
crease of electronic temperature even upon absorption of a low-energy photon. Another key
parameter, particularly relevant for KID detectors, is the density of electrons contributing
to the superconducting state (ns). As the signal is proportional to the ratio between the
density of photo-induced quasiparticles to the total density of superconducting electrons
↼f ↙ ↼nqp/ns, materials with low carrier density could be used to extend the spectral
range of the detector. As mentioned in the introduction, the technological gap of SPDs in
the THz range could be bridged by exploring novel material platforms that increase the
sensitivity of the available detector technologies.

From the material perspective, we can compare di!erent superconducting materials in
terms of thickness (d) and carrier density (n) in Fig. 1.3.4. The thickness of the mate-
rial is important as heat capacity and thermal conductance are extensive properties and,
therefore, scale with the system’s volume. At the same time, the normal state carrier den-
sity sets the upper limit of the Cooper pair density (ns ↖ n). The conventional materials
used for superconducting photodetectors (Nb, NbN, W, Al, Ti) lie on the top right of the
graph. These are 3D bulk superconductors, fabricated in thin films (< 10 nm) to reduce
heat capacity and thermal conductance. Even though further e!orts have been made to
develop thinner superconducting films, these bulk superconducting materials often exceed
several nanometers in thickness. Indeed, these materials, typically fabricated by sputtering
and etching, become strongly disordered and polycrystalline in thin films, which is detri-
mental to superconductivity[34]. A new perspective is represented by 2D superconductors,
which provide intrinsically suppressed thermal properties[34] due to the reduced dimen-
sionality (↖ 1-2 nm) combined with low carrier density and high crystalline quality[88].
Several works have been recently carried out on SPDs based on 2D superconductors[89–93].

Among 2D materials, a new sub-group of superconductors based on graphene has
emerged. As anticipated in the introduction and shown in Fig. 1.3.4, most of them are
moiré superconductors, i,e. are obtained by stacking di!erent layers of graphene on top
of each other and twisting them at the ‘magic’ angle[94, 95]. However, superconductiv-
ity with comparable carrier density has been observed also in non-moiré superconductors
based on graphene such as Bernal-stacked bilayer graphene[96] and rhombohedral trilayer
graphene[97]. These materials exhibit a record-low electron density, five orders of magni-
tude lower than the superconductors typically used for photodetection applications [P1,
34]. This unique characteristic makes them particularly interesting for thermal detectors,
as their heat capacity is significantly smaller than that of other materials [34, P2]. Ad-
ditionally, they are promising for KID detectors. The ultra-low carrier density translates
into a small density of Cooper pairs and, consequently, a large kinetic inductance. In this
material, even a minute amount of quasiparticles generated by a single low-energy pho-
ton can induce a substantial change in kinetic inductance, opening a promising avenue to
extend SPD across a broader spectral range according to Eq: 1.3.1[P1, P3]. Therefore,
in this thesis, we focused on magic-angle twisted bilayer graphene (MATBG) and aimed
to exploit its properties for photodetection. In the following chapters, we introduce the
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fundamental physical aspects of this novel moiré superconductor, discovered in 2018 [33],
discuss the fabrication method, and present the proof-of-concept experiment performed to
demonstrate SPD.
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Figure 1.3.4: Superconducting MATBG as an ultra-sensitive material for single-
photon detection. Logarithmic plot of film thickness d versus carrier density n for var-
ious superconductors. Data are taken from refs. [33, 34, 89, 90, 94–97, P2, 98–102].
The plot includes deposited thin film superconductors (Nb, Al, YBa2Cu3O7-ϱ), compound
thin film superconductors (NbTiN, MoSi, WSi, TiN, NbN), interfacial 2D superconduc-
tors (LaAlO3/SrTiO3,FeSe/SrTiO3,La1.55Sr0.45CuO4/La2CuO4),exfoliated 2D superconduc-
tors (ZrNCl, Bi2Sr2CaCu2O8+ϱ, NbSe2, MoS2, WTe2) as well as moiré (MATBG, magic-angle
twisted trilayer graphene, magic-angle twisted four-layer graphene, magic-angle twisted five-
layer graphene) and non-moiré (Bernal bilayer graphene, rhombohedral trilayer graphene)
graphene-based superconductors. The red, gray and yellow shaded regions serve as rough dis-
tinction between thin-film superconductors, two-dimensional superconductors and graphene-
based superconductors, respectively. The asterisk indicates the superconducting materials
which have been previously used for photodetection applications[4, 81, 89, 90, 93]. In the case
of BSSCO SPD was demonstrated but not in the monolayer limit. Adaptd from [P1].
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2
Magic-angle twisted bilayer graphene

In this Chapter, we discuss the main electronic properties of MATBG, focusing in partic-
ular on its ultra-low carrier density superconducting state. Before showing the transport
measurements on MATBG, we first derive the band structure of single-layer graphene with
the tight-binding model and then introduce the continuum model to describe the band
structure of twisted bilayer graphene.

2.1 Energy bands of single-layer graphene

Graphene was first isolated from thick graphite using adhesive tape in 2004 by A. Geim
and K. Novoselov [103]. From that moment, graphene has collected huge attention for
its electrical, mechanical, thermal, and optical properties[104, 105]. Graphene is a single
atomic layer of carbon atoms arranged in a hexagonal structure (see Fig. 2.1.1a). The
basis has two atoms per unit cell and is triangular. The lattice vector in the real space can
be written from geometrical considerations and defining a proper reference system (Fig.
2.1.1a) as[106]:

a1 =
a

2
(3,

⇐

3), a2 =
a

2
(3,→

⇐

3) (2.1.1)

While the reciprocal lattice vectors:

G1 =
2ς

3a
(1,

⇐

3), G2 =
2ς

3a
(1,→

⇐

3) (2.1.2)

Where a ↙ 0.142 nm is the carbon-carbon interatomic distance. Each carbon atom has
three nearest neighbors, separated in real space by the vectors[106]:

ϑ1 =
a

2
(1,

⇐

3), ϑ2 =
a

2
(1,→

⇐

3), ϑ3 = →a(1, 0) (2.1.3)
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Graphene possesses, in total, four valence electrons. Since three of these electrons form
covalent bonds in the x-y plane and do not contribute to the conductivity, graphene can be
treated as having one conduction electron in the 2pz state [107]. The first Brillouin zone
has four high symmetry points: !, K, K↗ and M. As will be discussed in the following,
the two inequivalent points located at the corners of the first Brillouin zone, K and K↗ are
important in graphene because there electrons behave as massless Dirac particles and are
therefore called Dirac points:

K =
2ς

3a
(1,

1
⇐
3
), K↗ =

2ς

3a
(1,→

1
⇐
3
) (2.1.4)

a b c

ky

kx

K

A

B K'
K

K'

y

x

a1
G2

G1

a2

δ1δ3

 δ2

Figure 2.1.1: Band structure of monolayer graphene. (a) Atomic structure of mono-
layer graphene in real space. The honeycomb graphene lattice features two sublattices, A and
B, depicted as red and brown circles. The blue arrows as a1 and a2 indicate the lattice vectors.
(b) The hexagonal Brillouin zone of graphene (marked in grey) includes two non-equivalent
corners, K (solid circles) and K↗ (open circles). The blue arrows indicate the reciprocal lattice
vectors as G1 and G2. (c) The low-energy band structure of graphene shows a linear dis-
persion (Dirac cone) and their corresponding Dirac points at the (K) and (K↗) corners of the
Brillouin zone.

The first theoretical study of graphene’s electronic band structure and Brillouin zones
was developed using the tight binding approximation in 1947 by P. R. Wallace [107]. Using
this approximation with one pz orbital on each atomic site [108], the wavefunction has the
form:

ϱ(r) = CAεA(r) + CBεB(r) (2.1.5)

Where εA(r) and εB(r) are Bloch wavefunctions of pz orbitals for atoms A and B, while
CA and CB are the eigenvalues:

εA(r) =
1

⇐
N



RA

eik·RAε(r →RA) (2.1.6)

and

εB(r) =
1

⇐
N



RB

eik·RBε(r →RB) (2.1.7)
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Where RA and RB are the positions of the atoms A and B, respectively. Here, the
first sum is taken over A and all the lattice points generated from it by primitive lattice
translations and the second over the points generated from B. Defining the matrix elements
as Hij(k) = ⇑εi(r)|H |εj(r)⇒ it is possible to write the 2-by-2 matrix Hamiltonian and then
find the eigenvalues:

(
HAA(k) HAB(k)
HBA(k) HBB(k)

)(
CA

CB

)
= E

(
CA

CB

)
(2.1.8)

As graphene is made up of carbon atoms in a hexagonal structure, the environments
around atoms A and B are the same and for the diagonal elements holds: HAA(q) =
HBB(q) = 0. Assuming only nearest-neighbor interaction, the diagonal elements are con-
stant values independent of k. Therefore, just the non-diagonal terms are the non-trivial
matrix elements, which can be calculated as:

HAB(k) = ⇑εA(r)|H |εB(r)⇒ =
1

N



RA



RB

eik·(RB↑RA)
⇑ε(r →RA)|H |ε(r →RB)⇒ =

=


RA

eik·(RB↑RA)
⇑ε(r →RA)|H |ε(r →RB)⇒ =

= →t0[e
ik·ω1 + eik·ω2 + eik·ω3 ]

(2.1.9)

Where ϑ1, ϑ2, and ϑ3 are the vectors pointing to the nearest-neighbor atoms from each
site defined in Eq. 2.1.3 (see Fig. 2.1.1a). Here, we have used the translational symmetry
to get rid of the sum over the B sites and the nearest-neighbor approximation to replace
the hopping term ⇑ε(r →RA)|H |ε(r →RB)⇒ with t0 ↙ 2.8eV. Substituting ϑ1, ϑ2 and ϑ3

in Eq. 2.1.9 we can rewrite the non-diagonal matrix elements as:

HAB(k) = →t0e
↑ikxa


1 + 2ei

3a
2 kx cos

⇐
3a

2
ky


= $(k) (2.1.10)

The matrix Hamiltonian reads:

H(k) =

(
0 $(k)

$↘(k) 0

)
(2.1.11)

By solving the equation det(H→E) = 0, one gets the eigenvalues that correspond to upper
and lower bands of graphene, respectively:

E±(k) = ±|$(k)| = ±t0



1 + 4 cos(
3a

2
kx) cos(

⇐
3a

2
ky) + 4 cos2(

⇐
3a

2
ky) (2.1.12)

Remarkably, this relation becomes 0 at the Dirac points k = K or k = K↗ as shown in
Fig. 2.1.1c and the spectrum is symmetric around zero energy. If we define the vector
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q = k →K, we can can expand the expression for $(k) around q = 0 and find:

$(q) ⇔ 2t0e
↑iKxa→k


e3ikxa/2 cos

⇐
3a

2
ky



k=K

· q =
3at0
2

e↑iKxa(qx + iqy) (2.1.13)

Defining the Fermi velocity as vF = 3t0a/2, with a value vF ↙ 106 m/s, and extracting the
phase factor e3ikxa/2, we can write the first order expansion of the function $(q) as:

$(q) = ⊋vF (qx + iqy) +O

(
q2

K2

)
(2.1.14)

The Hamiltonian can be rewritten in the form:

Ĥ = ⊋vF
(

0 qx + iqy
qx → iqy 0

)
= ⊋vF ϑ̂ · q (2.1.15)

Where ϑ̂ are the two-by-two Pauli matrices. Notably, the spectrum depends only on the
magnitude of q and not on the direction in the space:

E(k) = ±⊋vF |q| (2.1.16)

Therefore, the energy bands near the Dirac point have a linear dispersion curve resem-
bling the photon dispersion curve. Recalling the relativistic formula E =


m2c2 + q2c4,

it can be noted that this is the same equation provided that the e!ective mass, m is set
to zero. Therefore, electrons near Dirac points can be considered as charged particles with
zero-e!ective mass [106, 108, 109].
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2.2 Band structure of twisted bilayer graphene

The band structure of twisted bilayer graphene was first calculated by Lopes dos Santos
in 2007 [110], and later by Bistritzer and MacDonald in 2010 [111]. Their pioneering work
revealed that for a discrete set of magic angles, the band structure flattens, leading to a
vanishing Fermi velocity. The reduction of the Fermi velocity in the flat bands increases
the electronic interactions, giving rise to many correlated quantum phases, such as su-
perconductivity and correlated insulating states[112]. The first experimental studies on
this system were conducted in the same year by the group of E. Andrei, who employed
scanning tunneling spectroscopy to observe Van Hove singularities [113]. Later, in 2018,
the transport studies performed by the group of P. Jarillo-Herrero led to the discovery of
superconductivity[114]. In this section, we do not provide the complete derivation of the
Bistritzer-MacDonald model, but we discuss the main features and provide a phenomeno-
logical understanding of the key aspects that lead to the formation of the flat bands. This
includes an overview of the conditions under which these flat bands emerge and their
implications for the electronic properties of twisted bilayer graphene.

2.2.1 Formation of moiré pattern in twisted bilayer graphene
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Figure 2.2.1: Moiré pattern and mini Brillouin zone. (a) Moiré pattern is formed in
real space by the rotation of two graphene layers. The relative rotation between the layers
induces a periodicity with a length scale ϖm ↙ a0/(2 sin(ϱ/2)). For ϱ = 1.1→, ϖm ⇔ 7 nm.
(b) The Moiré pattern in real space leads to the formation of mini-Brillouin zones (yellow
hexagons) constructed from the di#erence between the K and K↗ wavevectors of the bottom
(red) and top (black) layers: K1 →K2 and K↗

1 →K↗
2. (c) Dirac cones of the top (light blue)

and bottom (red) graphene layers. kϑ is the displacement between the cones, which depends
on the twist angle. When the twist angle is small, the Dirac cones of the top and bottom layer
get close and hybridize.

As shown in Fig. 2.2.1a, the relative rotation by an angle 1, of two graphene layers
stacked on top of each other, generates a moiré pattern with periodicity φm ↙ a0/(2 sin(1/2)).
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From which the area of the moiré supercell As is:

As =

⇐
3

2
φ2

m
=

⇐
3

8

a2
0

sin2( ϑ
2
)

(2.2.1)

The periodicity in the real space induced by the rotation leads to the formation of new
Brillouin zones[115]. These moiré Brillouin zones are defined by the distance between the
K (K↗) corners of the Brillouin zones of the top K1 → K2 and bottom layers K↗

1
→ K↗

2
.

Defining the Brillouin-zone wave vector for a single layer as kD = 4ς/3a (also called Dirac
momentum), the size of the mini-Brillouin zone is given by (see Fig. 2.2.1b):

kϑ ↙ 2kD sin(
1

2
) (2.2.2)

Where kϑ defines the side of the hexagon of the moiré Brillouin zone. As expected, there is
a large periodicity in the real space for small twist angles, which results in a small size of
the Brillouin zone in the reciprocal space, also called the mini-Brilouin zone. The model
used to describe twisted bilayer graphene is the continuum model[111, 116–118]. This
model considers two layers of graphene described by a Dirac-like dispersion at the K (K↗)
corners of the moiré Brillouin zone, each rotated by an angle ±1/2, and coupled through
a moiré potential T (r) that describes the hopping between layers. Within this model, the
low-energy Hamiltonian for the K Brillouin zone reads[117]:

HK =

(
vFϖ · p1 T (r)
T †(r) vFϖ · p2

)
(2.2.3)

The subscripts i = 1, 2 indicate the top and bottom layer, respectively, and pi = ⊋(k→Ki).
As anticipated above, the matrix in Eq. 2.2.3 is formally analogous to that of single-
layer graphene. The key di!erence lies in the o!-diagonal terms, which correspond to the
interlayer hopping, which is responsible for the hybridization of the bands. The moiré
potential can be expressed as T (r) =


2

n=0
Tn+1e↑iqn+1r, where q1 = kϑ(0,→1)and q2,3 =

kϑ(±


3/2, 1/2). These qn+1 vectors indicate the hopping directions in the first Brillouin
zone, which result in three distinct tunneling processes. The interlayer coupling term,
according to the symmetry of the system, reads[111, 117]:

Tn+1 = wAAϑ0 + wAB[ϑx cos(nε) + ϑy cos(nε)], ε = 2ς/3; n = 0, 1, 2 (2.2.4)

Where wAA and wAB are the interlayer coupling parameters for AA and AB bilayer
sites, respectively. The initial calculations of the band structure with the continuum
model assumed identical interlayer coupling parameters for the AA and the AB sites,
wAA = wAB[111]. This ideal assumption, which considers static carbon atoms, leads to
a gapless band structure, conversely from experimental observations. In reality, the lat-
tice structure spontaneously relaxes to achieve an energetically favorable configuration.
Specifically, twisted bilayer graphene deforms to maximize AB areas while minimizing AA
areas[119]. Experimentally, it was found that this lattice relaxation leads to wAA/wAB ⇔
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0.7-0.8[117]. Including the lattice relaxation into the model enables the opening of a gap
between the flat and dispersive bands, as observed in experiments[119]. To summarize,
the central concept in the formation of flat bands in twisted bilayer graphene is that the
moiré pattern forms a moiré potential, which leads to tunneling between the layers. The
interlayer tunneling strongly depends on the twist angle and induces a hybridization of
the band structure. At a specific set of angles, called the ’magic’ angles, ultra-flat bands
emerge[111, 112, 115]. In the following, we phenomenologically introduce the emergence of
flat bands, describing how the twisting between the two graphene layers modifies the band
structure. We distinguish three di!erent scenarios.

2.2.2 Emergence of flat bands in MATBG

Figure 2.2.2: Twisted bilayer graphene in real space. (a)-(c) Graphene layers in real
space rotated at ϱ = 0→(a), large angles (b) and small twist angles (c).

1. No interaction (w = 0)

Without interlayer tunneling, the Hamiltonian of the system is simply given by the su-
perposition of two Hamiltonians of single-layer graphene, see Eq. 2.1.15. In this scenario,
the e!ect of the twist angle is just a relative motion of the Dirac cones, which intersect at
energy (Fig. 2.2.3a):

$E0 =
⊋vFkϑ

2
↙

4ς

3a
⊋vF sin(

1

2
) (2.2.5)

Notably, at large angles (Fig. 2.2.2b) e.g. 1 = 10→, the intersection energy is high, $E0 ↑ 1
eV, while at lower angles the intersection occurs at lower energies, e.g. for 1 = 1→, $E0 ↑

0.1 eV.

2. Large twist angles (⊋vFkϑ >> w)

In presence of interlayer hopping w ∝= 0, the electrons can tunnel between the two Dirac
cones, changing the band structure and generating saddle points in correspondence to
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these intersections[115]. The saddle points correspond to peaks in the density of states
(DOS), called van Hove singularities (VHSs), measured by scanning tunneling spectroscopy
already in 2010 [113]. For large twist angles the energy di!erence between the VHSs of the
conduction band and valence band can be estimated as (Fig. 2.2.3b):

$E ↙ 2$E0 → 2w ↙ ⊋vFkϑ → 2w (2.2.6)

From Bernal-stacked bilayer graphene, the interlayer tunneling strength is w ↙ 0.1 eV[111,
115] (considering wAA = wAB for this phenomenological description[117]). If the twist angle
is large, the intersection point of the Dirac cones is located at relatively high energy, e.g.
for 1 = 10→, $E0 ↙ 1 eV >> w. As a result, the low-energy band structure is una!ected
by this interaction, and the band structure is the same as isolated graphene[113, 120]. As
the two competing energy scales that determine the physics of twisted bilayer graphene are
the interlayer tunneling strength, w and the intersection energy, ⊋vFkϑ a new dimensionless
parameter can be introduced:

2 =
w

⊋vFkϑ
(2.2.7)

3. Low twist angles (⊋vFkϑ ↙ w)

For low twist angles (Fig. 2.2.2c), the interlayer tunneling strength becomes comparable
with the intersection energy, e.g. for 1 = 1→, $E0 ↑ 0.1 eV ↙ w. In this scenario, the
low-energy band structure is highly a!ected by electron tunneling and results in a strong
hybridization between the layers, leading to the formation of flat bands. The hybridization
of the bands at low twist angles results in a strong renormalization of the Fermi velocity
v↘ , which can be calculated from the continuum model as[111]:

v↘

v0
=

1→ 322

1 + 622
(2.2.8)

Where v0 is the Fermi velocity of single layer graphene and 2 is a dimensionless parameter
given by the ratio between the interlayer tunneling strength and the intersection energy,
2 = w/(⊋v0kϑ). If 2 = 0, v↘ is the same as single-layer graphene, v0. In Fig. 2.2.4a we plot
the renormalized Fermi velocity as a function of twist angle. Substituting the expression
for 2 and kϑ in Eq.2.2.8 it is possible to calculate the angle for which the Fermi velocity
drops to zero (v↘/v0 = 0) as:

1(1)
MATBG

↙ 2 arcsin


3a

⇐
3w

8ς⊋v0


↙ 1.1→ (2.2.9)

Where we used the values w = 0.11 eV, v0 = 8.7 ≃ 105 m/s, and a = 0.246 nm[111].
This relation defines the so-called first magic angle[111]. A full sequence of magic twist
angles can be derived analytically[117] by the following expression: 1j ↙ 10(20/2j), where
2j ↙ 20 + 3/2j and 20 = w/(⊋v0kϑ) ↙ 1/

⇐
3; j = 0, 1, ....
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Figure 2.2.3: Engineering of the band structure with a twist. (a) Sketch of the band
structure of twisted bilayer graphene without interlayer tunneling w = 0. In this configuration
the Dirac cones of the bottom and top layer intersect at an energy: ”E0 = ⊋vFkϑ/2. (b)
In presence of interlayer tunneling, the Dirac cones hybridize and form saddle points in the
band structure. For large twist angles the interlayer tunneling strength is much smaller than
the intersection energy, and as a result, the low-energy band structure is una#ected by this
interaction. (c) For low twist angles, the interlayer tunneling strength becomes comparable
with the intersection energy: ⊋vFkϑ ↙ 2w, resulting in a strong hybridization of the bands and
the emergence of flat bands at low energy. In the flat bands, the Fermi velocity of electrons is
strongly renormalized and tends to zero (vF ↓ 0).

At the magic angles, electrons slow down significantly, forming extremely flat energy
bands with a bandwidth of approximately 10 meV[112]. The moiré-periodic potential flat-
tens the electronic bands and separates them from higher-energy dispersive bands, creating
an energy gap as shown in Fig. 2.2.4b. As the Fermi velocity approaches zero, the elec-
trons’ kinetic energy is greatly reduced, making Coulomb interactions the dominant energy
scale[112, 115, P4]. This, combined with the high density of states, leads to strong elec-
tronic interactions, resulting in a variety of emergent phases linked to strongly correlated
electrons. These phases include correlated insulating states[33], orbital magnetism[122],
Chern insulators[123], strange metallicity[P5], and, as anticipated in Section 1.3.2, record-
low carrier density superconductivity[34, P2, 114], none of which are present in single-layer
graphene.
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Theoretical calculation of the renormalized Fermi velocity v

↘
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from Eq. 2.2.8, using w = 110 meV and a = 0.246 nm. Inset: Renormalized Fermi velocity as
a function of the dimensionless parameter ς = w/(⊋v0kϑ) in the range 0.18→ < ϱ < 1.2→. The
inset is adapted from Ref. [111]. (b) Band structure calculated from the continuum model
for a twist angle of ϱ = 1.00→. The parameters used in the calculations are wAA = 88 meV;
wAB = 110 meV and vF = 1.05 ≃ 106 m/s. The calculation was performed by Marc Currle
[121].
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2.3 Electronic properties of MATBG

Having discussed the emergence of flat bands at the magic angles from the continuum
model, we now turn our attention to the main electronic properties observed in experi-
ments. Electronic properties are typically measured by low-temperature (< 1K) transport
experiments. This section provides an overview of the key electronic characteristics ob-
served in high-quality MATBG devices, which include insulating states at integer moiré
band fillings and superconducting domes. Detailed descriptions of the low-temperature
electrical transport measurements and the fabrication of high-quality MATBG devices can
be found in Chapter 3 and Chapter 4, respectively.
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Figure 2.3.1: Transport measurement scheme of a MATBG device. (a) A low-
frequency AC voltage is applied to the source contact of the device and the voltage is measured
in a four-probe scheme with standard lock-in technique (see Section 4.2.1). In our measure-
ments R0 = 10 M$ . Applying a gate voltage Vg to the graphite gate beneath the sample is
possible to tune the carrier concentration in the device according to Eq.2.3.1. (b) Zoom in of
the band structure calculated from the continuum model for a twist angle of ϱ = 1.00→. The
horizontal dashed lines indicate three di#erent filling factors ε = 0,±4.

In standard transport experiments the four-terminal longitudinal resistance is measured
as a function of the carrier concentration in the MATBG and is investigated for di!erent
temperatures, magnetic fields, and other experimental parameters. As schematically illus-
trated in Fig. 2.3.1a, the metallic graphite gate beneath the heterostructure is employed
to electrostatically modulate the carrier concentration in the MATBG (n). By applying an
external gate voltage (Vg), the electron population across the entire bandwidth of the flat
band can be adjusted in situ, allowing the exploration of all correlated phases coexisting
in a single device[112]. The relationship between the carrier concentration and the gate
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voltage is given by:

n =
Cg

e
Vg (2.3.1)

Where Cg is the gate capacitance of the bottom hBN which depends on the material’s thick-
ness. Near the magic angle in twisted bilayer graphene, the flat bands exhibit a fourfold
degeneracy corresponding to spin and valley degrees of freedom[124, 125]. Therefore, the
superlattice density ns, defined as the density required to fill one band in the superlattice,
can be expressed (for small twist angles 1→ < 1 < 3→, [33]) as:

ns =
4

As

⇔
812
⇐
3a2

(2.3.2)

Where As is the superlattice area defined in Eq. 2.2.1. The filling factor (filling of electrons
per moiré unit cell) can be derived as:

⇀ = 4
n

ns

(2.3.3)

Adjusting the carrier density (filling factor) in MATBG is equivalent to shifting the Fermi
level within the band structure as illustrated schematically in Fig. 2.3.1b, according to the
relation[126]:

n =


EF

0

DOS(ε)fFD(ε)dε (2.3.4)

While in single-layer graphene, the DOS is linear in energy, in twisted-bilayer graphene, it
is non-linear due to the presence of VHSs. By changing the Fermi level, it is, therefore,
possible to change the state of the material. In Fig. 2.3.1b, we draw the Fermi level
for three filling factors on the calculated single-particle band structure. For ⇀ = ±4, we
expect the flat bands to be filled and the MATBG to behave as an insulator, while for the
filling factor ⇀=0, we expect a Dirac-like behavior as in single-layer graphene. Fig. 2.3.2a
illustrates a typical four-terminal longitudinal resistance Rxx vs. moiré filling factor ⇀ for
a MATBG device with twist angle 1 = 1.04→±0.02 across temperatures ranging from T
= 50 mK up to T = 6 K in which we observe a series of high resistive peaks flanked by
low-resistive metallic states.

Single-particle picture

As expected from 2.3.1b the most prominent resistance peaks are observed at electrostatic
doping levels corresponding to the full filling of the bands (four electrons per moiré unit
cell). These states, known as band insulators (BI), correspond to the edges of the flat
bands. Gating the system to these doping levels places the Fermi level at the edge of
the flat bands. The presence of an energy gap between the flat bands and the dispersive
bands (approximately 20-30 meV) manifests in electronic transport as strongly pronounced
insulating states at these fillings (⇀ = ±4), as shown in Fig. 2.2.4b. Another feature
predicted by the non-interacting picture is the charge neutrality point (CNP), similar to
single-layer graphene, which appears as a peak at zero energy.
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Figure 2.3.2: Transport characterization of MATBG. (a) Longitudinal resistance Rxx

as a function of filling factor ε for successive temperatures T ranging from 50 mK to 6 K.
The charge neutrality point (CNP) and the band insultators (BI) marked in blue and grey
respectively are predicted by the band structure obtained in the single-particle picture without
including electronic interactions. The states marked in green appearing at the integer fillings of
the bands are given by electronic interactions and are not predicted by the single-particle band
structure. (b) ConductanceGxx vs. inverse temperature for ε = ±2,+1,+3. The straight lines
are fits to the Arrhenius law for temperature-activated behaviour: Gxx ′ exp (→”/2kBT ).
From this fit we extract gap values of 0.55 meV for ε = -2 and 0.91 meV for ε =+2. (c)
Schematic representation of the DOS without considering electronic interactions, i.e. single-
particle (left) and many-body (right) picture. The flat bands of MATBG in the single-particle
picture are expected to be purely metallic (left). Electronic interactions can split the single
particle bands opening up a gap ”. In the flat bands of MATBG correlated gaps are oberved
in correspondence to integer fillings[33, 122, 127].
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Integer-filling correlated states

Additional resistance peaks are observed at the integer filling of the moiré unit cell (⇀ =
+1,±2,+3). Unlike band insulators, these peaks are not predicted by the single-particle
picture band structure (Fig. 2.3.1b), which predicts metallic states at integer-fillings of
the flat bands. These states, emerging at integer fillings of the flat bands, originate from
strong electronic interactions[33]. The peaks at ⇀ = ±2 exhibit insulating behavior, with
resistance increasing as temperature decreases. By analyzing the thermal activation of
these gaps (Fig. 2.3.2b), the activated gap sizes for these insulating states are determined
to be 0.55 meV (⇀ = -2) and 0.91 meV (⇀ =+2) in the shown device. Thermally activated
gaps were also reported for ⇀ = +3 and ⇀ = +1 [P4] and are absent for the ⇀ = -3 and ⇀
= -1 states. An intuitive explanation for this phenomenon is that when the moiré lattice
sites are fully occupied by an integer number of electrons or holes (integer fillings), no
free lattice positions remain, causing resistance to increase significantly[P4]. Conversely,
resistance remains low at electron densities between these integer values. In terms of band
structure, electronic interactions can split the single-particle flat bands into upper and
lower many-body bands, separated by an energy gap $ (Fig. 2.3.2c). Near the magic
angles, the bandwidth W is significantly reduced, making the on-site Coulomb energy U
larger than W . Consequently, the gap induced by electronic interactions gives rise to the
insulating states observed at the integer fillings of the moiré unit cell, which are referred
to as correlated insulators.

2.3.1 Twist Angle Extraction

Transport measurements are also used to determine the relative twist angle between graphene
layers. As mentioned earlier, the twist angle 1 is related to the superlattice carrier density
ns according to Eq. 2.3.2. By employing transport measurements, ns can be identified
as the carrier density corresponding to the full-filling of the flat bands (band insulators in
Fig. 2.3.2a):

ns =
Cg

e
VBI (2.3.5)

Here, VBI represents the voltage at the position of the band insulators (the edge of the
flat bands), which can be determined by measuring the Rxx vs. Vg traces as shown in Fig.
2.3.2a. The capacitance of the hBN, Cg, can be extracted using various methods, typically
through the low-field Hall e!ect or the quantum Hall e!ect[33, 122].

Low-field Hall E”ect

In a Hall bar geometry (Fig. 2.3.1a), a low external magnetic field < 1 T induces a Hall
resistance from which we can extract the Hall carrier density as[33, 122, 128]:

nH = →
B

eRxy

(2.3.6)
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Where Rxy is the transverse resistance, e the charge of the electron, and B the external
magnetic field at which Rxy is calculated. Typically, the Rxy can be antisymmetrized to
eliminate any signal mixing due to geometric e!ects:

Rantisym

xy
=

Rxy(+B)→Rxy(→B)

2
(2.3.7)

As shown in Fig. 2.3.3a, close to the charge neutrality point, a new Fermi surface forms.
Therefore, the Hall carrier density equals the carrier density, from which the gate capaci-
tance can be extracted by a linear fit with the equation:

nH = n =
Cg

e
Vg (2.3.8)

Quantum Hall E”ect

The quantum Hall e!ect provides an independent method to determine the twist angle.
When a two-dimensional electron system is cooled to low temperatures and subjected
strong magnetic fields (B > 1 T), the energies of cyclotron orbits become quantized into
discrete values, known as Landau levels. The Hall resistance (Rxy) exhibits steps corre-
sponding to these quantized values, while the longitudinal resistivity (Rxx) becomes zero.
By mapping Rxx as a function of gate voltage (Vg) and magnetic field (B), the Landau
levels can be identified in this phase space, known as a Landau fan diagram, as a fan of
tilted lines with Rxx = 0 (see Fig. 2.3.3b). The carrier density (n) corresponding to these
states can be then expressed as[33, 123, 128]:

n = ⇀LL
eB

h
(2.3.9)

where ⇀LL is the filling factor of the Landau levels. As shown in Fig. 2.3.3b, using Eq.
2.3.1, the gate capacitance can be extracted from the slope of the Landau levels as:

Cg =
e2

h

$B

$Vg

⇀LL (2.3.10)

In order to properly perform a fitting of the Landau levels, it is important to know the
degeneracy of the Landau levels (⇀LL). For single-layer graphene, the degeneracy is 4-fold
due to spin and valley degrees of freedom. In twisted bilayer graphene, it should be 8-fold,
having the additional degeneracy coming from the second graphene layer. However, while
the 8-fold degeneracy is observed for devices with large twist angles[129], it was exper-
imentally measured that the degeneracy of Landau levels flanking the charge neutrality
point (CNP) in twisted bilayer graphene changes to 4-fold when the twist angle is reduced
to values near the magic angle (⇀LL = ±4,±8,±12...), potentially due to interactions or
symmetry breaking[124, 125].
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Figure 2.3.3: Twist angle extraction. (a) Twist angle extracted using the low-field Hall
e#ect. Close the CNP a new Fermi surface forms and the gate capacitance can be extracted by
a linear fit with the equation: nH = VgCg/e. (b) Twist angle extracted using the landau fan
diagram. The capacitance is obtained by fitting the Landau levels originating from the CNP
and the band insulators according to the formula: Cg = e

2
/h · ”B/”Vg · εLL. The Landau

levels filling factors are: εLL = ±4,±8,±12.... The capacitance extracted with both methods
is Cg = 500 nF/cm2 which results in a twist angle of ϱ = 0.93 ± 0.01→.
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2.4 Ultra-low carrier density superconducting state

The most relevant phase for SPD is the ultra-low carrier density superconducting state
observed close to the negative half-filling at ⇀ = →2→↼. Other studies also reported similar
superconducting domes at di!erent filling factors[114, 122, 130]. The color plot in the top
panel of Fig. 2.4.1a shows the carrier density, n versus temperature, T . In this phase space,
the superconducting region is dome-shaped and flanked by a correlated insulating state.
As evidenced by the measurement of the Hall density (nH) vs. carrier density (n) (bottom
panel of Fig. 2.4.1a), in correspondence to the correlated insulator, the Fermi level resets,
lowering dramatically the density of free carriers. For optimal doping, we use the low-field
Hall e!ect to extract a carrier density of nH = →1.96≃1011 cm↑2. As anticipated in Section
1.3.2, the record-low carrier density of MATBG makes it the most diluted superconducting
phase and opens up a promising avenue for low-energy SPD [34, P2]. This peculiar feature
also translates into a record low electronic heat capacity, which is another key thermal
parameter for superconducting detectors (especially for the TES discussed in Section 1.3.1).
In Fig. 2.4.1b we plot the electronic heat capacity (Ce) calculated for MATBG in the non-
interacting picture for a carrier density of nH = →1.96≃ 1011 cm↑2[P2]. For temperatures
below 100 mK, (which is the typical operation temperature for TES) the calculated value
is Ce/A < 103 kB/µm2, which is at the state-of-the-art of TES detectors[68]. However, it is
essential to point out once more, that the heat capacity calculated here neglects electronic
interactions which in this system are strong. Even though these heat capacity values might
not be accurate, they still point out the sensitivity of MATBG for SPD.



48 2. Magic-angle twisted bilayer graphene

10-2 10-1 100

101

102

103

104= -2

SC

-2 -1.5 -1

10-1

100

101

-2 -1.5 -1

-1

-0.5

0

nH=-1.96x1011cm-2

Te (K)

T e
 (K

)

n (1012 cm-2)

n H
 (1

012
 c

m
-2

)

Vg (V)

C
e /

 A
 (k

B 
/μ

m
2 )

a b

20100

Rxx (kΩ)

Figure 2.4.1: Superconducting state of MATBG. (a) Top panel: Longitudinal resis-
tance, Rxx vs. gate voltage, Vg and temperature, Te for a MATBG superconducting device.
The superconducting region is dome-shaped in the n → T phase space (yellow dashed line)
and is flanked by a correlated insulating state at ε = →2 (white dashed line). Bottom panel:
low-field Hall e#ect at B = 300 mT, from which we extract the Hall carrier density, nH as
a function of gate-induced carrier density, n. At ε = →2, a Fermi level reset occurs, which
reduces the free carrier density to an ultra-low value of nH = →1.96 ≃ 1011 cm↑2. Adapted
from [P2]. (b) Electronic heat capacity per unit area calculated for MATBG, considering a
carrier density of →1.96 ≃ 1011 cm↑2. At 35 mK the heat capacity shows ultra-low values
of Ce/A ↑ 102 kB/µm2. The heat capacity is calculated in a single-particle picture without
including electronic interactions. The theoretical modeling of the heat capacity was performed
by Prof. Dr. Alessandro Principi[P2].
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Fabrication of magic-angle twisted

bilayer samples

The work presented in this chapter led to the publication [P6]:
J. Dı́ez-Mérida, I. Das, G. Di Battista, A. Dı́ez-Carlón, M. Lee, L. Zeng, K. Watan-
abe, T. Taniguchi, E. Olsson and D. K. Efetov, ”High-yield fabrication of bubble-free
magic-angle twisted bilayer graphene devices with high twist-angle homogeneity”,
arXiv 2405.11323 (2024).
My contribution to this work was device fabrication, transport measurements, dis-
cussion, and participation in the writing of the manuscript.

As discussed in Chapter 2, the emergence of flat bands in MATBG gives rise to various
quantum phases, including ultra-low carrier density superconductivity, which is partic-
ularly advantageous for single-photon detection[P1, 34]. Despite numerous studies con-
ducted since the discovery of this material, significant challenges persist in the device
fabrication, which is notoriously tedious and su!ers from low yield[P6]. The quantum
phases mentioned in Chapter 2, are strongly influenced by several external factors, such as
the twist angle[131], the encapsulating layer, [132–134], as well as twist-angle inhomogene-
ity[135, 136] and strain[137, 138]. Specifically, these last two factors are susceptible to the
details of the stacking process[135]. In this chapter, we describe the fabrication protocol
implemented and optimized to achieve high-quality assembly of MATBG devices. This pro-
tocol, based on a modified dry-transfer technique[139], allows for the production of nearly
bubble-free MATBG devices and results in high twist-angle precision and homogeneity[P6].
In section 3.1, we first discuss the exfoliation process and the criteria for selecting flakes
to achieve high-quality stacks. In section 3.2, we describe a method developed to lock the
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twist angle of MATBG, significantly increasing the fabrication yield. In the final section
we quantify the twist-angle disorder obtained with our fabrication protocol (section 3.3).

3.1 Preparation of the 2D crystals

3.1.1 Exfoliation

The exfoliation technique employed for our 2D crystals follows the standard protocol estab-
lished in 2015 [140]. The crystals are exfoliated using the Scotch tape method on Si/SiO2

(285 nm) substrates, pre-cleaned with O2 plasma. Additionally, for graphene and graphite
flakes, the chip substrate is heated to approximately 100 →C for a few minutes to enhance
the exfoliation yield. Conversely, no heat is applied to hBN chips before the peeling pro-
cess. Due to the lower density of hBN on the tape compared to graphene, heating the
substrate will result in excessive tape residues.

3.1.2 Flake Selection

In our experience, a crucial step for ensuring a successful outcome and achieving high yield
and homogeneity of the final stack is the careful selection of 2D crystals from which the
heterostructure is assembled. Following the exfoliation process described above, the 2D
layers are examined under an optical microscope. We use several criteria for selecting the
individual flakes and determining the relationships between the di!erent components in the
stack. The primary criterion involves identifying pristine and homogeneous flakes. These
should be free of tape residues and step-terraces and well isolated from nearby bulk regions,
which typically cause issues during stacking. Additionally, there are specific requirements
to consider for the di!erent materials. In the following, we provide a detailed discussion
of the selection criteria employed for each stack component.

Figure 3.1.1: Flake Selection. (a) A suitable graphene flake should be at least twice as
large as the desired device size, with an aspect ratio of 2:1. (b) The hBN flake should be free
of tape residues, step-terraces, defects, or folds. The thickness should be around 10-15 nm,
and a sharp edge is needed to lock the graphene. (c) A suitable graphite gate is ↑ 2-4 nm
thick, 3-7 µm wide and 10-15 µm long.
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Graphene flakes

As will be discussed in the following, the graphene will be cut into two parts to create two
graphene layers with the same crystallographic orientation. Therefore, the graphene flakes
should be at least twice as large as the desired device size (aspect ratio of 2:1), so they can
be cut into two almost equal parts. The size of the graphene and graphite determines the
ultimate device size. The typical active area we aim for has a spatial extension of 10 µm2

to 50 µm2. As the usual width of the active area achieved with the graphite gate is in the
range from 3 µm-7 µm, graphene flakes which are ↑ 10-15 µm ≃ 15-30 µm are typically
desired, such that the final Hall bar devices are ↑ 10 µm long. It needs to be considered
that not all the twisted bilayer areas will be fabricated, and only the homogenous regions
will be used for the final device.

hBN flakes

The complete encapsulation of graphene with insulating hBN layers was crucial to achieve
high mobility in transport experiments[141]. Therefore, in our sample, we fully encapsulate
the graphene and choose the flakes to be 10-15 nm thick, which is considerably thinner
than the ones typically used[33, 114, 130, 134]. We find that the thinner hBN has several
advantages. First, thinner hBN flakes are more elastic than thicker flakes, making the
stacking process smoother and mitigating the strain within the hetero-structure. This also
helps to avoid uncontrolled movements of the stamp’s wavefront during stacking, which
can give rise to bubble formation[P6]. However, hBN flakes are chosen to be > 5 nm as
below this thickness, they are structurally weak and may tear during the stacking process
or may give rise to capacitive coupling or current leaking from the gate electrode to the
device. As will be discussed in section 3.3.2, using thin flakes is also important to increase
the twist angle homogeneity and reduce disorder. Indeed, thin hBN provides higher optical
transparency than thicker flakes, crucial to visualizing dirt, defects, folds, or wrinkles in
thin hBN flakes under the optical microscope[P3]. Another important criterion is that the
hBN, which will be picked up first, should have at least one sharply defined edge. As we
will explain in the section 3.2, this is crucial for anchoring graphene during the pick-up
process, which helps stabilize and lock the crystallographic orientation of the graphene
sheets in the hetero-structure[P6].

Graphite flakes

The desirable parameters for the graphite flakes that serve as gate electrodes are ↑ 2-4
nm for the thickness, 3-7 µm for the width, and 10-15 µm for the length. The width is
chosen to be smaller than the whole graphene area such that the arms of the Hall bar in
the final device can extend beyond its width, allowing independent gating of the central
region of the Hall bar and the arms, which enables control over the contact resistance. As
superconductivity in MATBG results from a percolation path defined by twist angle inho-
mogeneities[135], the device width determines the probability of finding a superconducting
percolation path within the device active area and, therefore, should not be reduced below
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a few µm[P3]. Regarding the thickness, we avoid using graphene with fewer than four layers
because this thickness is insu”cient to screen the charge puddles in the SiO2 substrate[142]
and can exhibit magnetic properties as shown in the rhombohedral orientation[97]. Thicker
flakes are also avoided as they might be di”cult to pick up from the stack[P6]. As they are
narrower than the twisted graphene regions, they also produce an unwanted height step
and curvature in the TBG device, directly proportional to the graphite thickness[143]. The
bottom gate needs to be longer than the graphene to be contacted during the lithography
process without unwanted connection to the graphene.

3.1.3 Creation of two graphene with the same crystallographic
orientation

To ensure that both sheets have the same initial crystallographic orientation before the
rotation of the layers, MATBG devices are always assembled starting from a single crystal
graphene sheet that is then cut into two halves. The first method of cutting the graphene
in two parts was the ”tear-and-stack”[129, 144], which consisted of pulling and tearing
the graphene sheet during the pick-up process. This method was replaced by the ”cut-
and-stack” method[132] where the original graphene flake is cut into two pieces with the
advantage of not inducing a pulling and tearing motion in the graphene sheet. To cut the
graphene, we use two techniques: one with an AFM cantilever mounted on a glass slide and
the other with an ultra-strong pulsed laser beam[P6]. The first technique (schematically
illustrated in Fig. 3.1.2a) consists of mounting with scotch tape a cantilever on the edge of
a PDMS square, which is glued on a glass slide. The glass slide with the AFM cantilever
is then placed on the micromanipulator of the transfer stage and lowered towards the chip
with the desired graphene flake until contact is made. Once in contact with the chip,
the sample stage is moved while the glass slide is fixed. The AFM cantilever passes over
the graphene flake, resulting in a 1 µm-wide cut (Fig. 3.1.2b). The second technique
(schematically illustrated in Fig. 3.1.2c) uses an infrared pulsed laser (1064 nm) with an
average power of 200 mW[145]. The laser path to the sample is focused using a 100≃
objective, with a beam waist of about 1 µm. By passing the laser across the desired flake,
it is possible to cut the graphene analogously to the AFM cantilever (Fig. 3.1.2d). In Fig.
3.1.2b and d, we compare the graphene cutting obtained with the AFM cantilever and
the laser. While both techniques give similar results, the laser provides a more controlled
graphene-cutting process by inducing less mechanical stress than the AFM cantilever and
reducing the chance of breaking a flake while cutting it.
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Figure 3.1.2: AFM cantilever and laser cutting. (a) Schematic of the graphene cutting
technique using the AFM cantilever mounted on the micromanipulator. (b) Optical image of
the graphene flake cut with AFM cantilever. (c) Schematic of the graphene cutting technique
employing the infrared pulsed laser. (d) Optical image of the graphene flake cut using the
pulsed laser. Adapted from [P6].
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3.2 Assembly of MATBG devices employing twist-
angle locking

3.2.1 Vertical Assembly Technique

After selecting and cataloguing the suitable 2D flakes, we prepare an assembly plan for the
stack, ensuring the shape, size, and geometry of the di!erent flakes fit properly. We use
a stamp mounted on a glass slide to perform the dry-transfer process, similar to previous
works[146]. The stamp consists of a piece of polydimethylsiloxane (PDMS), a few mm2 in
area and 1 mm thick, covered with a polycarbonate (PC) film. The shape can be square,
circular or triangular. The PDMS is a viscoelastic material that acts as a cushion during
the pick-up process. The PC film is chosen as the adhesive layer due to its high adhesion
properties to the 2D materials, and it allows the stacking process to be performed at high
temperatures (↑ 100 →C), which helps remove impurities from the device during lamination
(as discussed in 3.3).

Transfer Stage

The dry transfer stacking technique is performed using a transfer stage, also referred to as
a stamping setup. The transfer stage is an optical microscope modified to assemble van
der Waals heterostructures[P6]. Below, we list the main components of the transfer stage
(shown in Fig. 3.2.1):

• Table to stabilize vibrations.

• X-Y motorized sample stage (b1).

• Manual rotation control with a goniometer (resolution of 0.016→) to twist the two
graphene sheets to the desired angle (b2).

• Micromanipulator stage. It consists of a metallic arm (c4) that can move in the
X-Y-Z directions and tilt on the X-Y plane (c3). The micromanipulator holds and
controls the glass slide with the stamp during assembly. By moving the manipulator
in the X-Y direction (c1), we can position the stamp over the sample, and by moving
it in the Z direction (c2), we control its height. This allows for making contact
or retracting the sample, enabling precise control of the stacking direction and the
smoothness of the contact between the stamp and the sample. The tilt angle in the
X-Y direction determines the amount of force applied to the PC film.

• Vacuum pumps are used to keep the back of the sample and the stamp in vacuum
during the stacking procedure (d).

• Long working distance objectives employed to provide enough space to contact the
stamp to the chip while maintaining the proper magnification needed to focus light
on the sample.
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• Temperature control, which consists of a heater and a thermometer, regulates the
temperature of the sample stage during the stacking procedure.

• Camera and imaging software (i).

• Aperture diaphragm control lever. During the stacking process, a large amount of
scattered light comes from the glass slide with the PDMS/PC stamp, hampering
focus at the sample stage. Closing the aperture diaphragm increases contrast (while
reducing brightness) and the depth of field, allowing proper focus of the light passing
through the stamp onto the sample.

• Optical filters. Low-pass or band-pass optical filters, which selectively remove certain
optical components, help detect defects in the flakes.

• White light source used to image the sample.

Figure 3.2.1: Vertical assembly setup. (a) Front view of the home-made stamping setup.
(b) Lateral view of the home-made stamping setup. The specific parts are listed in the text.
Adapted from [P6] and [147].
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Pick-Up Technique

By manually lowering the z-micromanipulator of the transfer stage, which holds the PDMS/PC
stamp, it is possible to approach the 2D layers. The direction in which the PC approaches
the crystal determines the relative orientation between the flakes. Therefore, rotating the
stamp to the ideal position is crucial. The pick-up process starts by lowering the stamp
until it contacts the SiO2 surface. Once the PC is on the substrate, the contact surface, or
’wavefront’, can be easily controlled by moving the z-micromanipulator. The chip with the
desired flake is placed on the heated sample stage and held in place by applying vacuum
to its back side. The point of contact is easily visible as it is surrounded by Newton’s rings
(see Fig.3.2.2a, b, c, d, and g). Typically, we tilt the angle of incidence of the glass slide
such that the PDMS/PC stamp makes its first contact with the substrate at one of its
corners, allowing better control of the wavefront. Since the sudden movement of the PC
film can tear, move, or induce bubbles in the heterostructure, once the PC film has fully
laminated over the flake, the stamp is retracted slowly. Given the importance of homo-
geneity in the PDMS/PC stamps, particular care is taken in their preparation. Detailed
information on the stamping preparation is provided in the supplementary information of
ref. [P6].

3.2.2 Locking the twist-angle of MATBG by anchoring to the
hBN edges

The primary challenge in fabricating twisted moiré heterostructures is maintaining the
target twist-angle throughout the entire fabrication process. During the pick-up process,
lateral and vertical forces applied to the 2D crystals can cause flakes to move and rotate
relative to each other, significantly reducing the yield of MATBG devices. Specifically, for
MATBG, the configuration where the two graphene layers are rotated at 1.1→ is metastable,
while the energetically favorable configuration is at a relative angle of zero degrees, causing
the layers to revert to an AB configuration[119]. To enhance the yield of MATBG devices,
we have developed a clamping technique that interlocks the edges of graphene with hBN,
thereby stabilizing the relative twist angle[P6]. Utilizing this technique, we observed a
substantial increase in the yield of MATBG devices. The first picked-up hBN is selected
for its sharp edge, which serves as an anchor to which the two graphene flakes are clamped.
Specifically, the edges of graphene, resulting from the cutting process, fold over the sharp
edge of the hBN over a length of approximately 1 µm, as visible in the optical images (Fig.
3.2.2b-d), minimizing any relative motion between them. Crucially, the clamping must
be performed using a non-crystallographic axis of both graphene and hBN to avoid unin-
tentional alignment between the layers, which would induce an additional moiré pattern
potentially influencing the device’s band structure[148, 149].
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3.2.3 Stacking Process

After identifying a clean region of the PC film suitable for picking up the entire stack, we
assemble the heterostructure. The whole pick-up process is conducted at approximately
100-120 °C. The flakes are laminated at a constant temperature, and the crystals are
approached manually using the z-micromanipulator of the transfer stage. The complete
stacking process is illustrated in Fig. 3.2.2.

• Top hBN. The initial step involves picking up the top hBN with the PDMS/PC
stamp. Since the top hBN is used to pick up the other layers, it is crucial to align the
sharp edge of the hBN, which will be used to lock the graphene, with the direction
in which the PC approaches the crystal (Fig. 3.2.2a).

• 1st Graphene. To pick up the first graphene layer, the chip is positioned such that
the graphene’s edge aligns with the top hBN’s sharp edge. During this step, the
graphene flake is clamped with the top hBN layer (indicated by red arrows in Fig.
3.2.2b,c). The wavefront is approached very slowly to the substrate, and the first
graphene layer is fully laminated by the hBN, avoiding any contact between the PC
or the hBN with the second graphene flake, which could distort the twist angle. Once
hBN fully covers the first graphene, the stamp is slowly retracted and moved a few
millimeters above the chip.

• 2nd Graphene. Before picking up the second graphene sheet, the sample stage is
rotated to the target angle of 1.1→. Typically, the target angle is slightly larger than
1.1→ to account for the slight twist-angle relaxation often observed during the pick-
up process. The second graphene layer is overlapped with the first, and the pick-up
procedure is repeated in the same manner as for the first graphene. Similarly, the
second graphene layer is clamped to the hBN edge (Fig. 3.2.2d).

• Bottom hBN. After picking up both graphene layers, the bottom hBN is picked
up. The flake is selected to encapsulate the graphene fully and completely cover the
bottom graphite gate (Fig. 3.2.2e,f)[P3].

• Graphite back gate. In the final step, the graphite back gate is picked up. Based
on our experience, mechanical strain accumulates mainly during this final step of the
stacking process while picking up the graphite gate[P3]. This tension can a!ect the
twisted bilayer graphene region, relaxing its twist angle or displacing the position of
the graphite gate, potentially destroying the entire stack. Complete encapsulation
of the graphite gate with the bottom hBN flakes facilitates the pick-up from the
substrate, preventing this from occurring (Fig. 3.2.2g)[P3, P6].

• Dropping the Stack. Finally, the complete stack is dropped onto a SiO2/Si chip
with pre-patterned markers used for alignment in the nano-fabrication process. Be-
fore dropping, the chips are cleaned with O2 plasma to improve the adhesion of the
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heterostructure. The contact between the PC film and the chip is made at approxi-
mately 120-150 °C to enhance bubble mobility. The wavefront is moved slowly over
the stack to push away all remaining bubbles[P6]. Once the full stack is in contact,
the stage temperature is raised to the melting point of PC, approximately 180 °C. At
around 135-140 °C, the PC detaches from the PDMS, and the z-micromanipulator
is moved up to detach the entire PC film from the PDMS, and the stamp is fully
retracted. At this point, the areas of the PC film in contact with the chip are fully
melted and detach from the remaining PC areas on the glass slide (Fig. 3.2.2h).

Throughout the whole process, the stamp’s X-Y micromanipulator and sample stage
are not moved to avoid tearing the stamp. Once the stack is dropped, the heater is turned
o!, and the stage temperature is lowered to room temperature. The PC polymer is cleaned
by dipping the chip in chloroform for 3 to 5 minutes, then in acetone for 1 minute, and
finally in isopropanol for 1 minute. An optical image of the assembled and cleaned stack
is shown in Fig. 3.2.2i.

3.2.4 Shaping of the device and electrical contacting

Once the heterostructure is stacked and assembled, it can be fabricated for the specific
purpose of the experiment. In our case, we typically opt for a Hall bar geometry as we
employ the low-field Hall e!ect or the quantum Hall e!ect to extract the twist angle. We
shape the sample into the desired nanostructure using electron-beam lithography and reac-
tive ion etching (CHF3/O2 plasma). The heterostructures are then electrically connected
through 1D edge contacts[150] using 5 nm of chromium and 50 nm of gold.
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Figure 3.2.2: Stacking process. (a) The first step consists in picking up the top hBN
with a stamp of PDMS/PC. (b) In the second step the top hBN is used to pick up the first
graphene which was pre-cut in two halves. The red arrows highlight the part of graphene which
sticks out of the hBN and that will anchor to the sharp edges of hBN. (c) This image shows
successful pick-up of the first graphene layer as indicated by the change of color. (d) After
rotating the stage at 1.1→ with a goniometer the second graphene layer is picked up. (e) Once
the two graphene layers are successfully picked up, (f) The bottom hBN is picked up. (g)
The stack is carefully aligned over the bottom graphite gate. (h) Finally the stack is dropped
on a Si/Sio2 chip by melting the PC at 180→. The chip has pre-patterned markers, used for
alignment in the nano-fabrication process. (i) The PC layer is removed with clorhoform and
the stack can be etcehd in the desired shape and electrically connected. The stack shown here
exhibited a twist angle of 1.10→ ± 0.02→. The scale bar in all figures is 25 µm.
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3.3 Twist-angle homogeneity

In this section, we describe the role of bubbles in the twist angle inhomogeneity and detail
the bubble removal technique implemented to mitigate twist angle disorder. We also extract
the average twist angle between pairs of leads to spatially quantify the twist angle disorder
and discuss the yield of this fabrication process.

3.3.1 Strategies to enhance twist-angle homogeneity

The initial studies on MATBG using local probe techniques with nanometer resolution
revealed that local twist angle disorder in moiré heterostructures is closely linked to the
presence of bubbles. Intuitively, we can imagine that these bubbles distort the crystalline
structure, modifying the twist-angle condition in regions up to approximately 0.5 µm
around the bubble[135] and inducing significant strain in the device[138]. Therefore, to
achieve optimal 2D interfaces and maximize twist-angle uniformity, it is essential to min-
imize bubble formation during the stacking process. Bubbles typically form due to the
accumulation of contaminants on the surfaces of the di!erent 2D materials[151, 152] or
rapid movements of the wavefront that trap air along the interface[153]. Therefore, achiev-
ing a smooth stacking process, which can be achieved through precise control of the stamp’s
wavefront, is crucial. We have implemented several strategies to reduce bubble formation
over the years, which we summarize in the following.

Using clean stamps and flakes

We ensure that the area of the stamp used for picking up the flakes is clean and free
from dust particles or bubbles. As mentioned in section 3.1, we only use flakes with clean
interfaces to avoid any dirt or defects that could induce bubbles.

Employing thin hBN flakes

We opt for thin hBN flakes with a 10-15 nm thickness for two main reasons. Firstly,
using an optical microscope, thicker hBN would not provide enough optical transparency
to visualize the MATBG underneath[P3]. This is crucial for visualizing and identifying
cracks or folds in the graphene layers, to avoid during fabrication. As anticipated in
section 3.1, optical transparency also aids in identifying step-terraces or tape residues on
the hBN interfaces. These residues can trap air or cause abrupt movements in the stamp
wavefront during stacking, leading to bubble formation. Secondly, thin hBN flakes are
more elastic than thicker ones, facilitating a smoother stacking process and relieving strain
within the heterostructure[P6].

High-temperature colamination process

As discussed in previous reports, performing the stack at high temperatures can enhance
bubble mobility during pick-up and improve the self-cleaning properties of the van der
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Waals interfaces[151, 154]. Following this approach, we conduct the entire stacking process
at relatively high temperatures (approximately 100 - 120°C). In particular, when picking
up the bottom graphite gate in the final step of the stacking process, we carefully utilize the
temperature increase to remove bubbles that may have formed in earlier pick-up steps. To
achieve this, we keep the micromanipulator stationary and gradually increase the temper-
ature from 100°C to a maximum of 120°C, allowing the temperature to drive the bubbles
away from the sample. The bubble removal process is illustrated in Fig. 3.3.1. The stack
shows numerous bubbles before the gate pick-up some of which lie in the twisted bilayer
area (Fig. 3.3.1b). During the pick-up, the temperature increase rearranges the bubbles
and pushes them away, resulting in a clean graphite region with fewer bubbles forming
only at the edges of the graphene (Fig. 3.3.1c).

Figure 3.3.1: Bubble removal during the pick-up process. (a) Schematics illustrating
the final step of the stacking process, which involves the pick-up of the bottom graphite gate.
(b) Before pick-up: the stack has numerous bubbles some of which lie in the device area.
(c) After pick-up: By increasing the from 100°C to a maximum of 120°C, the bubbles are
e#ectively pushed out of the device region and accumulate at the graphene edges. This device
exhibited a twist angle of 1.1→ ± 0.02→. The stack shown here is prepared and assembled by
me and the image is adapted from [P6].

3.3.2 Twist-angle homogeneity with our fabrication protocol

This section quantitatively assesses the twist-angle homogeneity achieved through our fab-
rication protocol. Improvements in the fabrication technique enable the realization of
sharp superconducting transitions and hysteresis loops in the I-V characteristics, which
are critical for SPD applications, as discussed in section 6.1. To quantify the twist-angle
homogeneity, we conduct a two-probe mapping across all the available contacts of the
MATBG device. As mentioned in section 2.3.1, knowing the gate capacitance of the hBN
insulating layer, we can determine the superlattice carrier density from the voltage of the
band insulators (VBI) using the relation: ns = CgVBI/e and subsequently the twist angle
according to Eq. 2.3.2. By extracting the twist-angles between all of the available contact
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pairs in the devices, we typically identify regions of about 6 µm2 with twist-angle varia-
tion $1 ↖ 0.02→. Some exceptionally high-quality devices fabricated with this technique
exhibit homogeneous areas up to 36 µm2[P6], as illustrated in Fig. 3.3.2. However, even
in these highly homogeneous devices, we observe regions where the twist angle between
neighboring contact pairs changes abruptly, likely due to stacking faults between the two
graphene sheets[P6].

In this discussion, it is important to mention that transport measurements probe the
electrical properties of the area between two contact pairs spaced approximately a few
micrometers apart. Therefore, the twist angle reported in Fig. 3.3.2 should be interpreted
as a global twist angle derived from the average carrier density (n̄ ↙ CgVg/e ) on a mi-
crometer scale. On the nanometer scale (few moiré unit cells), it is expected that there
are areas with di!erent twist angles 1(r), which translate into a local carrier density distri-
bution n(r) as reported by local probes experiments[135, 136]. Consequently, the phases
of matter observed in MATBG and other moiré materials are significantly influenced by
local twist-angle inhomogeneities. In section 6.3.4, we discuss the impact of twist-angle
inhomogeneities on the e”ciency of the observed SPD response.
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Figure 3.3.2: Characterization of the twist-angle homogeneity across the sample.
(a) Optical image of a MATBG device with twist-angle homogeneity over 36 µm2. (b) Two
probe terminal conductance G vs. carrier density n measurement at T = 35 mK for the
di#erent contacts in the device shown in (a). The device shown in (a) is prepared and measured
by me and the image is adapted from [P6].



4
Experimental methods

In this chapter, we describe the experimental setup employed in the experiments.
My contributions include the design of the optical setup, the realization of custom-
made components, the implementation and characterization of the electronic setup
used for single-photon detection, and the development of the software required for
data acquisition and analysis.

In the previous chapter, we explored the main aspects of the fabrication of MATBG
samples and discussed the methods implemented to mitigate the twist angle inhomogeneity.
This chapter focuses on the experimental techniques employed to measure the electronic
properties and the photoresponse of MATBG devices. The chapter is divided into three
sections: the first introduces the cryogenic setup used to cool down the samples. The
second describes the electronic setup employed for low-frequency transport experiments
and SPD and the third discusses the optical setup used to illuminate the superconducting
state of MATBG.

4.1 Cryogenic setup

Properly cooling down the electrons is a technical challenge for observing and exploring
quantum phases. Cryostats can achieve this by reaching extremely low temperatures (down
to a few mK). This section introduces the cooling principles of dilution refrigerators and
details the main components that constitute this type of cryostat. Understanding these
principles is crucial for implementing the optoelectronic setup used to demonstrate SPD
and adequately designing the millikelvin terahertz setup discussed in Chapter 7. We discuss
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how to ensure proper thermalization of the electronic ensemble using cryogenic filters and
measure the resulting bandwidth available in our experiments.

4.1.1 Dilution cooling

Fig. 4.1.1a shows the x-T diagram of liquid 3He-4He mixtures at saturated vapor pressure,
where x = n3

n3+n4
is the concentration of the 3He isotope and n3 and n4 are the molar

concentrations of the 3He and 4He isotopes. The phase diagram indicates the values of x
and T for which the 3He-4He mixture is in the normal, superfluid, or separated phases. For
temperatures below 0.87 K, the liquid separates into two phases, one rich in 3He (concen-
trated) and the other rich in 4He (diluted). Because of its lower density, the 3He-rich liquid
floats on top of the 4He-rich liquid. By cooling down the temperature close to absolute zero,
the 3He-rich liquid becomes pure 3He (↑ 100%) while the 4He-rich side reaches a constant
concentration of 3He (6.6%) and of 4He (93.4%) even for T = 0 K, as sketched in Fig. 4.1.1b.

In this configuration, given the di!erence in specific heat between diluted and concen-
trated phases (C3,d(T ) > C3,c(T )) by transferring 3He atoms at the molar flow rate ṅ3

from the concentrated into the dilute phase, cooling will result according to the enthalpy
di!erence $H[155]:

$H =


$CdT (4.1.1)

Which results in a cooling power, Q̇[155]:

Q̇(T ) = ṅ3[H3,d(T )→H3,c(T )] = 84ṅ3T
2[W ] (4.1.2)

In our experimental setup the typical flow rate is ṅ3 = 300 µmol/s, resulting in a cooling
power of Q̇ ⇔ 250 µW at T = 100 mK. The finite solubility of 3He is crucial for operating
a 3He-4He dilution refrigeration because it permits a high 3He molar flow rate even at
temperatures close to absolute zero. This di!erentiates the operation of a dilution cooling
from a pumping cooling[155].

Dilution cooling vs. evaporation cooling

Pumping cooling consists in pumping the vapour above a liquid. In this way, the hottest
atoms leave the liquid to fill the vapour, reducing the mean energy of the liquid and cooling
it down. The cooling power of an evaporating cryogenic liquid where ṅ particles per time
are moved to the vapour phase is given by [155]:

Q̇ = ṅ[Hliq →Hvap] = ṅL (4.1.3)

Where Hliq→Hvap is the enthalpy di!erence between the liquid and vapour phase, and L
is the latent heat of evaporation. In the assumption of pumping with a pump of constant
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Figure 4.1.1: Phase diagram of liquid 3He-4He mixtures. (a) Phase diagram of liquid
3He-4He mixtures at saturated vapour pressure. For temperatures below 0.867 K the two
isotopes are only miscible for certain limiting concentrations which depend on the temperature.
Even at T = 0 K the concentration of 3He does not approach to zero but remains at x = 6.6%.
Adapted from [155, 156]. (b) Schematics of the molar flow of 3He atoms from the concentrated
to the diluted phase which leads to cooling.

volume rate on a 3He-4He bath with vapour pressure Pvap, the cooling power decreases
exponentially with temperature:

Q̇ = V̇ P (T )L(T ) ′ P (T ) ′ e↑1/T (4.1.4)

As the vapour pressure decreases exponentially with temperature, at low enough temper-
atures, there is almost no vapour left, resulting in an exponentially decreasing cooling
e”ciency. This limits the minimum temperatures obtainable by pumping on an evaporat-
ing cryoliquid, which are typically around 1.3 K for 4He and 0.3 K for 3He (see Fig. 4.1.2a).
On the contrary, dilution cooling allows a high 3He flow rate even at temperatures close to
absolute zero, which guarantees a higher cooling power even below 0.3 K (see Fig. 4.1.2b).

4.1.2 Dilution refrigerator principal parts

• Pulse tube cooling. The pulse tubes cool the system down to 4 K where the the
dilution cycle can start. This cryo-cooler consists of a compressor, a regenerator and
pulse tubes (Fig. 4.1.3a). The compressor or piston compresses the working gas,
usually helium, at 10–20 bar, moving the gas particles towards the closed end of the
pulse tube. The heat of compression (Q0) is removed by cooling water. This adiabatic
compression raises the temperature of the gas particles and generates a temperature
gradient from the hot end to the cold end of the pulse tube. At the hot end, the gas
conducts its heat to the surroundings through a heat exchanger (Qh), causing the
gas temperature to lower. Then, the piston retracts, and the gas undergoes adiabatic
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Figure 4.1.2: Dilution cooling vs. evaporation cooling. (a)Vapour pressures of 3He and
4He cryoliquids which decrease exponentially with decreasing temperatures. The dots indicate
the practical lower temperatures achievable by pumping the vapour pressure. (b) Cooling
power, Q̇ of a 3He evaporation cryostat and of a 3He-4He dilution refrigerator, assuming a
helium gas circulation rate of 5 liters per second. Adapted from [155].

expansion, which cools it further. At the cold end of the pulse tube, the gas provides
the desired cooling power (Qc) through a second heat exchanger. Then, the expanding
gas passes from the pulse tube into the regenerator, a high heat capacity material. In
this step, the gas absorbs heat from the regenerator and the pulse tube walls, cooling
them so that the following cycle can start by compressing the gas back through a
pre-cooled regenerator. The gas begins at a lower temperature and reaches an even
lower temperature after finishing its compression-expansion cycle. In this cycle each
element of the gas transports heat against the temperature gradient toward the closed
hot end of the pulse tube, where the heat exchanger absorbs it[155].

• Condensing mixture in the dilution refrigerator. When the cryostat is cooled
at 4 K, the 3He-4He mixture can be condensed into the system. The condensed
mixture fills the mixing chamber, the heat exchangers and part of the still plate. At
this point, pumping the vapour pressure in the still will cool it down to < 0.8 K,
through evaporative cooling.

• Phase separation. As the temperature is < 0.8 K the phase separation of the
mixture will occur and the liquid separates into a 3He-concentrated phase and a
3He-diluted phase which will accumulate on the bottom of the mixing chamber.

• Pumping of 3He vapour at the still plate. As discussed above, in a dilution
refrigerator, the cooling occurs when 3He atoms are transferred from the 3He-rich to
the 3He-poor side (see Eq. 4.1.2). To enable this circulation, it is important to heat
the temperature of the still plate at an appropriately high temperature, e.g. 0.7 K.
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This is generally achieved by supplying heat with a heater Q̇st [W] ↙ 40 ṅ3 [mol] (in
our setup Q̇st ↙ 10 mW). At this temperature, the vapour pressure of 3He is much
larger than the vapour pressure of 4He (see Fig. 4.1.2a). For example, at T = 0.7
K and x = 1.0 %, we can estimate the pressure of 3He and 4He: P3 + P4 = 22 µbar
and P3/(P3 + P4) ⇔ 90% [157]. Therefore, in the still plate, the vapour is mostly
constituted by 3He (> 90%) and by pumping it is possible to selectively pump almost
pure 3He. This will result in a pressure di!erence between the mixing chamber and
the still plate, which will continuously drive (through osmotic pressure di!erence)
3He from the diluted phase to the still.

• Heater exchange. The heat exchanger uses the enthalpy of the cold 3He gas,
which is pumped away from the still to pre-cool the incoming 3He stream. As the
temperature of the incoming stream gets low, the 3He stream can condense and
balance the flow.
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Figure 4.1.3: Dilution refrigerator principal parts. (a) Schemtics of the pulse tube
cooling. (b) Schemtics of the 3He-4He dilution refrigerator.

4.1.3 Cryogenic low-pass filters

Given the suppressed heat capacity and thermal conductivities of 2D materials, the ther-
malization of the electron gas to the bath temperature (at millikelvin temperatures) is
a challenging task which typically requires adequate shielding from high-frequency elec-
tromagnetic radiation [158]. This section discusses how thermalization is achieved in our
experimental setup. To understand how heat is carried out at low temperatures, we can
roughly estimate the temperature dependence of the thermal conductivity, 3 for electrons
and phonons considering a simple model in which the particles behave as a gas di!using
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through the material[155]:

3 =
1

3

C

Vm

vφ (4.1.5)

Where φ and v are the mean-free path and velocity of the particles respectively, C is the
heat capacity and Vm is the molar volume. The thermal conductivity relates the rate of
heat flow per unit area (Q̇/A) to the temperature gradient (↘T ) through the Fourier law:

Q̇

A
= →3↘T (4.1.6)

The heat conduction through a wire of cross-section A, length L and thermal conduc-
tivity 3 is given by:

Q̇ = 3(T )A
dT

dx
(4.1.7)

From which integrating in both sides we get[155]:


L

0

Q̇dx = A


L

0

3(T )
dT

dx
dx = A


T2

T1

3(T )dT (4.1.8)

Knowing the temperature-dependence of 3(T ) for phonons and electrons, respectively, we
can predict which of the two ensembles dominates the heat transport at low temperatures.

Lattice thermal conductivity

For the phonon ensemble the thermal conductivity reads[155]:

3ph =
1

3

Cph

Vm

vsφph(T ) (4.1.9)

Where vs is the speed of sound, φph(T ) is the phonon wavelength and Cph the phonon heat
capacity. When the temperature is much lower than the Debye temperature (T << %D),
there is a small population of thermally excited phonons which are primarily scattered
by crystal defects or crystal boundaries resulting in a temperature-independent φph (the
phonon wavelength is larger than the lattice imperfections). Therefore, in this temperature
range the lattice thermal conductivity scales as the lattice heat capacity: 3ph ′ Cph ′ T 3.

Therefore considering 3ph = bT 3, we calculate for phonons:

Q̇ =
Ab

4L
(T 4

2
→ T 4

1
) ′ T 4 (4.1.10)

In the specific case of copper: Q̇e↑ph ⇔ 2≃ 103V (T 5

ph
→ T 5

e
) [W][155].
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Electronic thermal conductivity

For the electronic ensemble the thermal conductivity reads:

3e =
1

3

Ce

Vm

vFφe(T ) (4.1.11)

Where φe is the mean-free path of electrons, vF the Fermi velocity, and Ce the electronic
heat capacity. As in metals vF >> vs, the thermal conductivity of electrons is typically
larger than the lattice thermal conductivity. At low temperatures, the scattering of elec-
trons with impurities and lattice defects dominates over the one with phonons, resulting
in a temperature-independent electronic mean-free path. Therefore, the electronic thermal
conductivity scales as the electronic heat capacity: 3e ′ Ce ′ T .

Considering 3e = 30T , we calculate for conduction electrons:

Q̇ =
A30

2L
(T 2

2
→ T 2

1
) ′ T 2 (4.1.12)

Given these considerations we conclude that at low temperatures (below 1K), most
of the thermal transport in solids is carried by electrons (′ T 2) rather than phonons
(′ T 4, T 5). Hence, the thermalization of the sample’s electron gas to the bath at millikelvin
temperatures is obtained via the electrical wires and requires shielding the sample from
room-temperature electromagnetic radiation.

In first approximation, the electronic noise at a frequency ⇀ is related to the temperature
of the electronic ensemble via the relation h⇀ = kBT . Considering a hot (with temperature
Th) and a cold (with temperature Tb) electronic ensemble, we can estimate the spectral
attenuation A(⇀) required to shield the cold electronic system from the hot source as [159]:

A(⇀) =
e

hε

kBT
h → 1

e
hε

kBT
b → 1

(4.1.13)

In Fig. 4.1.4a we plot the attenuation required to shield the electronic ensemble at
di!erent bath temperatures (Tb) from a reservoir at Th = 4 K according to Eq. 4.1.13. We
notice that relatively heavy attenuations are required to thermalize an electron bath at
millikelvin temperatures. For instance, to reach Tb = 35 mK, it is required a damping of -
150 dB at 10 GHz. To achieve such high attenuation factors, a cascade of filters, consisting
of di!erent stages, are typically installed at 4 K, 1 K, and at the base temperature of
the cryostat[158]. Also, a good thermal anchoring of the wires at the filter stages, which
should be well thermalized at their respective bath temperature, is mandatory. In our
experimental setup, we mount a two-stage RC low-pass filter (one reactive 7-pole Pi and
two dissipative RC filter stages) at the 4-K stage. Additionally, we mount RF filters (three
reactive 7-pole Pi) at the mixing chamber stage. The schematic circuit of the filters, as
well as expected attenuations, are shown in 4.1.4b and c. In Fig. 4.2.2 we also show a
schematic of the complete optoelectronic setup.
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Figure 4.1.4: Cryogenic low-pass filters. (a) Attenuation required to shield an exper-
iment at di#erent base temperatures (Tb) from a 4 K reservoir according to Eq. (b)-(c)
Schematics and frequency response of the cascade of RC low-pass filter (b) and RF low-pass
filters (c) employed in the experiment. (b)-(c) are adapted from the Q-Devil filter manual.

4.1.4 E”ective bandwidth of the electrical readout

As discussed in the previous section, the leads in our cryostat are highly filtered with a
cascade of cryogenic low-pass filters. While these filters are essential for ensuring proper
thermalization of the sample’s electrons, they significantly constrain the electrical band-
width available in the experiment. This constrained bandwidth suppresses some spectral
components of electrical signals, leading to distortion of the electrical pulses. In this
section, we quantify the overall bandwidth available in our experiment. Assuming our
electronic readout behaves as an ideal RC low-pass circuit, we characterize its performance
by determining the minimum rise time of electrical pulses and evaluating the available
3-dB bandwidth. To obtain these parameters under conditions resembling our SPD exper-
iment, we place a resistor (10 kΩ) into the sample space and monitor the voltage across
the resistor using a 4-terminal configuration.

• Pulse Rise Time. To measure the minimum rise time, defined as the time required
for a signal to transition from 10% to 90% of the rising edge of the curve, we use an
arbitrary waveform generator (AWG) to generate square wave pulses at a frequency
of 13.3 Hz (Fig. 4.1.5a). We record the voltage across the 10 kΩ resistor with an
oscilloscope. By analyzing the square wave pulse, we extract the minimum rise time
tr = 422 µs (Fig. 4.1.5c). This measurement enables to extract the e!ective 3-dB
cut-o! frequency as[160]: f3dB = 0.35/tr = 830 Hz.

• Frequency Response Magnitude. To measure the 3-dB bandwidth we apply
a sinusoidal AC current to the resistor at frequencies ranging from 3 Hz to 100
kHz using a lock-in amplifier. We measure the voltage generated across the 10 kΩ
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resistor with a lock-in amplifier in the same configuration (see Fig. 4.1.5d). This
measurement shows that the frequency response is flat for low frequencies and drops
around 1 kHz. By extracting the 3-dB bandwidth, defined as the frequency at which
the initial amplitude drops by 3 dB or 0.707 of its initial value, we obtain f3dB = 738
Hz.

Both methods yield compatible results, showing that the bandwidth available in our
experiment is less than 1 kHz. This bandwidth determines the electrical pulses’ rise time
and limits the SPD measurements’ maximum operation speed.
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Figure 4.1.5: Minimum rise time and frequency response magnitude of the electri-
cal readout. (a) Voltage signal measured with an oscilloscope across a 10 kΩ resistor upon
applying a square wave signal with a frequency of 13.3 Hz. (b) Circuit schematics employed
to measure the frequency response magnitude and the minimum rise time of the pulses. (c)
Zoom of the voltage traces in (a) from which we extract the square wave pulse’s rise time,
tr. (d) Frequency response magnitude of the electrical readout. The 3-dB bandwidth, f3dB
defiend as the frequency at which the initial amplitude of the signal drops by 3 dB is marked
by the red dashed line. Adapted from [P1].
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4.2 Electronic setup

In this section, we introduce standard low-frequency lock-in techniques used to characterize
the electronic transport properties of MATBG devices and describe the electrical readout
employed in the SPD experiment.

4.2.1 Low-frequency transport with lock-in technique

Lock-in amplifiers use the knowledge of a signal’s time dependence to isolate it from a noisy
environment. The device multiplies the input signal with a reference signal, internally
generated by the lock-in amplifier or externally supplied, and then applies an adjustable
low-pass filter to the resulting output as illustrated in the schematics of Fig. 4.2.1a. This
technique, referred to as demodulation or phase-sensitive detection, e!ectively isolates the
signal at the desired frequency from other frequency components. Therefore, the typical
experiment involves applying an AC current at a reference frequency to the sample and
measuring the voltage signal in a two or four-probe scheme at the same reference frequency.

Signal mixing

The reference signal is usually a sine wave but can also have other forms, such as square
wave etc. Considering a purely real (zero imaginary part) sinusoidal input signal Vs(t)[161]:

Vs(t) =
⇐

2R · cos(ωst+ 1) =
R
⇐
2
e↑i(ςst+ϑ) +

R
⇐
2
e+i(ςst+ϑ) (4.2.1)

And a complex reference signal Vr(t):

Vr(t) =
⇐

2e↑iςrt (4.2.2)

The complex signal after mixing Z(t) can be calculated as:

Z(t) = X(t) + iY(t) = Vs(t) · Vr(t) = R[ei[(ςs↑ςr)t+ϑ)] + e↑i[(ςs+ςr)t+ϑ)]] (4.2.3)

This signal has two frequency components at ωs→ωr (slow or DC component) and ωs+ωr

(fast component). The goal of the low-pass filter is to suppress the fast component so that
the signal after demodulation becomes:

Z(t) = R · ei[(ςs↑ςr)t+ϑ)] (4.2.4)

Typically the experiment is designed in such a way that the signal frequency is the same
as the reference frequency, ωs = ωr so that the signal simplifies as:

Z(t) = R · eiϑ (4.2.5)

In this way the in-phase and out-of-phase components of the demodulated signal Z(t) can
be extracted as:
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X = Re(Z) = R cos 1 (4.2.6)

Y = Im(Z) = R sin 1 (4.2.7)
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Figure 4.2.1: Lock-in technique. (a) Schematic of the lock-in amplification. The signal
mixer combines the input Vs(t) with the reference Vr(t). The resulting signal is then low-pass
filtered. (b) In the frequency domain the mixed signal (in the assumption of a sinusoidal
input signal) features two components at fs + fr and fs → fr. The red dashed line represents
an ideal ”brick-wall filter” which rejects the noise and the fast component (fs + fr). The
filter time constant ω is inversely proportional to the 3dB bandwidth f3dB. Hence, increasing
the time constant is possible to narrow the bandwidth to suppress the noise. (c) Transfer
function H(φ) against frequency of an RC filter for di#erent filter orders (n = 1, 2, 4, 8).
The dashed horizontal line indicates the 3dB attenuation and the vertical dashed lines define
the corresponding f3dB. High-order filters feature a narrower bandwidth. (d) Step response
functions in the time domain for di#erent filter orders (n = 1, 2, 4, 8). High-order filters lead
to a large increase in the signal settling time. The dashed vertical lines define the settling time
(in units of ω) needed to reach the 99% of the final value (horizontal dashed line). (c) and (d)
are Adapted from [161].

Low-pass filtering in the frequency domain

Once the signal is mixed with the reference, adjusting the low-pass filter to the specific
experiment is crucial to isolate the signal at the desired frequency from other frequency
components. Generally speaking, in the frequency domain the low-pass filter can be ideally
pictured as a ”brick-wall filter” which cuts o! the frequencies f > fcut↑off and keeps
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unchanged the frequencies f < fcut↑off (red dashed line in Fig. 4.2.1b). In a simple
formalism, the relation between the incoming signal Qin(ω) and filtered signal Qout(ω) is
given by[161]:

Qout(ω) = H(ω) ·Qin(ω) (4.2.8)

WhereH(ω) is the transfer function of the filter. For a RC filter, H(ω) can be approximated
as[161]:

H(ω) =
1

1 + iω↽
(4.2.9)

Where ↽ = RC is the filter time constant with resistance R and capacitance C. As
discussed also in section 4.1.4, for an RC filter the cut-o! frequency f3dB can be defined
as the frequency at which the initial signal amplitude is reduced by 3 dB and is given by:
f3dB = 1/(2ς↽). Therefore, the choice of the time constant primarily determines the filter’s
cut-o! frequency. Another important parameter is the roll-o!, i.e. the rate at which a filter
attenuates the signal beyond its cuto! frequency. For this case, the roll-o! is 6 dB/octave
(or equivalent to 20 dB/decade). This means that for every tenfold increase in frequency
beyond the cuto! frequency, the filter’s output signal is attenuated by 20 decibels, or
equivalently, the signal is attenuated by 6 dB (half of the power) for each doubling of the
frequency (see Fig. 4.2.1c)[161]. A filter with such roll-o! is typically a first-order filter.
To increase the roll-o! steepness it is possible to cascade several RC filters. For every filter
added, the order n is increased by 1 and the resulting attenuation has a total roll-o! of n
≃ 20 dB/dec (see Fig. 4.2.1c)[161]:

Hn(ω) = H1(ω)
n =

(
1

1 + iω↽

)n

(4.2.10)

For a high-order filter, the 3dB bandwidth reads[162]:

f3dB =
FO

2ς↽
(4.2.11)

Where FO is a factor that depends on the filter order, e.g., for a first-order filter, FO =
1; for a second-order filter, FO = 0.6436, etc. (see Table 4.1). Hence, increasing the filter
order reduces the 3dB bandwidth, according to Eq. 4.2.11.

Low-pass filtering in the time domain

The filter time constant ↽ and order n are, therefore, the most important parameters that
can be externally tuned in the lock-in amplifier. However, since the applied filters cut some
spectral components, particular care is required to avoid distortion of the original signal.
Specifically, external fixing of ↽ and n results in a constrained electrical bandwidth and a
subsequent modification of the rise time of the electrical signal in the time domain.

As shown in the time-domain response in Fig. 4.2.1d, given the constrained bandwidth,
a certain amount of time is needed for the signal to settle to the actual value. To accurately
measure a filtered signal, it is crucial to wait for the signal to settle before taking the
measurement. In the Table 4.1, we list the waiting time needed to reach some percentage
of the final value for filters of di!erent orders but the same time constants.
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Filter Order Roll-o! FO
Settling times in units of ↽

63% 90% 95% 99%
1 6 dB/oct 1.0000 1.0 2.3 3.0 4.6
2 12 dB/oct 0.6436 2.1 3.9 4.7 6.6
3 18 dB/oct 0.5098 3.3 5.3 6.3 8.4
4 24 dB/oct 0.4350 4.4 6.7 7.8 10.0

Table 4.1: Properties and settling times for n-th order RC filters. Adapted from [162] and
[161].

4.2.2 Electrical readout for single-photon detection experiment

As discussed in the previous section, the lock-in amplifier uses low-pass filtering in the
frequency domain to isolate the signal at a reference frequency from a noisy background.
This measurement technique is used for most of the transport characterization reported
in this thesis (Chapter 2 and 3) and for measuring the bolometric response presented in
Chapter 5. However, the electrical readout used for the SPD measurements di!ers from
the standard lock-in technique. In the proof-of-concept experiment presented in Chapter
6, we use a highly attenuated coherent source that stochastically provides photons incident
on a superconducting MATBG device biased close to the superconducting transition. In
this scenario, there is no reference signal, and the voltage must be monitored over time
to detect photodetection events, which will define the ’clicks’ of the detector. Also, pho-
todetection events can potentially lead to ultra-fast photoresponses in the nanosecond or
even the picosecond range, as discussed in Fig. 5.1. The voltage readout should have the
highest possible bandwidth to avoid cutting any spectral components. By definition, the
lock-in amplifier filters out part of the input signal by applying a narrow-band low-pass
filter. Therefore, instruments capable of recording voltage over time with broader band-
widths are needed. Our experiment uses a sampling oscilloscope with variable bandwidth
up to 600 MHz (UHF-Scope Zurich Instrument) or a 100-kHz-bandwidth analog-to-digital
converter (UHF-Aux In Zurich Instrument). However, as discussed in section 4.1.4, the
available bandwidth in our experiment (< 1 kHz) represents a limiting factor for the speed
of the readout mechanism. A step forward would be implementing radiofrequency cables
that provide large bandwidth while not hampering the electronic temperature. In section
6.4.3 we analyze the timescale of the pulses generated by MATBG and discuss possible
strategies to improve the detector’s speed.

In Fig. 4.2.2, we schematically illustrate the setup employed to perform SPD measure-
ments. We place the device on the cold finger of a dilution refrigerator (BlueFors-SD250),
housed in a gold-coated oxygen-free copper box (custom-designed to have optical access).
We apply a bias voltage at the source contact of the device with a voltage generator (Keith-
ley 2400) in series with a 1/1000 voltage divider. The voltage probes are connected to a
room-temperature 1-MHz-bandwidth low-noise amplifier (SR-560). We also use a room-
temperature low-pass filter with a sharp cut-o! of approximately 1-10 kHz to reject white
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noise outside the readout bandwidth. As mentioned above, the amplified signal is fed to
either the sampling oscilloscope or the analog-to-digital converter (UHF-Aux In Zurich In-
strument) to record photovoltage time traces over time. The optical excitation is provided
by a cryo-compatible single-mode optical fiber.
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Figure 4.2.2: Optoelectronic setup. Schematics of the optoelectronic setup employed to
measure the SPD response by the MATBG superconducting detector. Adapted from [P1].
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4.3 Optical setup

In Section 1.1, we derived the photon statistics for a coherent source and discussed how
single-photon sensitivity can be demonstrated by analyzing the count statistics of a detector
illuminated by a highly attenuated coherent source. In this section, we describe the optical
setup used in our experiment and calculate the density of near-infrared photons incident
on the MATBG device. We utilize a 1550-nm laser diode (Taiko PDL M1) as the coherent
source. The light is transmitted into the dilution refrigerator to the MATBG detector via
a single-mode optical fiber, which is coupled with a collimator positioned a few centimeters
above the sample space, enabling illumination of the entire device area (approximately 4
mm spot diameter). The incident laser power is regulated through a programmable optical
attenuator (JGR OA5), allowing for attenuation of the optical power by several orders of
magnitude and precise adjustment of the average photon number incident on the device.
The schematic of the optoelectronic setup used in our experiment is shown in Fig. 4.2.2.

4.3.1 Beam profile at the sample stage

As shown in detail in Fig 4.3.1, in our setup, the output power Pout emitted by a telecom
laser is coupled into the cryostat with a single-mode optical fiber. The fiber is then con-
nected to a laser beam coupler, providing a collimated output with beam radius w0 ↑ 2

mm and Rayleigh range zR = φw
2
0

ω
↑ 8 m. To quantitatively describe the amount of light

and the rate of photons incident on the MATBG detector, we consider a Gaussian beam
profile. Using the Gaussian approximation, we can express the intensity profile I in terms
of the distance from the beam center, r and the propagating distance z[163]:

I(r, z) = I0

(
w0

w(z)

)2

e↑2(
r

w(z) )
2

(4.3.1)

Where w(z) is the value of the radius at a certain distance z given [163] by w(z) =

w0


1 +

(
z

zR

)2

and I0 = 2Pout

φw
2
0

is the total irradiance of the laser source, given by the

Gaussian normalization condition. As in our experiment, z is the distance away from the
end of the fiber coupler, we simulate w(z) up to 1 m ( 4.3.1c,). Given the position of the

device, located around z0 ↙ 3 cm away from the fiber coupler
(

z0
zR

= 0.0037 ∞ 1
)
, we can

consider the beam to be collimated and replace in w(z) ↙ w0 = 2 mm. Since we align the
device to be roughly at the center of the beam, it reads I(r = 0, z0) =

2Pout

φw
2
0
.
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Figure 4.3.1: Beam profile at the sample stage. (a) Optical image of the experimental
scheme. The single-mode optical fiber designed for 1550-nm transmission is connected to a laser
beam coupler which provides a collimated output. The sample is located approximately 3 cm
away from the fiber coupler. Every component shown in the optical image was custom-designed
by me. (b) 3D plot of the normalized beam intensity in the Gaussian beam approximation.
(c) Simulation of the Gaussian beam radius w(z) at a distance z from the fiber coupler, given
by w(z) = w0


1 + (z/zR)2. The black vertical line indicates the position of the sample zs = 3

cm. Adapted from [P1].

4.3.2 Calculation of the power density incident on the MATBG
device

With the considerations made in the previous section, we can calculate the power density
PL incident on the MATBG as follows:

PL = 10↑↼/10
· Tfiber ·

Pout

φ

2
w2

0

, (4.3.2)

Where Pout is the total power output coming out of the laser, Tfiber = 0.021 the e!ective
transmission of the fiber (including all the optical connections and vacuum feed-throughs),
and ▷ the variable attenuation (in dB) used to control the power incident on the device.
In the SPD measurements with the CW laser source, we keep the laser power constant
(Pout = 11 µW) and scan ▷ between several orders of magnitudes from 70 dB to 4 dB. For
device A, a typical attenuation of 40 dB results in PL = 3.7 aW/µm2.

Given PL, the average incident photon rate per unit time ↽ per µm2
⇑Nphoton⇒ reads:

⇑Nphoton⇒ = ↽ ·
PL

h⇀
, (4.3.3)
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Where h⇀ = 1.28 ≃ 10↑19 J is the energy of a single photon at φ = 1550 nm. For an
attenuation of 40 dB and ↽ = 5 ms (which is the typical reset time of the MATBG
detector), we expect ⇑Nphoton⇒ = 0.14.

In pulsed experiments, by changing the laser repetition rate (fRR), we can control the
number of photons carried on average by each pulse µ as:

µ =
1

fRR

·
PL

h⇀
·


l1/2

↑l1/2

dx


l2/2

↑l2/2

dy e↑2(x
2
+y

2
)/w

2
0 , (4.3.4)

Where l1 and l2 are the length and width of the measured area. Since we assume the
sample to be located at the center of the beam and l1, l2 ∞ w0, we can simplify (0.4) to:

µ =
1

fRR

·
PL

h⇀
· l1 · l2 . (4.3.5)

In the SPD experiment described in Chapter 6, we set the output power to Pout = 3 nW
and the laser repetition rate to fRR = 100 Hz. Considering the spatial dimension of the
sample l1 = 3 µm, l2 = 5.3 µm, for an attenuation of 13 dB, we obtain µ = 0.62.

It is worth noticing that the calculated values are only an upper-bound estimation
because the optical alignment is not controlled accurately in the cryogenic experiment. In
particular, it is possible that the sample is not perfectly located in the center of the beam
and that the e!ective incident power is lower.
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5
Measuring the bolometric response

of superconducting MATBG

The work presented in this chapter led to the publication[P2]:
G. Di Battista, P. Seifert, K. Watanabe, T. Taniguchi, K.C. Fong, A. Principi, and
D. K. Efetov, ”Revealing the thermal properties of superconducting magic-angle
twisted bilayer graphene”, Nano Letters 22, 16, 6465–6470 (2022).
My contribution to this work was conceptualizing and designing the experiment,
fabricating devices, measuring, analyzing data, and writing the manuscript.

As the first experimental exploration of the sensitivity of the superconducting state of
MATBG, we measure its bolometric response upon illumination with telecom wavelength.
This measurement is particularly interesting for photodetection applications as it reports
the first measurement of the thermal conductivity in the superconducting state, which, as
discussed in section 1.3.1, is important to determine the performance of thermal detectors.
In addition, we find that the thermal conductance exhibits a power law dependence in
the low-temperature limit, similarly to what was observed in nodal superconductors[52].
In this Chapter, we perform an optoelectronic experiment in which we monitor the 4-
terminal transport properties of the MATBG device upon illumination with laser light at
a wavelength of φ = 1550 nm (see schematics in Fig. 5.1.1a). Operating with steady-state
illumination, the electronic temperature Te can be extracted by measuring the critical
current Ic, which has a pronounced temperature dependence. Using this thermometry,
we can probe the heating induced by the laser light and measure the electronic thermal
conductance of the superconducting state of MATBG.
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5.1 Light-matter interaction in MATBG for near-infrared
photons

Given the novelty of the material, a comprehensive description of the light-matter interac-
tion in MATBG is still lacking. Considering the energy scales involved in the experiment,
i.e. the energy of the incident photons (0.8 eV), which is significantly larger than the width
of the flat bands (↑ 10 meV [33]) and the typical size of the superconducting gap (↑ 1
meV [164]), we consider the absorption properties of MATBG to be similar to those of
AB bilayer graphene for near-IR photons [P2, 165]. We assume that the absorbed photons
excite electrons from the valence bands to the high-energy conduction bands (Fig. 5.1.1b).
Since the k-space of the flat bands does not extend far from the Dirac points [166], there is
a vanishing joint density of states for vertical transitions from and to the flat bands [P2].
Therefore, as a first approximation, we exclude processes in which photons are absorbed
within the flat bands and induce inter-band transitions from the flat bands to the higher
energy conduction bands. Additionally, given that the moiré unit cell (↑ 13 nm) is consid-
erably smaller than the wavelength of the incident photons, we consider the e!ect of the
superlattice negligible for the absorption process.
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Figure 5.1.1: Schematic of the light-matter interaction in MATBG. (a) We illu-
minate a superconducting MATBG with CW laser light (ϖ = 1550 nm) and monitor the
light-induced change in resistance with a four-terminal transport scheme. (b) Schematics of
the photoexcitation-thermalization-cooling process in MATBG. The absorbed photons gener-
ate electron-hole pairs in the high-energy dispersive bands. Then, the photoexcited carriers
e%ciently thermalize by electron-electron interactions to a hot carrier distribution with elec-
tronic temperature Te in the flat bands. The electronic thermal conductance, Gth rules the
cooling process of these thermal electrons. Adapted from [P2].

Following the analogy to AB-stacked bilayer graphene, we expect that the photoexcitation-
thermalization-cooling processes well-studied for graphene will be qualitatively applicable
to MATBG. As illustrated in the schematics in Fig. 5.1.1b, absorbed photons excite
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electron-hole pairs in the higher energy dispersive bands. These photo-excited carriers re-
lax on ultra-fast timescales through electron-electron interactions, ultimately reaching the
flat bands and forming a thermal distribution. Consequently, the photo-absorption pro-
cess e!ectively raises the electron temperature, Te, above the device temperature, which
is determined by the lattice and the metallic leads and is in thermal equilibrium with
the bath temperature, Tb. Another crucial aspect is the energy conversion e”ciency from
photoexcitation to a thermal hot carrier distribution. Previous studies on graphene have
demonstrated near-unity conversion e”ciency for near-IR photons [62, 63, 167], with neg-
ligible optical phonon emission due to the ultra-fast electron-electron scattering time (less
than 100 fs, ref.[168]) compared to the electron-phonon scattering time. Given the similar-
ity to graphene for these excitation energies, we assume that the energy conversion from
photoexcitation to a thermal hot carrier distribution in MATBG is highly e”cient [P2].
Once the carriers are heated above the bath temperature, $Te = Te→Tb, they dissipate the
additional heat to reach thermal equilibrium. The electronic thermal conductance, Gth,
defines this final cooling process.

5.1.1 Estimation of the optical absorption in the experiment

The considerations regarding the absorption of MATBG discussed above assume a sus-
pended two-dimensional layer [169]. However, in our experiment, MATBG is deposited
on a substrate and embedded in a heterostructure. These additional layers can a!ect the
local electric field, leading to wave interference, ultimately altering the absorption[170].
To account for this, we employ the optical transfer matrix formalism to evaluate the
impact of the additional layers on the absorption of the MATBG layer. As schemati-
cally illustrated in Fig. 5.1.2b, we assume the 1550 nm radiation to be linearly polarized
and at normal incidence[170]. The transfer matrix depends on the layers’ complex re-
fractive indices and thicknesses. The refractive index values used are from the literature
(https://refractiveindex.info/) for these materials. The thicknesses of the 2D layers con-
stituting the heterostructure are measured using an Atomic Force Microscope, as shown in
Fig. 5.1.2a. For the main MATBG device investigated in this experiment, the thicknesses
are:

• Top hBN=10 nm

• MATBG=0.69 nm

• Bottom hBN=15 nm

• Graphite=3 nm

• SiO2=285 nm

• Si=1 mm
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To perform these calculations, we use the MATLAB code provided by ref. [170]. Using
these input parameters, we estimate the absorption of MATBG to be ↑ 6.4 %, which is
only slightly enhanced compared to the one expected for suspended MATBG (4.6%). En-
gineering the substrate with cavities[171] or photonic crystals[172] can enhance MATBG’s
absorption, similar to what was previously done in graphene. As discussed in section 4.3,
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Figure 5.1.2: AFM and optical micrographs of a MATBG sample. (a) The main
panel is the optical image of the final hBN/MATBG/hBN/Graphite stack. The inset shows
an AFM scan of the final device etched into a Hall bar geometry. The dashed square indicates
the area imaged with the AFM. The lower panel shows the height profiles along the blue and
red dashed lines from which we extract the hBNs and graphite thicknesses. (b) Schematic
cross-section of the stack used in the optical transfer matrix calculations. The second layer of
the heterostructure (MATBG) is the active layer in our calculations. Adapted from [P1].

the laser beam in our experiment is of millimeter size. As a result, the radiation is absorbed
not only by MATBG but also by the other layers of the heterostructure, the substrate,
and the gold electrodes. Given the larger band gap compared to the excitation energy of
0.8 eV, the absorption by Si/SiO2 and hBN layers is negligible[P2]. Conversely, the gold
electrodes and the local graphite gate underneath the heterostructure can absorb part of
the radiation. However, we qualitatively argue that even though these materials absorb
radiation, they do not constitute an additional heating source for the MATBG layer [P2].
Indeed, gold and graphite are both bulk 3D materials with thermal conductivities much
higher than 2D materials like MATBG. In a steady state, the increase in electronic temper-
ature ($Te) depends on the ratio between optical absorption (2) and thermal conductivity
(3): $Te ↑ 2/3. Therefore, we can consider the electronic temperature increase of these
materials to be negligible compared to that of superconducting MATBG. In the modeling
performed in section 5.3.2, we estimate the temperature increase of the gold electrodes to be
approximately 10↑8 mK. Furthermore, the electronic thermal conductivity of a supercon-
ductor is strongly suppressed below the critical temperature, and its thermal conductivity
is dominated by electron di!usion, where only thermally excited quasiparticles conduct
heat, while Cooper pairs do not (see section 1.2.1). This results in a much lower thermal
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conductivity than non-superconducting metals within our investigated temperature range.
In addition, the bottom hBN layer, which separates the MATBG from the graphite lo-
cal gate, provides additional thermal isolation. Therefore, even if the graphite is slightly
heated by the radiation, it would not perturb the temperature of the MATBG. Based on
these arguments, we can neglect the heating e!ects from materials other than MATBG
and assume that the measured temperature increase in our experiment is primarily due to
the light-induced heating of the MATBG electrons [P2].
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5.2 Bolometric response of superconducting MATBG

5.2.1 Critical current thermometry

Considering the model of photoexcitation-thermalization-cooling described above, we mea-
sure the increase in the electronic temperature $Te upon illumination with the external
laser power by using the temperature dependence of the critical current Ic(T ). In order
to provide a sensitive measurement of Ic, we perform nonlinear resistance measurements
dVxx/dI vs. source-drain current (Idc). The dVxx/dI trace is the first derivative of the
current-voltage I-V characteristic. As anticipated in section 1.2.1, in superconductors, the
I-V curve exhibits a flat region (R = 0,V = 0) when the applied DC current is lower than
the critical current (Idc < Ic). As Idc equals Ic, the system transitions from the super-
conducting to the normal state and the I-V characteristic recovers the slope given by the
resistance of the device’s normal state (Fig. 5.2.1a). The superconducting-normal state
transition at Ic manifests as a pronounced peak in the dVxx/dI characteristic. Identifying
the maxima in the dVxx/dI(Idc) traces, we can carefully extract the critical current of the
MATBG superconductor (inset of 5.2.1c).
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Figure 5.2.1: Critical current thermometry. (a) I-V (blue) and dVxx/dI (red) charac-
teristic for the MATBG superconductor at 35 mK. The transition from the superconducting to
normal state occurs when the applied DC current equals the critical current Ic. This manifests
as a pronounced peak in the dVxx/dI trace. (b) Top panel: color plot of the longitudinal
dVxx/dI vs. source-drain current (Idc) and Te. In black, the dVxx/dI line cuts measured at 3
di#erent temperatures. The white dots are the extracted values of Ic, fitted with the empirical
formula Ic(Te) = Ic(Te = 0)[1 → (Te/Tc)4]3/2 (dashed line). Bottom panel: color plot of the
longitudinal dVxx/dI vs. Idc and laser power (PL). In black, the dVxx/dI line cuts measured at
3 di#erent temperatures and in white, the extracted values of Ic. (c) Ic vs. Te (left panel) and
PL (right panel) with errorbars. Critical current vs. temperature values are fitted according
to the empirical formula used in (b). In the bottom inset the method used to extract Ic by
taking the peak of the dVxx/dI traces. (b) and (c) are adapted from [P2].
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To perform critical current thermometry, we first calibrate MATBG’s critical current as
a function of temperature. For this purpose, we measure Ic at di!erent bath temperatures
(Tb) by heating the cryostat. As Tb is in equilibrium with the Te of the MATBG, this
measurement directly provides Ic(Te) (Fig. 5.2.1c). Then, we measure Ic, as a function of
the laser power PL, while keeping Tb constant at 35 mK (Fig. 5.2.1b). By measuring Ic
as a function of both electronic temperature Ic(Te) and absorbed laser power Ic(PL), we
can relate $Te with the PL and measure the bolometric response of MATBG according to
the formula derived in section 5.2.2. By looking at the colormaps in Fig. 5.2.1b, we notice
that the measurements of dVxx/dI vs. Te are similar to the measurements of dVxx/dI vs.
PL, further confirming our assumption that the incident radiation is primarily absorbed
by the electrons, which are heated above the bath temperature, Te > Tb.

5.2.2 Derivation of the thermometer calibration formula

In this section, we derive the analytical expression used to relate $Te with the PL. To
calibrate our thermometer, we use the empirical relation for the superconducting electron
density, discussed in ref. [173]:

Ns(T ) = Ns(0)


1→

(
Te

Tc

)4


(5.2.1)

Using that the critical current density (Jc) of a superconductor is proportional to the
product of the superconducting gap ($) and the local density of superconducting electrons
(Ns): Jc ↑ Ns$, combined with the definition of the order parameter, Ns ↑ $2, we can

write: Jc ↑ N3/2

s . From this equation, we derive an analytical expression to relate the
critical current and the electronic temperature Te in a broad range of temperatures:

Ic(Te) = a


1→

(
Te

b

)4
3/2

(5.2.2)

Here a is the fitting parameter that estimates Ic(Te = 0) and b is the fitting parameter
that estimates Tc. Reverting Eq. 5.2.2 we obtain an analytical expression relating Te and
PL:

Te(PL) = b


1→

(
Ic(PL)

a

) 2
3

 1
4

(5.2.3)

By inserting the measured Ic(PL) into Eq. 5.2.3, we obtain the electronic temperature,
Te induced by a specific laser power, PL. As the critical current strongly depends on
temperature, when calibrating the thermometer at di!erent bath temperatures (Tb), we
express the critical current as: Ic(PL) = $Ic(PL) + Ic(Tb). Here, Ic(Tb) represents the
critical current extracted from Eq. 5.2.2 at a certain Tb. Since Ic remains constant at the
lowest powers, we define $Ic(PL) as the variation of Ic from the average at low powers:
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$Ic(PL) = Ic(PL) → ⇑Ic⇒lowP . Finally, we obtain the thermometer calibration from the
formula:

Te(PL) = b


1→

(
$Ic(PL) + Ic(Tb)

a

) 2
3

 1
4

(5.2.4)

Similarly, as Te is constant for the lower powers, we extract the increase in the electronic
temperature $Te by subtracting the average at low powers: $Te(PL) = Te(PL)→⇑Te⇒lowP .

5.2.3 Extraction of the thermal conductance in the supercon-
ducting state
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Figure 5.2.2: Extraction of thermal conductance from the bolometric response.
(a) Increase of electronic temperature, ”Te vs. PL for Tb = 35 mK. The black dashed line
is a linear fit in the linear approximation regime, ”Te/Tb < 1. From the fit, we extract
Gth = PL/”Te. (b) ”Te vs. PL measured at di#erent bath temperatures, Tb ranging from 35
to 810 mK. (c) Performing linear fits for all the bath temperatures in the low heating regime,
we extract the thermal conductance in the superconducting state. (b) and (c) are adapted
from [P2].

Having derived in Eq. 5.2.4 an analytical expression which relates the electronic tem-
perature with the measured change in critical current, we can extract $Te versus PL for
the MATBG superconductor, as shown in Fig. 5.2.2a. We observe that for low powers,
$Te increases linearly before saturating at higher PL. From the bolometric response, we
can experimentally determine the electronic thermal conductance, Gth. For low heating
powers and small $Te such that $Te/Tb < 1, the linear response regime holds and we
can define the electronic thermal conductance using the Fourier Law: Gth(Tb) = PL/$Te

[174, 175]. Performing a linear fit at low heating power where the linear approximation is
valid (black dashed line in Fig. 5.2.1a), we extract Gth = 0.2 pW/K for Tb = 35 mK. As
Gth is a function of Tb, we measure $Te vs. PL at di!erent Tb between 35 and 810 mK,
which is the highest temperature at which we can extract Ic (Fig. 5.2.2b). From these
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measurements, we can extract the temperature dependence of the thermal conductance in
the superconducting state as reported in Fig. 5.2.2c.

We notice that for temperatures 35 mK < Tb < 810 mK, Gth ranges from 0.2 pW/K to 7
pW/K. Therefore, a minute laser power of 0.2 pW applied in the steady state, increases the
electronic temperature of MATBG by 1 K (at Tb = 35 mK). These low numbers indicate
an excellent thermal isolation of MATBG electrons from the thermal bath and reveals
the high sensitivity of the MATBG detector [P2]. In addition, the extraction of Gth, is
independent on the cooling mechanism (electron di!usion or phonons) and does not assume
any microscopic model to describe the cooling of the electrons. The fact that we operate at
small heating powers allows us also to provide a considerably simplified model to describe
the cooling mechanism in MATBG. Indeed, by restricting our experiment to the linear
response regime, we can neglect, to the first order, the spatial-temperature dependence of
the thermal conductance when solving the di!erential equation that describes the thermal
di!usion in MATBG, as discussed in section 5.3.2.



90 5. Measuring the bolometric response of superconducting MATBG

5.3 Thermal conductivity as a probe of superconduct-
ing gap structure

As anticipated in section 1.2.1, the order parameter of superconductors can exhibit various
symmetries. These symmetries range from the conventional s-wave to the more exotic p-
or d-waves. Specifically, s-wave superconductors feature an isotropic superconducting gap,
while p- or d-wave superconductors exhibit nodes in their gap function. Heat transport
is a powerful probe of the superconducting gap structure[52, 53]. While superconductors
allow charge flow without dissipation, they are extremely poor heat conductors. As an-
ticipated in section 1.2.1, in a superconductor, the quasiparticles thermally excited above
the superconducting gap carry heat, whereas the Cooper pairs forming the condensate do
not. Consequently, the temperature activation behavior of the thermal conductivity in the
superconducting state, 3(T ) strongly depends on the gap symmetry. For low enough tem-
peratures, well below the critical temperature (T << Tc), the thermal conductivity in an
s-wave superconductor is exponentially suppressed compared to the normal state because
of the isotropic symmetry of the superconducting gap. In contrast, nodal p- and d-wave
superconductors exhibit a power-law temperature dependence as the presence of nodes in
their gap structure allows thermal excitations even for T << Tc. In the case of nodal
superconductors, the thermal conductivity also shows residual terms at zero temperature
given to impurity scattering that broadens the nodes and produces a residual density of
states at zero energy[52].

Given the novelty of the material, the investigation of the MATBG’s order parameter is
still under lively debate[164, 176–178]. In our study, we theoretically model the contribu-
tion of electron di!usion to the thermal conductance to infer information on the symmetry
of the superconducting gap. In this model, based on a simplified device geometry, the heat
di!usion is dominated by the quasiparticles thermally excited above the superconducting
gap[P2]. In the following section, we perform an analytical calculation of the thermal
conductance for a simple device geometry 5.3.1. The simple model we solve analytically
captures the basic physics of the problem. Then, we describe the actual model used to fit
our experimental data, in which we consider a Hall bar geometry and calculate the thermal
conductance for both isotropic and nodal superconducting gap.

5.3.1 Analytical solution of the heat transfer equation for a sim-
ple geometry

We start considering a two-dimensional electron gas connected with two electrodes in which
uniform heating with power P is applied (Fig. 5.3.1a), for instance by an external laser
source. In this simplified scheme, the electrodes are anchored at the base temperature T0,
acting as a thermal reservoir and a thermal gradient is generated across the sample by
the applied heating. The heat can be dissipated through two primary channels: electronic
di!usion (Gdiff ) and electron-phonon coupling (Ge↑ph), as schematically illustrated in Fig.
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5.3.1c. The spatial distribution of the electronic temperature can be calculated according
to the two-dimensional heat transfer di!erential equation[179]:

p = →↘ · (3diff↘Te(x, y))→ &e↑ph(T
ϱ

e
→ T ϱ

0
) (5.3.1)

Where p is the applied heating per unit volume, &e↑ph and ↼ are the electron-phonon
coupling constant and temperature power law constant, respectively, and Te(x, y) is the
elevated electron temperature at position (x, y) of the sample from the base temperature
T0. 3diff is the thermal conductivity according to the electronic di!usion. At low enough
temperatures (the electron-phonon coupling scales as power law), we only consider the
experimental conditions in which the heat transfer by the electron di!usion is much larger
than the electron-phonon coupling contribution[180]. For a typical metal the electronic
contribution of thermal conductivity due to di!usion is given by the Wiedemann-Franz
law and can be expressed as: 3diff = 3WF = LTϑ, where L is the Lorenz number [175,
179].

a b c

Gdiff Ge-ph

Te
Te(x) Te(x)

T0

P

x0 l
T0

T0T0 Sample

Heat flow

Figure 5.3.1: Heat equation for a simple sample geometry. (a) Schematics of a
two-terminal geometry in which a sample is connected with two electrodes anchored at base
temperature T0 and uniform heating P is applied. (b) Sketch of the temperature profile Te(x)
calculated analytically from the two-dimensional heat equation. (c) According to the thermal
model heat from the electrons can flow out through two di#erent channels: electronic di#usion
to the electrodes (Gdiff ) and electron-phonon coupling (Ge↑ph).

Neglecting the electron-phonon coupling contribution and considering the one-dimensional
case, the heat di!usion equation can be simplified as[180]:

P = →
L

2R
l2

d2

dx2
T 2

e
(x) (5.3.2)

where R and l are the electrical resistance and distance between the two terminals, re-
spectively, and P is the total heating applied on the two terminal device. We can now
formulate the boundary conditions needed to solve the di!erential equation. Since in our
model, we consider that the metallic contacts are thermalized at the bath temperature, we
can write: Te(x = 0) = Te(x = l) = T0. In this geometry, the heat flows from the middle
of the sample to the contacts, which act as thermal reservoirs: dTe

dx
|x=l/2 = 0. By solving

analytically 5.3.2 we get an expression for Te(x):
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Te(x) =


→
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l
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+
PR
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0
↑= T0 +
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2

PR

LT0

(
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l
→

x2

l2

)
(5.3.3)

Here the approximation in Eq. 5.3.3 is done considering the linear regime of small
temperature increases: $Te = Te(x) → T0 << T0. The temperature profile derived in
Eq. 5.3.3 and sketched in Fig. 5.3.1b shows that the electronic temperature peaks at the
center of the sample and decays to the two metallic contacts, because of the uniform heat
provided.

In steady-state experiments we typically measure the average electronic temperature

⇑Te⇒ =
∫
l

0 dxTe(x)∫
l

0 dx
across the sample, from which:

⇑Te⇒ = T0 +
1

12

PR

LT0

(5.3.4)

Defining $Te = ⇑Te⇒ → T0 and using the expression for the thermal conductance in the
linear response regime, Gth = P

!Te

, we get:

Gth =
1

12

LT0

R
= 23diff (5.3.5)

Where 2 is a numerical prefactor is due to the integration of the temperature profiles across
the sample. For this simple sample geometry, we obtain 2 = 12 (as reported in ref. [175,
179, 180]). 3diff is the electronic di!usion to the thermal conductivity, which is described
by the Wiedemann-Franz law for the simple metal we are considering.

To extend this model to our experiment, we need to estimate 2 for our specific ge-
ometry (Hall bar) and 3diff for the MATBG superconductor. Specifically, we calculate
the 3diff (T ) for an isotropic, s-wave gap and for a nodal gap, in the scenario that the
thermal conductance is dominated by the electron di!usion of the quasiparticles excited
above the superconducting gap and that the electron-phonon contribution is negligible
(Ge↑ph ∞ Gdiff ).

5.3.2 Simplified model of the MATBG superconducting channel

In the previous section, we solved analytically the one-dimensional heat transfer equation
and extracted the thermal conductance assuming that electronic di!usion (Wiedemann-
Franz law) constitutes the primary channel of heat dissipation. Here, we briefly describe
the heat transfer equation, considering a geometry similar to the one used in our experi-
ment.

The optical image of the device is shown in Fig. 5.3.2a. Based on this image, we model
heat di!usion in the measured region using a geometry closely resembling the sample (Fig.
5.3.2b). The model consists of a channel (made of superconducting MATBG) with length
L and width W . The channel is surrounded by four metallic leads: two on the upper side
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and two on the lower side of the Hall bar. The Hall bar is composed of gold electrodes
and MATBG arms, which are gated close to charge neutrality in a metallic state (Fig.
5.3.2a). The distance between the centers of two consecutive metallic leads is denoted as
dc, and they all have the same width wc. The entire device is illuminated by laser light,
and the injected power into the channel is P . Analogously to section 5.3.1, we consider
the two-dimensional heat equation for electronic di!usion[P2]:

3diff↘
2↼Te(x, y) +

P

WL
= 0 (5.3.6)

where 3diff represents the thermal conductivity of MATBG, and ↼Te(x, y) = Te(x, y)→
Tb represents the temperature increase of the channel relative to the temperature of the
bath (Tb). In Eq. 5.3.6, we neglect the spatial-temperature dependence of thermal con-
ductivity. This approximation is valid at the first order because the thermal conductance
is experimentally extracted at low heating powers, satisfying the condition !Te

Tb

< 1. Con-
sequently, the local temperature variation ↼Te(x, y) can be considered smaller than the
equilibrium value Tb[P2].
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Figure 5.3.2: Simulation of the heat di!usion equation on the Hall bar geometry.
(a) Optical image of the measured MATBG device. The middle channel is gated in the super-
conducting state, while the arms of the device are gated in a metallic region. (b) Simplified
geometry used to model the heat di#usion. Since the arms are gated in a metallic state they
act as a “cooling fin” for the superconductor[77]. We fix the MATBG arms and electrodes at
Tb = 35 mK. (c) Eq. 5.3.6 solved on the geometry in (b). The temperature raise ϑT̃ (x̃, ỹ)
is given in units of PW/(↼diffL). The simulation shown in (c) was performed by Prof. Dr.
Alessandro Principi [P2].

Given this equation we define appropriate boundary conditions[P2]:

• Since the metallic leads are situated along the left or right side of the Hall bar,
we assume that no heat current flows through either the upper and lower edges



94 5. Measuring the bolometric response of superconducting MATBG

↽ϱTe

↽y


y=±L/2

= 0. Conversely, a heat current flows through the metallic leads.

• The second boundary condition assumes that, given the small heating the gold elec-
trodes and MATBG arms are thermalized at the bath temperature Tb. Indeed,
considering the laser intensities for which the condition !Te

Tb

< 1, (approximately

10↑4 W/m2), we estimate a temperature increase of approximately 10↑8 mK for
the gold electrodes at Tb = 35 mK (the area close to the arms is ↑ 2 µm2 and
GAu

WF
= LT

RAu ↑ T ≃ 1.1 · 10↑4 W K-2 where RAu
↑ 2.2 10-4 Ω is estimated from ref.

[181]). Regarding the arms (which are gated in the normal metallic state), we model
them based on the idea that they can act as a “cooling fin” for the superconductor,
as demonstrated in ref. [77]. The cooling is e”cient because the hot quasiparticles
in the superconductor could di!use into the normal conductor but not in the reverse
direction because of the superconducting gap. This allows us to set the boundary
condition of unidirectional heat flow and fix the temperature of the arms to be at
the base temperature: ↼Te(±W/2, y) = 0.

To perform the numerical calculation, we introduce dimensionless quantities. We rescale
lengths with W , temperatures with PW/(3diffL), and heat currents with P/L. The pa-
rameters used in the simulation are: dc = 1.1 W , L = 2.7 W , wc = 0.5 W and W =
3.7 µm. The numerical solution of the heat di!usion equation on the geometry described
above is shown in Fig. 5.3.2c. Similarly to the previous section, we define the channel
thermal conductance as Gth = N3diffdc/W , where the dimensionless numerical factor N :

N
↑1 =

3diffL

Pd3
c

 dc

2

↑ dc

2

dy

 W

2

↑W

2

dx ↼Te(x, y) (5.3.7)

Importantly, we verify that Eq. 5.3.2 reproduces the result derived in section 5.3.1
N=12, for a channel of length dc and width W in contact with two thermal baths at po-
sitions y = ±dc/2, and no current flowing through other edges[180]. Calculating Eq. 5.3.2
for our specific geometry we obtain N ↙ 5.2. As anticipated above, the two geometries (in
Fig. 5.3.1 and in Fig. 5.3.2) di!er only for a scale factor (↑ 2) in the calculation, which
does not substantially change the model. Similarly to Fig. 5.3.1, the heated electrons dif-
fuse from the center of the sample to the metallic leads which constituted the thermal bath.

Having calculated the geometrical factor for our Hall bar geometry, we can estimate the
temperature dependence of the thermal conductance considering the two di!erent super-
conducting gap symmetries. The theoretical calculations are detailed in the supplementary
information of ref. [P2] and were performed by Prof. Dr. Alessandro Principi. Here, we
only report the final expression obtained for the quasiparticle thermal conductivity 3diff :

3diff ($(T ), T ) =
e2

4

D2($(T ), T )

I($(T ), T )
(5.3.8)
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where D2($(T ), T ) and I($(T ), T ) are two integrals dependent on the superconducting
gap $ defined as:

D($(T ), T ) =

 ↔
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dεk
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4kBT cosh2
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2kBT
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ϖ$k
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)

(5.3.9)
and:

I($(T ), T ) ↙
1

2

 ↔

0

d⇁


dεk
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
4kBT cosh2


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k
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⇁2 +$2
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→$k

ϖ$k
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)
⇁

⇁2 +$2

k

(5.3.10)
Finally, the expression for the thermal conductance considering the electron di!usion

of thermally excited quasiparticles reads:

Gth($(T ), T ) = N
e2

4

dc
W

D2($(T ), T )

I($(T ), T )
(5.3.11)

5.3.3 Comparison with the experimental results

We finally compare the model described above with the experimental data. Fig. 5.3.3b
shows the fit of the modeled Gth(Tb) for isotropic and nodal superconducting gaps to the ex-
perimentally measured thermal conductance. Here, the size of the superconducting gap $0

is the only fitting parameter, while we fix Tc = 2.1 K and normal state resistivity 4 = 15 k’
from independent measurements[P2]. As expected, the two di!erent gap symmetries lead
to significantly di!erent heat di!usion for the limit of Te ∞ Tc. Specifically, for Tb < 0.8
K, the thermal conductance modeled for an isotropic superconductor is exponentially sup-
pressed. Conversely, the thermal conductance modeled for a nodal superconductor decays
with a power-law dependence. Comparing the model and experiment in Fig. 5.3.3b, we ob-
serve that our measurements are incompatible with an exponential temperature activation
behavior, and that the power-law dependence provides a much better fit to the experimen-
tal data. The best fit for the isotropic case gives $0 ↑ 0.33±0.05 meV, while for the nodal
case, we obtain $0 ↑ 0.47± 0.07 meV. Notably, the value extracted for $0 is in agreement
with the measurements on the gap size of MATBG performed with Scanning Tunneling Mi-
croscopy (STM) [164]. This quantitative agreement with STM measurements confirms the
soundness of the theoretical model and strengthens the validity of the assumptions made
to reach this result. In the hypothetical scenario where the contribution to the thermal
conductance is dominated by electron di!usion of quasiparticles thermally excited above
the superconducting gap, our results suggest that the obtained Gth(Tb) aligns more closely
with a nodal p- or d-wave symmetry rather than an isotropic s-wave symmetry [P2].

As previously mentioned, this model is conceived with the assumption that electron dif-
fusion plays a more dominant role in thermal conductance than electron-phonon scattering.
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Figure 5.3.3: Fit of the experimental thermal conductance. (a) Sketch of the density
of states (DOS) for an isotropic s-wave superconducting gap (violet) and for a nodal, V-shape
superconducting gap (orange). (b) Gth vs. T measured in the superconducting state. The
dashed lines with the shaded regions are the best fit with errorbar to the experimental data.
By fixing fix Tc = 2.1 K and ↽ = 15 k$ we extract from the fit ”0 ↑ 0.33 ± 0.05 meV (for the
isotropic gap) and ”0 ↑ 0.47 ± 0.07 meV (for the nodal gap). Here Gth is modeled considering
electron di#usion for the two di#erent superconducting gap symmetries. In the inset the same
data and fit are plotted in logarithmic scale. Adapted from [P2].

As discussed in section 4.1.3, in metals the electron-phonon cooling mechanism typically
scales as a high-order power law with temperature (↑ T ϱ). In contrast, the electron dif-
fusion mechanism scales linearly (↑ T ) and dominates at low temperatures. Notably, the
crossover temperature in graphene occurs around 1 K [175]. Given that our experiments
are conducted at temperatures below 1 K, we can draw an analogy to graphene and argue
that this assumption is also valid for MATBG. However, no studies so far have deeply
investigated electron-phonon interactions in MATBG at such low temperatures. Recent
reports utilizing time- and frequency-resolved photovoltage measurements have demon-
strated that the electron-phonon scattering in MATBG is substantially di!erent from that
in graphene, possibly because of the combined e!ect of low-energy moiré phonons and a
reduced superlattice Brillouin zone [182]. An additional factor that complicates the inter-
pretation of the thermal conductivity data is the local twist angle inhomogeneity intrinsic
in MATBG samples [135]. This source of disorder can lead to the coexistence of regions
in both the superconducting and the normal states, which could a!ect the dynamics of
thermal quasiparticles. In summary, while our observations on the symmetry of the su-
perconducting gap are not conclusive, we hope that our experimental results will inspire
further theoretical investigations and new experiments to explore low-temperature thermal
transport in MATBG.
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5.4 Photovoltage generation by superconducting MATBG

Having verified the small values of MATBG’s thermal conductance, we measure the photo-
voltage response of the superconducting state, to explore the possibility of using MATBG
as an ultrasensitive photodetector. Specifically, we measure the di!erential photovoltage
V ph vs. Idc as a function of absorbed laser power, as is shown in Fig. 5.4.1. To perform
di!erential photovoltage experiments, we bias the laser diode with a sinusoidal current
with frequency f0. In this way, the applied AC current induces a sinusoidal modulation
of the laser power (Fig. 5.4.1a). We then measure the photovoltage generated in the
MATBG with a lock-in referenced at the frequency of the modulation f0. We find that
the photovoltage is minimum at Idc ↑ 0 and monotonically increases as Idc approaches Ic.
When the critical current is reached the photovoltage shows a pronounced maximum. Fig.
5.4.1c shows the power dependence of the voltage peaks V

max

ph
= V ph(Ic) taken at Tb =

35 mK. Its value is almost constant for the lowest powers, however as PL is increased it
follows a linear dependence, which indicates that the detector operates in a linear response
regime. Performing a fit in the linear region we can extract the detector responsivity:
S = dV

dPL

= 4.2≃ 107 V/W.
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Figure 5.4.1: Photovoltage generation by superconducting MATBG. (a) Sinusoidal
modulation of the laser power induced by the external current bias of the laser diode. (b)
Top panel: di#erential photovoltage V ph as a function of DC current bias (Idc), measured at
di#erent laser powers. Bottom panel: Current-voltage characteristic I-V as a function of DC
current bias (Idc). V ph shows pronounced peaks at the critical current. (c) Extracted photo-
voltage peaks V

max

ph
as a function of PL. The blue line is a linear fit from which we extract the

detector responsivity, S = 4.2≃ 107 V/W.

To investigate whether the di!erential photovoltage signal arises from a light-induced
change in resistance (i.e. a bolometric e!ect), we calculate the photoresponse from the
transport measurements of MATBG (Fig. 5.2.1b) and compare it with experimental data.
Since the laser power oscillates with frequency f0 between a maximum value (PL) and
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zero (as sketched in Fig. 5.4.1a), the generated photovoltage, V ph can be approximated
as the di!erence between the voltage at maximum power and the voltage at zero power:
V ph(PL, Idc) ↙ V (PL, Idc)→ V (PL = 0, Idc). If the di!erential photovoltage signal is gener-
ated by a bolometric e!ect ($V = $R · Idc), we can rewrite:

V ph(PL, Idc) ↙ V (PL, Idc)→ V (PL = 0, Idc) ↙


dV

dI


PL,Idc

→
dV

dI


PL=0,Idc


· Idc (5.4.1)

Using the dV

dI
traces measured as a function of Idc for di!erent powers (Fig. 5.2.1b),

we can then use this expression to calculate the expected V ph. In Fig. 5.4.2 we compare
the measured V ph with the calculated values obtained from Eq. 5.4.1. Even though
there are slight discrepancies in the exact photovoltage values between measurements and
calculations, the calculated traces reproduce well the overall behavior, in particular the
monotonic increase of V ph as Idc approaches Ic and the peak at Idc ↑ Ic. The good
agreement between the two suggests that the observed photovoltage generation is primarly
due to a bolometric response of the MATBG superconducting state. As expected, the
strongest photoresponse is observed close to the superconducting transition. Therefore, in
the following chapter, where we aim to detect single photons, we bias our MATBG device
close to the superconducting-to-normal state transition, where the device shows the highest
responsivity.
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Figure 5.4.2: Comparison between the measured and calculated photovoltage. (a)
Measured photovoltage traces V ph as function of DC current bias Idc, at three di#erent laser
powers. (b) Photovoltage traces calculated from the measured dVxx/dI(Idc) traces, assuming
a bolometric e#ect (Eq. 5.4.1).
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Detecting single near-infrared
photons with superconducting

MATBG

The work presented in this chapter led to the publication[P1]:
G. Di Battista, K.C. Fong, A. Dı́ez-Carlón, K. Watanabe, T. Taniguchi, and D. K.
Efetov, ”Infrared single-photon detection with superconducting magic-angle twisted
bilayer graphene”, Science Advances 10, eadp3725 (2024).
My contribution to this work was conceptualizing and designing the experiment,
fabricating devices, measuring, analyzing data, and writing the manuscript.

In this chapter, we present the proof-of-concept experiment conducted to demonstrate
near-infrared single-photon detection with superconducting MATBG. First, we discuss the
importance of a hysteresis loop in the I-V characteristics for enabling SPD. Next, we detail
the experimental circuit used to reset the detector and to obtain the photovoltage time
traces observed. Following this section, we describe the measurements and analysis carried
out to confirm single-photon sensitivity. Finally, in the last section, we perform a deeper
analysis of the self-reset circuitry. This allows us to speculate on the microscopic mech-
anism leading to the photoresponse and suggest possible ways to improve the detector’s
performances.
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6.1 Hysteretic I-V characteristics in MATBG super-
conductors

As discussed in Chapter 3, our group has developed a protocol to produce high-quality
MATBG devices [P6], in which the intrinsic disorder due to the twist angle inhomogeneities
is mitigated. Thanks to this fabrication protocol, we can produce MATBG devices fea-
turing a switching behavior in the I-V characteristic, where the change in resistance from
superconducting to normal state is approximately 10 k’. These attributes, combined with
the thermal properties of MATBG, are crucial for photodetection applications[P1, P3].

The optical image (inset of Fig. 6.1.1b) shows a high-quality MATBG device. As ex-
plained in section 2.3, the van der Waals stack consists of two graphene sheets rotated at
a global twist angle of approximately 1.1→, encapsulated within insulating hBN layers. By
applying an external gate voltage to the metallic graphite gate underneath the heterostruc-
ture, we can control the carrier concentration in the MATBG layer. In Fig. 6.1.1, we plot
the four-terminal transport characterization of a high-quality MATBG device with a twist
angle 1 = 1.04°±0.02. In Fig. 6.1.1a, the plot of the longitudinal resistance Rxx versus
the moiré filling factor ⇀ for temperatures ranging from T = 50 mK up to T = 6 K shows
a pronounced superconducting state, which lies in proximity to the correlated insulating
state at half-filling (⇀ = -2). In the bottom panel of Fig. 6.1.1a, we plot the Rxx vs. T
trace measured at the optimal doping of ⇀ = -2.45. From this, we extract a normal state
resistance of approximately 10 k’ and a critical temperature Tc of approximately 2.8 K.

At the same doping level, we measure the I–V characteristic of the superconducting
state in a four-terminal current-biased scheme at T = 35 mK (Fig. 6.1.1b). Performing a
linear fit of the slope in the I-V curves (Fig. 6.1.1c), we extract a normal state resistance
for the MATBG film of RN = 17.8 k’ and a resistance right before the superconduct-
ing transition of RSC = 1.7 k’. Therefore, the MATBG superconductor exhibits a large
change in resistance (↑ 16 k’) when transitioning from the superconducting to the nor-
mal state. We also observe a pronounced hysteresis loop when sweeping the direction of
the bias current Ibias, characterized by $I = Ic - Ir ↙ 15 nA. Here, Ic and Ir are the
switching and retrapping currents, respectively[P1]. Such hysteresis loops have already
been observed in MATBG samples [127]. They are potentially due to a current-induced
self-heating hotspot when the MATBG is in the normal state, similar to other supercon-
ductors [51, 183]. Specifically, sweeping the DC current across the superconducting state
in a current-biased scheme results in minimal Joule heating dissipation across the sample
(PJ = I2RSC), leading to the largest switching current, Ic. Conversely, when sweeping the
DC current across the normal state, non-zero Joule heating (PJ = I2RN) increases the
electronic temperature, causing a reduction in the current at which the system reverts to
the superconducting state (retrapping current, Ir).

We have produced several MATBG superconducting devices for this experiment with
the procedure described in Chapter 3. Among all the superconducting MATBG, we have
measured 3 high-quality devices that featured sharp superconducting transitions with hys-
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Figure 6.1.1: Transport characterization of high-quality superconducting MATBG
devices. (a) Top panel: longitudinal resistance Rxx of a MATBG device, with twist angle ϱ

= 1.04°, as a function of filling factor ε. The resistance traces are measured for temperatures
ranging from 50 mK to 6 K. The device exhibits a pronounced superconducting state for -
3 < ε < -2. Bottom panel: superconducting transition, Rxx vs. T measured at the optimal
doping (ε = -2.45). (b) The current-biased I-V curve measured at the same doping (ε = -2.45)
shows a hysteresis loop when sweeping direction of the bias current. In the top inset we plot a
zoom I-V curve close to the transition, to highlight the hysteresis loop. The optical image of
the MATBG device is in the bottom inset. Scale bar: 3 µm. (c) Zoom of the hysteresis loop
in the I-V characteristic. The dashed lines are linear fits from which we extract the normal
state resistance of MATBG RN = 17.8 k$ and the resistance in the superconducting state
right before the transition RSC = 1.7 k$. (a) and (b) are adapted from [P1].

teretic I-V characteristic. In Fig. 6.1.2, we show the optical images of devices A, B, and C
as well as the I-V curves at di!erent temperatures and gate voltages. Consitently for all
the three devices, the hysteresis loop disappears when the temperature approaches 1 K. As
visible from the optical image of Fig. 6.1.2, devices A and C have a single bottom graphite
back-gate, while device B has an additional graphite top gate, which was picked up at the
first step of the stacking process. The global twist angles measured from transport data
for devices A, B, and C are 1 = 1.04→, 1 = 1.03→, and 1 = 1.16→, respectively[P1].

We argue that the presence of a hysteresis loop in the I-V characteristic is closely tied to
the sample’s homogeneity[P3]. In MATBG, intrinsic twist angle disorder leads to localized
regions with di!erent critical currents[135]. In highly disordered samples, numerous small
areas become resistive at di!erent critical currents, resulting in a smeared superconducting
transition. Conversely, in highly homogeneous MATBG, where a significant portion of
the device shares the same twist angle, the transition from superconducting to normal
state occurs sharply at the same critical current, exhibiting a switching behavior with a
significant resistance change (↑ 10 k’). In the presence of such switching behavior, we
also observe the hysteresis loop in the I-V curves described above.
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Adapted from [P1].
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6.2 Photoresponse measurements

6.2.1 Implementation of the self-reset circuitry

The hysteresis in the I-V characteristic observed in the current-biased scheme is useful for
enabling SPD. Similarly to SNSPDSs, the heating induced even by a single photon can
generate a resistive hotspot that expands through Joule heating, triggering an avalanche
e!ect and leading to the complete breaking of superconductivity across the whole device.
This process gives rise to a large voltage output which can be easily measured. However,
in a purely current-biased scheme, the detector would not be able to return to the su-
perconducting state after photoabsorption due to the presence of a hysteresis loop in the
I-V curve. When this phenomenon, known as ”latching,” occurs, the detector stabilizes
in the resistive state and no longer detects photons[P1, 80]. To prevent ”latching”, and
enable continuous detection of photons, we implement the self-reset circuitry sketched in
Fig. 6.2.1a, b.

The circuit is constituted by a voltage divider with load resistor R2 ∞ Rres+RMATBG.
Here Rres is a residual resistance (arising from the contact resistance and the metallic
leads) and RMATBG is the 4-terminal resistance of the device’s active region, sketched as
a variable resistor[P1]. In this scheme, most of the current flows across the load resistor,
I2 and a small part of it through the device, Id. The divider induces a voltage bias (Vbias)
across the source and drain contacts of the MATBG. In this way, the increase of resistance
($RMATBG ↑ 16 k’) induced by the transition of the MATBG detector into the normal
state increases the current into the load resistor and reduces the current flowing in the
detector, which in turn reduces the Joule heating[P1]. The reduction of Id when the
MATBG is in the normal state closes the hysteresis loop and allows the detector to return
to the superconducting state after the detection event. We provide a detailed investigation
of the reset circuit in section 6.4.1.

Fig. 6.2.1c plots the I-V curve measured in the voltage bias scheme as a function of the
externally applied voltage V0. As expected, the hysteresis loop present in the current-biased
scheme is completely closed in the voltage-biased configuration (inset of Fig. 6.2.1c). We
also measure the voltage applied by the divider (Vbias) across the source and drain contacts
of MATBG (Fig. 6.2.1d). Importantly, Vbias is linearly proportional to V0 even when the
MATBG undergoes a phase transition from the superconducting to the normal state. This
implies that the additional voltage introduced in the circuit by switching to the normal
state ($RMATBG ↑ 16 k’) is compensated by a reduction of the current flowing in the
device. In Fig. 6.2.2, we plot the I-V curves of devices A, B, and C measured in the
current-biased scheme (top) and in the voltage-biased scheme (bottom).

6.2.2 Photovoltage time traces

Having implemented the self-reset circuitry, we can bias our device near the normal-
superconductor transition to enable SPD. When the Cooper pairs break upon photon
absorption, they produce a voltage output. As discussed in section 6.2.1, after detecting
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Figure 6.2.1: Implementation of the voltage-bias circuit. (a)-(b) Simplified circuit
diagram used to measure the I-V characteristic in a voltage-biased scheme. The voltage divider
(R1 = 1 M$, R2 = 1 k$ for device A) provides a voltage bias (Vbias) across the source and
drain contacts of the MATBG device, which is depicted as a variable resistor. Rres ↑ 54.5 k$
is the residual resistance (arising from the contact resistance and the metallic leads). In this
scheme, most of the current flows across the load resistor, I2, and a small portion of it through
the device, Id. The MATBG resistance increase induced by the transition in the normal state
increases I2 and simultaneously reduces Id, suppressing the Joule heating. (c) I-V curve
measured in the voltage bias scheme as a function of the externally applied voltage V0. The
reduction of Id when the MATBG is in the normal state closes the hysteresis loop present in
the current-biased I-V characteristic. (d) Measurement of the voltage applied by the divider
(Vbias) across the source and drain contacts of MATBG. Vbias is linearly proportional to V0

even when the MATBG undergoes a phase transition from the superconducting to the normal
state, indicating that the additional voltage introduced in the circuit by the switching to the
normal state is compensated by a reduction of Id.

a photon, the self-reset circuitry reduces the current flowing in the detector and prevents
”latching” into the normal state. The photovoltage time traces, V ph(t) are recorded by
connecting the voltage probes, in the 4-terminal scheme, to a room-temperature low-noise
amplifier, as illustrated in Fig. 6.2.3. The voltage output is then fed to an oscilloscope
or an analog-to-digital converter, which measures the voltage over time induced by the
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Figure 6.2.2: Current-biased and voltage-biased I-V curves. (a)-(c) I-V curves
measured for device A, B and C in a current-biased scheme. The DC bias current is provided
by a voltage source in series with a 10 MΩ resistor. The curves are measured at the same
gate voltages used for photodetection: Vg =-0.620 V for device A, Vg =-0.566V for device B,
and Vg =-0.8257 V for device C. (d)-(f) I-V curves measured for device A, B and C in a
voltage-biased scheme, at the same doping. The bias voltage is provided by a voltage source
in series with a 1/1000 voltage divider. The load resistor is much smaller than the residual
resistance (R2 << Rres). The specific values are: R1 = 1 M$, R2 = 1 k$ for device A and B,
R1 = 100 k$, R2 = 100 $ for device C. Adapted from [P1].

photons. The experiment works as follows: the MATBG turns resistive upon photon ab-
sorption, we record a spike in photovoltage (V ph), and ultimately the detector resets itself.
This setup allows us to study the photon counting statistics and explore it under di!erent
bias voltages, laser powers, and temperatures.

The first interesting observation comes from analyzing the click heights. By overlaying
the average click height as a function of the bias voltage, Vbias (top inset in Fig. 6.2.3c),
we find that the photovoltage generated by the absorbed photon equals the normal state
voltage, when the whole device has transitioned into the normal state. This occurs for all
explored Vbias: V ph(Vbias) ↙ V (Vbias). This observation indicates that the incident photons
induce a complete transition of the MATBG detector from its superconducting state to the
normal state [P1], confirming the idea that the absorbed photon induces an avalanche e!ect
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Figure 6.2.3: Photovoltage time-traces recorded with the self-reset circuitry. (a)-
(b) Simplified circuit diagram used to measure the photoresponse of the MATBG detector,
analogous to the one in Fig. 6.2.1. The incident photons break superconductivity across a
↑ 16 µm2 device, inducing photovoltage (V ph) spikes in the MATBG detector. These spikes
are recorded using an oscilloscope or an analog-to-digital converter.(c) Raw photovoltage time
traces, V ph(t), measured at increasing laser powers for ϖ = 1550 nm. In the top right inset,
the average click heights vs. Vbias are overlaid on the I-V curve, measured in the configuration
described in (a) and (b).(d) Histograms of counts using 1-s time bins for the same laser powers
as in (c). The traces are measured over ↑ 103 seconds. The extracted variance of counts, ⇀2

hist
,

equals the mean, µhist, for all explored laser powers, as expected from photon shot noise. The
solid lines overlaid on the histograms are the Poisson distribution with the extracted µhist and
⇀
2

hist
, confirming agreement with the photon counting statistics.Adapted from [P1]

leading to a complete breaking of superconductivity across the entire ↑ 16 µm2 device.
Fig. 6.2.3c presents the photovoltage traces V ph(t), recorded over time across the

MATBG detector when exposed to laser beam radiation, as described in Fig. 6.2.3a.
We observe that the voltage spikes increase with the incident laser power. In section
1.1, we demonstrated that the photon counting statistic follows the Poisson distribution.
Consequently, if the detected voltage spikes, or ’clicks’, originate from photons emitted by
the dim laser source, they should obey this statistical distribution. We generate histograms
of counts with 1-second bins and calculate the mean (µhist) and variance (ϑ2

hist
) of the
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sampling distribution, in order to investigate their stochastic nature. As shown in the inset
of Figure 6.2.3d, the mean equals the variance for all histograms, consistently with a Poisson
process. Using the extracted µhist and ϑ2

hist
, we also calculate the Poisson distribution

and overlay it on the histograms (solid lines). The experimental counts show excellent
agreement with the statistical model, confirming the hypothesis that the ’clicks’ are given
by the photon shot noise originated by the highly attenuated CW laser source[P1].



108 6. Detecting single near-infrared photons with superconducting MATBG

6.3 Single-photon sensitivity by superconducting MATBG

In this section, we carefully analyze the MATBG’s photoresponse and use the statistics
of the light-induced counts to demonstrate that the detector is sensitive to single near-
infrared photons.

6.3.1 Single-photon sensitivity with continuous wave excitation

First, we measure the PCR (photon count rate) as a function of Vbias with a CW excitation
wavelength of φ = 1550 nm, for di!erent laser powers (filled dots in Fig. 6.3.1a). Then, we
compare the PCR under illumination with that in the dark (empty dots in Fig. 6.3.1a). We
observe that the PCR under illumination is orders of magnitude higher than in the dark
when the detector is operated at a bias voltage far from the critical voltage (Vbias << Vc).
Conversely, when the detector is biased close to the transition, there is an abrupt increase
in false-positive (dark) counts, which dominates the detector’s response for Vbias ↑ Vc.

Interestingly, by fitting the PCR vs. Vbias traces under illumination with a sigmoid
function (solid line in Fig. 6.3.1a lower panel), we observe that the experimental data tend
to saturate at Vbias ↙ 0.997Vc. In section 6.4.3, we demonstrate that these saturations are
intrinsic to the SPD mechanism and not extrinsic, given by the limited bandwidth of the
measurement circuitry. The agreement with a sigmoidal shape combined with the presence
of saturation plateaus is interesting as it suggests similarities between the photoresponse
observed in MATBG and the photon counts in SNSPDs [18].

In the specific case of SNSPDs, the saturation of the PCR as a function of current
bias has been widely investigated and indicates that the internal detector e”ciency, with-
out coupling, reaches unity [18, 184]. In SNSPDs, the detector e”ciency is given by the
product of the photon coupling e”ciency and the intrinsic quantum e”ciency. In the sat-
uration region, the photon coupling e”ciency does not depend on the bias, indicating that
the intrinsic e”ciency of the device cannot be further improved by approaching closer to
the transition[18, 184]. Conversely, in our experiment, the PCR curve does not exhibit
complete saturation, indicating that the intrinsic e”ciency of the process is not 100%. In
section 6.3.4, we discuss in detail the possible reasons for the limited detector e”ciency in
our experiment.

Following the approach described in section 1.1.2, we can demonstrate that the regis-
tered counts are triggered by single near-infrared photons. For this purpose, we attenuate
the laser power such that the number of incident photons per µm2 in a time window ↽ is
⇑Nphoton⇒ < 1. In this scenario, the probabilities of having single photons in a time bin will
be higher than having two or more photons, according to Eq. 1.1.42.

Using the approximation of a Gaussian beam, we can quantitatively estimate the den-
sity of photons incident on the MATBG detector, as previously discussed in section 4.3:
⇑Nphoton⇒ = ↽ · PL/h⇀, where h⇀ = 1.28 ≃ 10↑19 J is the energy of a single photon at
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Figure 6.3.1: Single-photon sensitivity by superconducting MATBG. (a) Top panel:
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in a 5-ms time window per µm2 for two di#erent bias points (Vbias = 0.995 Vc and Vbias = 0.989
Vc). On the top x-axis, the corresponding incident CW power density PL = ⇑Nphoton⇒ ·

h⇀

⇁
and

on the right y-axis, the corresponding detection probability in a 5-ms time window (PCR·ω).
The solid lines are linear fits (with an o#set due to dark counts), showing that the detection
probability evolves linearly with ⇑Nphoton⇒. The gray dashed line depicts a quadratic power
dependence. Adapted from [P1].

φ = 1550 nm. With ↽ = 5 ms as the typical detector recovery time, a laser power density
of PL = 10 aW/µm2 corresponds to ⇑Nphoton⇒ = 0.4 photons incident per µm2 in a time
window of 5 ms. For this range of powers, the probability of detecting m photons in a
detection time window reduces to ↑ ⇑Nphoton⇒

m/m!.

We can prove SPD by demonstrating the linear scaling of the PCR with the average
number of photons. For this purpose, we explore the PCR as a function of laser power
over several orders of magnitude and di!erent bias points. In Fig. 6.3.1b, we plot the
PCR and the derived detection probability (PCR ·↽) as a function of ⇑Nphoton⇒. The
measured detection probability increases linearly with ⇑Nphoton⇒ over more than three orders
of magnitude, demonstrating the single-photon sensitivity of the MATBG superconducting
detector [16].

As reported for other SPDs [5], the PCR deviates from the linear dependence at both
low and high photon fluxes. The o!set observed at low photon fluxes is due to dark
counts, while the saturation at high photon fluxes is due to the limited bandwidth of the
measurement circuitry [P1]. In Fig. 6.3.1b, we plot two traces: one measured closer to
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the transition, at 0.995Vc, and one measured slightly further away, at 0.989Vc. Both traces
show the same overall behavior, except for e”ciency. As expected, the trace measured
closer to the transition exhibits a higher detection probability and dark count rate due to
the increase in intrinsic quantum e”ciency as we approach Vc[P1]. In section 6.4.2, we
show the raw photovoltage time traces measured at di!erent Vbias and PL, used to extract
the PCR reported in Fig. 6.3.1.
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6.3.2 Single-photon sensitivity with pulsed light excitation

As already discussed in section 1.1.2, we repeat the SPD experiment with pulsed light
excitation to provide an independent measurement and cross-check the single-photon sen-
sitivity observed under CW illumination. The employed laser source provides pulses with
a duration of approximately 50 ps, at φ = 1550 nm, with a repetition rate (fRR), tunable
across a broad range of frequencies. Using the pulsed laser source, we independently control
the number of photons carried on average by each pulse (µ) and the rate at which these
pulses are directed onto the device (inset of Fig. 6.3.2a). Similar to the CW experiment,
we set µ < 1 to ensure that most pulses incident on the device area A carry 0 or 1 photon,
making multi-photon events negligible.

This experiment is not only a complementary method to demonstrate SPD but also
proves that the observed photoresponse is due to the instantaneous absorption of single
photons rather than a steady-state bolometric e!ect, similar to the one investigated in
Chapter 5. In the scenario of a steady-state bolometric e!ect, the absorbed laser power
could reduce the bias current, bringing the device closer to the superconducting transition,
and increasing the dark counts probability. This would e!ectively lead to an increase of
the count rate with laser power that is not due to single photons. The pulsed experiment
can completely rule out this scenario.

Unlike the CW experiment, where there is no control over the exact time at which a
photon is absorbed (since the CW source provides a continuous stream of photons), the
pulsed experiment allows to control the time window in which a single photon can be ab-
sorbed (↑ 50 ps). By su”ciently reducing the repetition rate, we ensure that a certain
time (↑ 1/fRR) elapses between two absorption events, ensuring that the MATBG detec-
tor is completely thermalized before another photon is absorbed, and that no steady-state
bolometric e!ect can occur.

In Fig. 6.3.2a, we explore the detection e”ciency for di!erent fRR, ranging from 10
Hz to 1 MHz. In this experiment, we fix µ = PL

h⇀fRR

= 0.62 < 1 by simultaneously tuning
fRR and PL. The detection e”ciency is defined as the ratio of counts detected per second
to photons incident per second in the area A ↑ 16 µm2 and is plotted against the laser
repetition rate. We observe a clear plateau in the range 100 Hz < fRR < 30 kHz, indicating
that the detection e”ciency is una!ected by the time distance between the pulses and that
the absorbed photon rate is lower than the detector recovery time[P1]. Within this range
of repetition rates, we exclude steady-state heating and still observe linear scaling of the
PCR with ⇑Nphoton⇒ (inset in Fig. 6.3.2a), confirming that the observed photoresponse in
MATBG is due to instantaneous absorption of single photons [P1]. We observe a deviation
from the plateau for fRR < 100 Hz, where dark counts dominate the count rate, and for
fRR > 30 kHz, where the incident photon rate saturates the MATBG detector, consistently
to what observed in the CW experiment for PL > 300 aW/µm2.

In Fig. 6.3.2b, we fix the repetition rate in the middle of the plateau (fRR ↑ 5 kHz)
and measure the PCR for the same bias points explored in Fig. 6.3.1b by changing the
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number of photons carried on average by each pulse. As expected, when µ < 1, the PCR
evolves linearly for both bias points, further demonstrating SPD under pulsed excitation.
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Figure 6.3.2: Single-photon sensitivity with pulsed light excitation. (a) Detection
e%ciency vs. laser repetition rate, fRR measured for µ = 0.62 and Vbias = 0.995 Vc. The
detection e%ciency is defined as counts detected per second over photons incident per second
in the area A ↑ 16 µm2 for device A. On the top x-axis, the average incident power density PL
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30 kHz. Inset: photon count rate, PCR vs. average incident photon number ⇑Nphoton⇒ in 1-s
time window per µm2. The solid line is a linear fit with an o#set due to dark counts. (b) PCR
versus µ for the same bias points measured in Fig. 6.3.1b, for a fixed fRR = 5 kHz. The solid
lines are linear fits (with an o#set due to dark counts), showing that the PCR evolves linearly
with µ. Adapted from [P1].
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6.3.3 Detector behavior at higher temperatures

Having demonstrated SPD, we investigate the photodetection mechanism in MATBG by
examining the photoresponse at higher temperatures. We measure the PCR versus Vbias

for temperatures ranging from 35 mK to 800 mK, both with laser excitation and in the
dark (filled and empty dots, respectively, in Fig. 6.3.3a). By fitting the PCR traces using
a sigmoidal shape, analogous to what was done in Fig. 1.1.2a, we observe that all the
PCR traces tend to saturate at Vbias ↑ 0.997Vc. In our experiment, we observe SPD in our
MATBG device up to approximately 0.7 K (see Fig. 6.4.9), while SPD eventually vanishes
at 0.8 K, where the dark count dominates the PCR[P1].

In Fig. 6.3.3b, we compare the SPD e”ciency and the dark count rate as a function
of Vbias for all explored temperatures on a semi-logarithmic plot. The dark count rate
(right-hand side of the y-axis) exhibits a similar behavior for all temperatures and shows
two distinct Vbias dependencies. For Vbias > 0.998Vc, there is a sharp increase in dark
counts, responsible for the abrupt rise in PCR under illumination when Vbias ↑ Vc. These
dark counts are potentially intrinsic to the MATBG photodetector, given the instabilities
when the device is biased close to the transition. Conversely, for Vbias < 0.998Vc, the dark
counts exhibit a more gradual rise with Vbias. This behavior is similar to previous reports
on other SPDs[185] and points towards an extrinsic origin of these dark counts, i.e., due to
background photons coupling to the device through the optical fiber[185]. This argument
is further confirmed by the fact that the dark counts exhibit the same Vbias dependence at
all temperatures.

Conversely, the detection e”ciency (defined as the ratio of counts detected per second to
photons incident per second in the area A ↑ 16 µm2), has a clear temperature dependence:
it is maximum at the lowest temperatures and gradually decreases as the temperature
rises, similar to observations in other SPDs [184, 185]. In Fig. 6.3.3c, we plot the detector
e”ciency versus temperature extracted at three di!erent Vbias from the sigmoid fit in Fig.
6.3.3a. As anticipated, the e”ciency abruptly drops as the temperature rises. This behavior
is critical to understanding the detection mechanism. A possible explanation for this trend
can be the increase in thermal conductance. As measured in Chapter 5, the thermal
conductance in the superconducting state of MATBG shows a rapid, power-law increase
within the temperature range of 35 mK< T < 800 mK. In our proof-of-concept experiment,
the detection events are driven by an avalanche e!ect sustained by self-heating, originating
from the hotspot formation within the hysteresis loop. Therefore, the increase in thermal
conductance at elevated temperatures could enhance the heat leak out of the electronic
ensemble, ultimately reducing the probability of transitioning into the resistive state by a
self-heating e!ect [P1]. As we discuss in the following section 6.3.4, heat dissipation could
be a limiting factor for MATBG e”ciency in our experiment, and future applications may
explore di!erent readout mechanisms that do not rely on self-heating.

In Fig. 6.3.3d, we plot the detector e”ciency against the dark count rate to identify
the optimal operating point of the MATBG detector at various temperatures. The best
trade-o! between SPD e”ciency and dark count rate is obtained in the plateau region,
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where the e”ciency is at its maximum value while the dark count rate remains below 0.05
Hz.
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6.3.4 Discussion of the detector’s e#ciency

In this section, we estimate the internal e”ciency of the MATBG detector and discuss the
possible factors limiting it in our experiment. As discussed in section 5.1, the incident
photon energy is significantly larger than the widths of the flat bands and the supercon-
ducting gap, allowing us to approximate the MATBG’s absorption to be the same as bilayer
graphene. In addition, employing the optical transfer matrix formalism, we have calculated
the e!ects on absorption of the additional layers in the heterostructure and found them
to be negligible (section 5.1.1). Therefore, assuming MATBG’s absorption to be approxi-
mately 4.6%, we estimate the internal e”ciency of our SPD at the saturation plateau to
be ↑ 10↑3/0.046 ↙ 0.022.

The first factor limiting the e”ciency could be the twist angle inhomogeneity. As antic-
ipated in section 3.3.2, due to the relaxation of the lattice structure during the fabrication
process, there might be local variations in the twist angle, resulting in a narrower super-
conducting area in MATBG. Therefore, the e!ective area of MATBG contributing to the
photoresponse could be much smaller than the entire device area [P1]. This would be
consistent with previous studies of twist angle inhomogeneity using local probe techniques
on MATBG [135, 136, P7]. Even though the fabrication method developed in Chapter 3
allows us to achieve high-quality MATBG devices, local twist angle disorder significantly
limits the size of the superconducting area.

We can use this argument to get insights into the superconducting area of MATBG
via its interaction with photons. Supposing that the internal e”ciency is close to unity at
the saturation plateau (analogous to SNSPDs [18]), in that case, we can estimate a lower
limit for the e!ective superconducting area: Aeff ↑ 0.022 · A ↙ 0.35 µm2. Following this
argument, we could also estimate the channel’s width. If the resistance measured across the
two voltage probes (spaced 3 µm apart) is zero, it implies that there is full percolation of
the superconducting path across that length [P1, 135]. In this scenario, we could estimate
the channel’s width as approximately 120 nm. Interestingly, this would indicate that our
MATBG detector e!ectively behaves as a superconducting nanowire defined by the twist
angle inhomogeneities. This could explain the observed similarities in the photoresponse
between the MATBG and SNSPDs.

However, while in SNSPDs the absorbed photon generates a local resistive domain to
produce a readout signal [81], our detection mechanism relies on a hotspot expanding with
self-sustained Joule heating, leading to a complete breakdown of superconductivity across
the whole device area, as suggested by the pulse shape of all three devices (section 6.3.5).
As indicated by the behavior of the detector e”ciency with temperature (Fig. 6.3.3c),
heat dissipation could be an additional factor limiting the detection e”ciency. If the heat
can easily leak out of the electronic ensemble, as pointed out by the thermal conductance
measurement in Chapter 5, the probability of transitioning into the resistive state via a
self-sustained heating e!ect, is strongly reduced and the e”ciency of this process is limited.

Possible ways to overcome this issue include employing di!erent probes that are more
sensitive to changes in voltage and not relying on the complete breaking of superconduc-
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tivity[P1].

6.3.5 Photovoltage generation and pulse shape

In this section, we examine the pulse shapes to understand the origin of the photovoltage
generated in MATBG devices. We argue that the observed photoresponse results from the
breaking of superconductivity across the entire device upon photon absorption. To support
this claim, we measure the photovoltage spikes when MATBG devices are exposed to laser
beam radiation at a wavelength of φ = 1550 nm, using a single-shot oscilloscope, as de-
scribed in Fig. 6.2.3a, b. We compare the click heights with the oscilloscope traces recorded
while sweeping the bias voltage across the transition from the superconducting to normal
state and vice versa (Fig. 6.3.4d-f). The voltage output induced by the photons matches
the voltage generated by manually sweeping the device across the transition, confirming
our initial hypothesis of a complete breaking of superconductivity in the device[P1].

-2 0 2 4
t (ms)

0.1

0.2

0.3

0.4

0.5

V
ph

(m
V)

-5 -2.5 0 2.5 5
t (ms)

0.1

0.2

0.3

0.4

0.5

0.6

V
ph

(m
V) V

bias
direction

-30 -15 0 15 30
t (ms)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

V
ph

(m
V)

a b c

d e f

Dev. A Dev. B

-30 -20 -10 0 10 20 30
t (ms)

0.3

0.4

0.5

0.6

V
ph

(m
V)

-30 -20 -10 0 10 20 30
t (ms)

0.2

0.3

0.4

V
ph

(m
V)

V
bias

direction V
bias

direction

-10 0 10 20 30 40
t (ms)

0.2

0.25

0.3

0.35

V
ph

(m
V)

Dev. C

Figure 6.3.4: Photovoltage generation and pulse shape for all devices. (a)-(c) Pulse
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(red). Adapted from [P1].
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We also compare the measured pulse shapes in MATBG devices with those typically
observed in other superconducting SPDs. In our experiment, when the MATBG detector
turns resistive upon photon absorption, it remains in the normal state for a few millisec-
onds before returning to the superconducting state. This behavior is substantially di!erent
from other superconducting SPDs, such as SNSPDs or TES. As briefly discussed in section
1.3.1, in typical superconducting SPDs, the pulse shape is characterized by a fast increase
in the photovoltage, followed by a much slower decay. For SNSPDs, the characteristic time
of such decay depends on the ratio between the kinetic inductance of the superconduct-
ing circuit and the shunt resistance [80, 186]: ↽ ↑ Lk/Rs; while for TES or hot electron
bolometers, it depends on the intrinsic thermalization time of the electrons in the ma-
terial [15, 187], given by the ratio of electronic heat capacity and thermal conductance:
↽ = Ce/Gth. In section 6.4.3, we provide a careful investigation of the detector’s timescale
and propose possible ways to improve the detector’s speed.

Additionally, we measure the photovoltage time traces for two di!erent excitation wave-
lengths (φ = 1550 nm and φ = 633 nm) and plot them in Fig. 6.3.5. The traces measured
at φ = 1550 nm are shown in red, while those measured at φ = 633 nm are in blue. We
extract the click heights and overlay them on the I-V curve (Fig. 6.3.5a). Interestingly,
there is no appreciable di!erence in the click heights measured at 1550 nm and 633 nm.
This observation suggests once more, that the observed photoresponse is due to a complete
breaking of superconductivity, regardless of the excitation energy[P1].
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Figure 6.3.5: Raw photovoltage time traces for di!erent excitation energies. (a)
Average click height measured as a function of Vbias for ϖ = 1550 nm and ϖ = 633 nm. The
click heights are overlaid on the I-V curve. (b)-(g) Raw photovoltage traces measured over
time for six di#erent bias voltages and for two di#erent excitation wavelengths: ϖ = 1550 nm
(red) and ϖ = 633 nm (blue). To make the plots more readable we reduce the time duration
of the traces as we approach closer to the transition. Adapted from [P1].
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6.4 Further analysis

In this section, we perform additional analysis on the technical aspects of the MATBG
detector, which can be useful for improving its performance. Specifically, we quantita-
tively analyze the implemented self-reset circuitry and investigate the detector’s timescale.
Additionally, we present and discuss the photoresponse of the additional devices B and C
and detail the method used to register the counts in the detector.

6.4.1 Detailed analysis of the reset circuitry

V0

Rres

R2

R1

Vbias
VMATBG

IdI2

I0

RMATBG

Figure 6.4.1: Schematics of the reset circuit. V0 is the external voltage applied by
the source meter. R1 and R2 are the two resistors constituting the voltage divider. For the
photodetection experiment we used R1 = 1 M$ and R2 = 1 k$. RMATBG is the resistance
of the MATBG which changes from the superconducting state to the normal state. VMATGB

is the 4 probe voltage generated across the MATBG device and Vbias the applied bias voltage
across the source and drain contacts of the device. Rres = 54.5 k$ is is the residual resistance
arising from the contact resistance and the metallic leads.

Fig. 6.4.1 illustrates the schematics of the circuit implemented to reset the MATBG de-
tector upon photon absorption. From the schematics, we can write the system of equations
that fully describes the reset circuit developed in our experiment:






Vbias = VMATBG +RresId
I0 = Id +

Vbias

R2

V0 = I0R1 + Vbias

(6.4.1)

Isolating I0 in the second and third equations, we get:






Id =
Vbias↑VMATBG

Rres

Vbias =
R2

R1+R2
V0 → Id

R1R2
R1+R2

(6.4.2)

To verify that the equations accurately describe the experiment, we perform a linear
fit on the measured Vbias vs. V0. As shown in the second expression of Eq. 6.4.2, the slope



120 6. Detecting single near-infrared photons with superconducting MATBG

of this curve is given by R2
R1+R2

. The slope extracted from the fit, 0.00099 (Fig. 6.4.2a),
matches the value expected from the resistors used (R1 = 1 k’ and R2 = 1 M’).

We also independently measure the residual resistance (Rres = 54.5 k’), the voltage
bias Vbias applied across the source and drain contacts, and the 4-probe voltage generated
across the MATBG, VMATBG. Using the first expression of Eq. 6.4.2, we can extract Id
as a function of the applied bias voltage Vbias and observe that the current flowing in the
MATBG is reduced by ↑ 5 nA for Vbias = Vc, as reported in Fig. 6.4.2b. This indicates that
when the detector transitions into the normal state, the current flowing in the MATBG
detector is reduced by $Id ↑ 5 nA, allowing the reset of the MATBG detector upon photon
absorption.
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Figure 6.4.2: Analysis of the reset circuit. (a) Measured Vbias vs. V0 while sweeping
across the superconducting transition. The slope extracted from the fit is 0.00099, which
matches the one expected from R2

R1+R2
considering the resistors used in the experiment: R1 =

1 k$ and R2 = 1 M$. (b) Extracted device current as a function of the applied bias voltage.
The device current is calculated from Eq. 6.4.2 as: Id = Vbias↑VMATBG

Rres
, where VMATGB is the

4 probe voltage generated across the MATBG device and Vbias the applied bias voltage. Id

drops by ↑ 5 nA at the transition.

To investigate this further, we solve the system in Eq. 6.4.2 and calculate the reduc-
tion of critical current as a function of the parallel resistor R2, comparing it with the
experimental data. In our experiment, we tried several parallel resistors before finding the
optimal configuration and measured the I-V characteristic, as shown in Fig. 6.4.3. We
notice that the hysteresis loop $Ihyst is reduced when the parallel resistor R2 is reduced
and completely disappears for R2 = 1 k’. By reducing the value of R2, we observe that
the circuit transitions from a purely current-bias (Id is not reduced when the device turns
to the normal state) to a voltage-bias, in which there is a reduction of Id, closing the
hysteresis loop.

We extract the expression for Id as a function of R2:
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Id =
V0R2 → (R1 +R2)VMATBG

Rres(R1 +R2) +R1R2

(6.4.3)

From this, we can calculate the variation of current flowing into the MATBG device
($Id) when the device transitions into the normal state as a function of R2:

$Id(R2) =
$VMATBG(R1 +R2)

Rres(R1 +R2) +R1R2

(6.4.4)

Where $VMATBG = V SC

MATBG
→ V N

MATBG
↑ 0.44 mV is the variation in the MATBG

voltage when transitioning from the superconducting to the normal state. In Fig. 6.4.3b,
we plot the extracted hysteresis loop width $Ihyst for di!erent values of R2 and compare
it with the $Ihyst expected from the model: $IModel

hyst
= $Ihyst(R2 = ↔)→$Id(R2).
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Figure 6.4.3: Closing of the hysteresis loop in the I-V curves. (a) Voltage vs. device
current, Id calculated according to Eq. 6.4.2 for di#erent values of the parallel resistor R2.
The width of the hysteresis loop ”Ihyst is progressively reduced by reducing the value of R2.
(b) Comparison between the ”Ihyst extracted from (a) and the ”Ihyst calculated from Eq.
6.4.4.

We notice that the model reproduces the overall experimental behavior, i.e., that the
width of the hysteresis loop diminishes as R2 decreases. However, while the model repro-
duces the trend well for high values of R2, it fails for lower values, predicting a reduction
in the width of the hysteresis loop but not its complete closing. This discrepancy can
be explained by the fact that the reduction of Id suppresses the Joule heating when the
MATBG transitions from superconducting to the normal state: $PJ = PN

J
→ P SC

J
=

V
2
bias

Rres+RN

→
V

2
bias

Rres+RSC

< 0. Interestingly, the Joule heating variation is negative, similar to
transition-edge sensors [15, 65]. We speculate that the mechanism restoring superconduc-
tivity in the MATBG detector after photodetection is a combination of the resetting of the
device current and a negative electrothermal feedback[65].
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6.4.2 Method of registering counts in the detector

Fig. 6.4.4b-g shows the raw photovoltage time traces with (red) and without illumination
(blue) for six di!erent bias points, from which we derived the PCR vs. Vbias in Fig. 6.4.4a.
Similarly, Fig. 6.4.5b-g show the raw photovoltage time traces measured for di!erent laser
powers (colored dots) at a fixed bias Vbias = 0.995 Vc, from which we derived the PCR vs.
PL in Fig. 6.4.5a. In this section, we present the raw photovoltage time traces used for
deriving the plots in Fig. 6.3.1 and detail the method employed to extract the counts of
the MATBG detector. As described earlier, the raw traces are measured using an analog-
to-digital converter or an oscilloscope. We use a MATLAB script to count the number of
detected events by setting a threshold (V ph > 0.4 mV for device A) and a minimum time
interval between clicks to avoid double-counting. The minimum time interval is defined
by the detector’s recovery time, which is the period immediately following an event during
which the detector is unable to record another event. As shown in Fig. 6.4.6, the recovery
time ranges from approximately 1 ms to 17 ms. Therefore, we set the minimum interval
between counts to 17 ms. This choice limits the maximum measurable count rate to
approximately 60 Hz. For the PCR vs. PL traces, the minimum interval between clicks is
set to 13 ms.

Fig. 6.4.4b-g shows the raw photovoltage time traces with (red) and without illumi-
nation (blue) for six di!erent bias points, from which we derived the PCR vs. Vbias in
Fig. 6.4.4a. Similarly, Fig. 6.4.5b-g show the raw photovoltage time traces measured for
di!erent laser powers (colored dots) at a fixed bias Vbias = 0.995 Vc, from which we derived
the PCR vs. PL in Fig. 6.4.5a.
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Figure 6.4.4: Raw photovoltage time traces for di!erent bias points. (a) Photon
count rate (PCR) vs. Vbias measured for di#erent laser powers as in Fig. 6.3.1a. (b)-(g) Raw
photovoltage time traces with and without 1550 nm laser-illumination for di#erent bias points.
Adapted from [P1].
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Figure 6.4.5: Raw photovoltage time traces for di!erent laser powers. (a) Extracted
photon count rate, PCR vs. laser power for Vbias = 0.995 Vc. The colored dots are the selected
laser powers for which we show the raw photovoltage time traces. (b)-(d) Raw photovoltage
time traces measured for three di#erent laser powers (attenuations of 70, 62 and 52 dB) over
2000 seconds. In this range, the PCR (< 0.02 Hz) is mostly due to dark counts as the count
rate does not significantly scale with the laser power. (e)-(g) Raw photovoltage time traces
measured for three di#erent laser powers (attenuations of 42, 32 and 22 dB). In these plots the
time duration of the traces is scaled inversely with the laser attenuation to facilitate the direct
counting of the ‘clicks’ (200, 20 and 2 seconds respectively). The threshold used for counting
the ’clicks’ is V ph > 0.4 mV (black line). The PCR scales linearly with the incident power: 42
dB (PCR ↑ 0.15 Hz), 32 dB (PCR ↑ 1.5 Hz) 22 dB (PCR ↑ 14 Hz). Adapted from [P1].
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6.4.3 Detector’s timescale

In this section, we study in detail the timescale of the ’clicks’ and how this a!ects the
experimental observations. Specifically, in Fig. 6.4.6, we compare the average ’clicks’
timescale, ↽av (top panels), with the PCR (bottom panels) for di!erent bias points.
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Figure 6.4.6: Detector timescale for di!erent bias voltages. (a)-(f) Top panel: Aver-
age ’clicks’ timescale, ωav vs. Vbias extracted from the raw photovoltage time traces for di#erent
temperatures. Bottom panel: PCR vs. Vbias for the same temperatures.

We observe that the ’clicks’ become slower as we approach Vc. This comparison is
important to understand whether the origin of the saturation plateau observed in Fig.
6.4.4a at ↑ 0.997Vc and in Fig. 6.4.5a is intrinsic to the MATBG or extrinsic, i.e., due to
a limited bandwidth of the reset circuitry. From the top panels in Fig. 6.4.6, we observe
that at Vbias ↑ 0.997Vc, the average time duration of the pulses is ↽av ↑ 10 ms, which
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translates into a maximum count rate of ↑ 100 Hz. From the bottom panels in Fig. 6.4.6,
we see that the saturation plateau in the PCR vs. bias at Vbias ↑ 0.997 occurs at a smaller
rate (approximately 10 Hz) than the maximum bandwidth. Similar saturation plateau
were also observed for lower laser powers at ↑ 1 Hz. From this analysis, we conclude that
the saturation behavior observed in the PCR vs. Vbias traces is intrinsic to the MATBG
detector and not limited by the reset circuitry.

To support this argument, in Fig. 6.4.8b, we plot the PCR vs. PL corresponding to
these saturation plateaus and demonstrate that they evolve linearly with laser power and
are not limited by the constrained bandwidth. Conversely, the saturation behavior of the
PCR vs. PL observed in Fig. 6.3.1b at high powers (↑ 103 aW/µm2, which is roughly
50-60 Hz) is purely extrinsic due to the limited bandwidth.
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Figure 6.4.7: Pulse shape, rise time, and decay time for device A. (a) Photovoltage
pulse V ph measured in the MATBG photodetector at Vbias/Vc ↙ 0.989 and ϖ = 1550 nm with
a single-shot oscilloscope. (b) Rise time tr = 356 µs measured from the pulse in (a), resulting
in an overall bandwidth of the electronic readout of < 1 kHz. (c) The decay time td is similar
to the rise time. Adapted from [P1].

Analyzing the pulse shape measured with the oscilloscope allows us to extract the rise
time and decay time of the voltage pulses (Fig. 6.4.7) and compare them to those expected
from the e!ective bandwidth discussed in section 4.1.4. We find that the measured pulse
rise time (tr = 356 µs) is extrinsically limited by the restricted bandwidth and aligns with
the one measured using the 10 k’ resistor. The same applies to the decay time: td ↙ tr.
Despite the limited bandwidth in our experiment, we are able to accurately study the
statistics of the photo-induced counts and demonstrate the single-photon sensitivity of the
MATBG detector.

The timescale of our MATBG detector is quite poor compared to the stat-of-the-art
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SPDs[4, 5]. A possible way to improve the detector’s speed is to design a resonator-based
readout, in which the kinetic inductance is part of the resonator. When an absorbed photon
generates quasiparticles inside MATBG, its kinetic inductance increases, suppressing the
resonance frequency. This concept is similar to the kinetic inductance detector[21], which
has proven to provide a fast readout of SPD.
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6.4.4 Additional photoresponse data

For completeness, we report additional photoresponse data measured on device A and the
full dataset measured on device B and C.

Additional photoresponse data of device A

ba

0.985 0.99 0.995 1
0

10

20

30

0.985 0.99 0.995 1
0

5

10

15

0.985 0.99 0.995 1
0
2
4
6
8

0.985 0.99 0.995 1
0
2
4
6
8

101 102

100

101

0.99891 Vc
0.99809 Vc
0.99699 Vc
0.99617 Vc

 aW/
Dark
12

 aW/
Dark
29

 aW/
Dark
73

 aW/
Dark
183

Vbias Vc/

PC
R

 (H
Z)

PC
R

 (H
z)

PC
R

 (H
Z)

PC
R

 (H
z)

c

10-4 10-2 100 102

10-3

10-2

10-1

100

101

102 10-1 101 103

10-5

10-4

10-3

10-2

10-1

D
et

ec
tio

n 
Pr

ob
ab

ilit
y 

in
 5

 m
s

PL ( )

PL ( )

PC
R

 (H
z)

PC
R

 (H
z)

in 5 ms per 

Vc 0.991

μm2

μm2

μm2

μm2

μm2

μm2

μm2

Figure 6.4.8: Additional photoresponse data of device A.(a) Extracted photon count
rate (PCR) vs. Vbias measured at various laser powers and plotted in linear scale. (b) PCR
vs. PL in correspondence of the saturation plateaus ↑ 0.997Vc. (c) PCR vs. PL measured at
Vbias = 0.991Vc. The MATBG detector shows single-photon sensitivity even at this bias point.
Adapted from [P1].

In Fig. 6.4.8a, we present the PCR vs. Vbias measured at various laser powers on a linear
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scale. This linear scale highlights the sigmoidal shape across all laser powers. In Fig. 6.4.8b,
we also show the PCR vs. PL corresponding to the saturation plateaus, demonstrating that
they scale linearly with laser power. As mentioned in section 6.4.3, we can exclude the
possibility that the plateaus are artifacts of limited bandwidth. Additionally, in Fig. 6.4.8c,
we plot the PCR vs. PL measured at a di!erent bias point (Vbias = 0.991Vc) compared to
those reported in Fig. 6.3.1b. Even at this bias point, the MATBG detector exhibits single-
photon sensitivity. We also measure the PCR vs. PL at T = 700 mK and Vbias = 0.996Vc

(Fig. 6.4.9), observing a linear scaling of the PCR with PL, confirming single-photon
sensitivity up to this temperature.
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Figure 6.4.9: Single-photon sensitivity at 700 mK. PCR vs. PL or ⇑Nphoton⇒ measured
at 0.996 Vc for device A at T = 700 mK. Adapted from [P1].
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Photoresponse of device B

In this section, we summarize the photoresponse measurements performed on device B. As
anticipated in the transport characterization, while the hysteresis loop in the I-V curve
of device B is similar to that of device A, its superconducting state is not fully developed
and does not reach zero resistance (Fig. 6.2.2e). This observation is consistent with twist
angle inhomogeneity [135].
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Figure 6.4.10: Raw photovoltage time traces for device B. (a)-(c) Photovoltage traces
over 50 seconds time window measured at three di#erent laser power for device B. Adapted
from [P1].

In Fig. 6.4.10, we plot the raw photovoltage time traces measured with the same setup
and circuit described above and observe voltage spikes that increase with the incident
laser power. Notably, we observe a substantial increase in the dark count rate in device B
compared to device A. Specifically, at Vbias ↑ 0.990Vc, device A exhibits a dark count rate
of approximately 10↑3 Hz, while device B shows around 3 ≃ 10↑1 Hz (see Fig. 6.4.11a).
A possible explanation for this behavior could be the non-fully developed superconducting
state. In SPDs, the superconducting gap typically protects against external excitations
that cause the superconductor to become normal, leading to dark counts [P1]. Therefore,
we can expect the non-zero resistive state observed in the transport characterization to be
responsible for this increase in the dark count rate.
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The I-V characteristic for device C features a smaller hysteresis loop (↑ 2-3 nA).
Additionally, device C exhibits a smoother transition from the superconducting to the
normal state. In Fig. 6.4.12, we plot the raw photovoltage time traces measured on device
C, and in Fig. 6.4.11, we summarize the PCR against Vbias and PL.
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7
Towards Terahertz photodetection

with superconducting MATBG

The work presented in this chapter results from a collaboration with Leon Schubert
[188] and Carl Hudeczek [189]. My contributions included conceptualizing and de-
signing the experimental setup, as well as supervising the simulation and realization
of the Terahertz antennas.

7.1 Terahertz optoelectronic setup at millikelvin tem-
peratures

Following the successful demonstration of SPD in the near-infrared range (Chapter 6), our
long-term objective is to extend superconducting SPD to longer wavelengths, specifically
targeting the terahertz (THz) range where SPDs remain significantly underdeveloped[19,
26]. The THz range is of considerable interest not only for technological applications as the
THz SPD proposed in this study, but also for fundamental research, as many correlated
phenomena in condensed matter systems exhibit energy gaps or excitations accessible via
THz radiation[190–192]. For both fundamental and technological purposes, it is crucial
to combine THz excitation with low temperatures, which are necessary to observe super-
conductivity and other correlated phenomena. However, integrating a THz source with
low-temperature cryostats, such as dilution refrigerators, presents a significant challenge.
Recent studies have proposed various methods to implement a THz source at millikelvin
temperatures, either by incorporating the THz source within the cryostat[193, 194] or by
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coupling room-temperature external optics through a diamond window[195]. Both strate-
gies have successfully delivered relatively high radiation power to the sample stage while
maintaining low temperatures. In our experiment, which aims to detect faint THz light
fluxes, high laser powers are not required. Therefore, we employ a THz photomixer lo-
cated within the dilution refrigerator, thermally anchored to the still plate, and coupling
THz radiation in free space to the sample at millikelvin temperatures. THz photomix-
ers are well-established THz sources with applications in various research fields, partic-
ularly spectroscopy[196–199]. The primary advantage of this technique is that the THz
photomixer dissipates less power than typical lasers[193], thereby requiring lower cooling
power for proper thermalization, allowing it to be placed closer to the sample stage[194].
The main heat source for this setup is the near-infrared lasers used to pump the photomix-
ers, which can be located outside the cryostat and coupled to the photomixer through
cryo-compatible optical fibers. A similar setup was utilized for photon-assisted shot-noise
measurements[200], with the THz photomixer positioned at the 4K stage of a wet dilution
refrigerator. In our experiment, we embed the THz photomixer in a closed-cycle dilution
refrigerator (BlueFors SD250). This chapter details the design and realization of this mil-
likelvin THz setup, as well as the implementation and simulation of THz antennas required
for e”cient coupling of the THz radiation to the sample.

7.1.1 Terahertz generation by continuous-wave photomixing

The source we aim to use in our experiment is based on continuous-wave (CW) photomix-
ing, a technique that generates THz radiation by mixing two CW lasers with slightly dif-
ferent optical frequencies ⇀1,2 = ⇀0±fTHz/2. As illustrated in Fig. 7.1.1, a CW photomixer
typically consists of two CW lasers (with powers P1 and P2) illuminating a semiconductor
(typically GaAs or InGaAs)[196]. The working principle involves the absorption of photons
from the two lasers by the semiconductor. As the optical frequencies are larger than the
energy gap of the semiconducting material h⇀1,2 > Egap (Egap = 1.42 eV for GaAs) they
create electron-hole pairs. When the semiconductor is integrated into a biased antenna, this
process generates a photocurrent at the THz frequency, with the emission of THz radiation.

In the following we explain the underlying physics of CW photomixing using a simple
formalism. The total electric field given by two detuned optical lasers mixed in a beam
splitter or an optical fiber is (see Fig. 7.1.1)[196]:

5E(t) = 5E1(t) + 5E2(t) = 5E1,0e
i(ς+ςTHz/2)t + 5E2,0e

i(ς↑ςTHz/2)t↑iϕ (7.1.1)

Where we have defined 6 as a the relative phase between the two electrical fields and
ωi = 2ς⇀i. After calculating the optical intensity IL(t) ↑ | 5E(t)|2, Eq. 7.1.1 can be
expressed in terms of powers as[196]:

PL(t) = P1 + P2 + 2

P1P2 cos β · cos (ωTHzt+ 6) (7.1.2)

Where β is the relative angle between the polarizations of the two electrical fields. This
equation shows that due to interference e!ect the total power of the mixed detuned lasers
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Figure 7.1.1: Schematic of the photomixing process. Two CW lasers with slightly
di#erent optical frequencies ε1,2 = ε0 ± fTHz/2 couple into a mixing fiber. Due to interference
the total power of the mixed detuned lasers has a long-wavelength envelope that oscillates at
THz frequency (ϖTHz). The radiation impinges in a semiconducting layer (typically GaAs)
generating free carriers (electrons-holes). The electrical field ( ⇁Ebias) induced by external biasing
of the antenna results in a photocurrent, Iph. The acceleration of free carriers generates
electromagnetic radiation at THz frequency.

has a long-wavelength envelope that oscillates at THz frequency. When this oscillating
optical radiation impinges on the semiconductor, it generates a time-dependent popula-
tion of free charge carriers (electron-hole pairs) ne↑h(t) ′ PL(t) which also oscillates at
THz frequencies[201]. As skecthed in Fig. 7.1.1, a metallic antenna is lithographically
designed on top of the GaAs substrate[196]. By applying an external bias to the antenna,
it is possible to generate an electric field 5Ebias that moves electrons and holes in opposite
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directions. This spatial motion results in a periodic photocurrent Iph(t) of the form[196]:

Iph(t) =
ePL(t)

h⇀0
=

e(P1 + P2)

h⇀0︸ ︷︷ ︸
DC component

+2
e
⇐
P1P2

h⇀0
cos β · cos (ωTHzt+ 6)

︸ ︷︷ ︸
AC component

(7.1.3)

Where we have assumed for simplicity an ideal semiconductor with 100% absorption ef-
ficiency. Therefore, the photomixer acts as a THz-frequency switch: without external
illumination, the semiconductor prevents current flow across the biased antenna; how-
ever, when illuminated with light above the semiconductor’s bandgap, a current of free
carriers flows across the antenna at the THz frequency. Here the photocurrent consists
of a time-independent component (DC) and a time-dependent component oscillating at
THz frequency (AC). Assuming the two lasers to have same power P1 = P2 = PL and
polarization cosβ = 1, the photocurrent reads[196]:

Iph(t) = 2
ePL

h⇀0︸ ︷︷ ︸
I0

[1 + cos (ωTHzt+ 6)] (7.1.4)

According to Larmor formula, the acceleration and deceleration of charge carriers leads to
electromagnetic emissions ETHz(t) ′ ϖIph(t)/ϖt. Therefore, the antenna generates THz
radiation according to[196]:

PTHz =
1

2
RAI

2

0
=

1

2
RA

(
2e

h⇀0

)2

P 2

L
(7.1.5)

Where RA is the resistance of the antenna. This equation demonstrates that the THz
beating generated by mixing two detuned lasers can be absorbed by a semiconducting
material embedded in an antenna to produce THz radiation. While the above equation
assumes ideal conditions, such as 100% e”ciency and perfect polarization, experimental
realizations may exhibit losses that suppress THz generation. However, even with these
limitations, this technique is suitable for SPD experiments where only faint light fluxes are
required.

This technique provides several advantages. First of all it provides easy tunability of
the THz signal. The output THz frequency is given by:

fTHz = c

(
1

φ0

→
1

φ0 +$φ

)
(7.1.6)

Where c is the speed of light, φ0 is the central wavelength of the laser source, and $φ
is the wavelength di!erence between the two lasers. To achieve an output radiation of 1
THz, a wavelength di!erence of $φ = 8 nm is required with a laser source of φ0 = 1550
nm, or $φ = 2 nm with a laser source of φ0 = 780 nm. As CW lasers are tunable from
one tenth of nanometer to few nanometers, this technique provides an intrinsically widely
tunable THz source. The linewidth of the THz radiation depends on the linewidth of
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the used CW lasers, which is typically a few MHz to a few tens of MHz[196]. Finally,
this technique can be easily operated at room temperature and is also versatile for low-
temperature environments, making it a suitable solution for providing THz radiation in
cryostats such as dilution refrigerators.

Spectral range of the THz source

As previously discussed, one of the key advantages of CW photomixing is the high tun-
ability of the THz emission wavelength. To measure the spectral range of the THz source,
which is crucial to design the experiment, we place a second GaAs photomixer below the
emitter, acting as a receiver and measure the photocurrent generated in the receiver by
sweeping the frequency of THz emission (Fig. 7.1.2). Due to their operational principle,
THz photomixers can function interchangeably as emitters and receivers[197, 202, 203].
Specifically, the THz radiation absorbed by a photomixer, pumped with a near-infrared
optical beating (with frequency ωTHz), induces a photocurrent which enables it to be used
as a THz detector. The photocurrent recorded in the receiver has two components at ωTHz:
one is the power of the lasers PL(t) used to pump the receiver, and the other is the THz
radiation absorbed, which generates an electric field UTHz(t):

Iph(t) ′ PL(t)UTHz(t) ′ cos(ωTHzt) cos(ωTHzt+$ε) (7.1.7)

Where $ε is the phase di!erence between the two signals originating from the path di!er-
ence between the two optical fibers transporting the mixed laser ($L) and the gap between
the emitter and the receiver (d). The phase di!erence can therefore be expressed as[188]:

$ε =
ωTHz

c
($L · nFiber + d · nAir) (7.1.8)

Where nFiber and nAir are the refractive indices of the optical fiber and air, respectively.
Since $L, d, nFiber, and nAir are fixed in our experimental setup, sweeping ωTHz generates
oscillations in the photocurrent measured in the receiver due to this phase di!erence, as
shown in Fig. 7.1.2c. Therefore, by sweeping ωTHz and analyzing the amplitude of the
oscillations, we can determine the intensity of the THz signal generated by the emitter
across the entire frequency range (Fig. 7.1.2d). We observe that the spectral range of our
THz sources ranges from about 500 GHz to 1.6 THz[188].
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Figure 7.1.2: Measurement of the spectral range of the THz source. (a) Optical im-
age of the setup implemented to measure the spectral range of the THz source. (b) Schematic
of the measurement process. The two photomixers (emitter and receiver) are positioned facing
each other. The photomixed signal from the lasers illuminates both the emitter and receiver.
The THz signal generated by the emitter induces a measurable photocurrent in the receiver.
As described in Eq. 7.1.1, the path di#erence between the emitter and receiver results in a
phase shift in the photocurrent measured at the receiver. (c) Photocurrent measured in the
receiver, Iph while sweeping the beating frequency, φTHz. The inset is a zoom in the frequency
range 500 GHz to 530 GHz, showing the oscillations in photocurrent given by the phase dif-
ference ”φ. The red dots indicate the amplitude of the oscillations. (d) Amplitude of the
oscillations plotted for all the frequency range explored. We measure a THz signal from the
emitter in the range between 500 GHz and 1.6 THz. The measurements were performed by
Leon Schubert[188] under my supervision.
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7.1.2 Design of the experimental setup

The primary experimental challenge in implementing a THz setup at millikelvin temper-
atures is ensuring proper thermalization of the components to maintain a low sample
temperature.
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Figure 7.1.3: Schematic of the millikelvin THz setup. The millikelvin THz setup is
adapted from the near-infrared optoelectronic setup shown in Fig. 4.2.2. The two detuned
CW lasers are located at room-temperature outside of the cryostat.The mixed signal is couple
to the GaAs photomixer through a cryo-compatible optical fiber. The GaAs THz photomixer
is thermally anchored at the 1 K still plate to ensure proper thermalization and externally
biased via an arbitrary wave-function generator. The emitted THz radiation is coupled in free
space to the sample stage located at the mixing chamber plate.

When placed within the dilution refrigerator, the THz photomixer introduces an ad-
ditional heat source that must be adequately cooled. Based on the working principle
described above and the schematics in Fig. 7.1.1, the power dissipated by the photomixer
(Pph) has two contributions: the Joule heating generated by the photocurrent flowing
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through the antenna (I2
ph
RA) and the near-infrared optical radiation (PL) that pumps the

GaAs photomixer. Thus:
Pph = PJ + PL = I2

ph
RA + PL (7.1.9)

In our experiment, the power provided by the external CW lasers is PL ↑ 20 mW, while
the Joule heating dissipated by the photomixer is estimated to be Pph ↑ 1 mW (con-
sidering RA ↑ 100 k’ and Iph ↑ 100 µA). From this estimation, it is evident that the
majority of the power dissipated by the photomixer originates from the optical radiation
of the near-infrared lasers: Pph ↙ PL. As discussed in Chapter 4, the cooling power of a
dilution refrigerator at the millikelvin stage depends on the He3 flow rate. In our setup,
the typical flow rate is approximately 300 µmol/s, resulting in a cooling power of Q̇ ⇔ 250
µW at T = 100 mK. Given that the cooling power of the mixing chamber is significantly
lower than the tens of mW of power dissipated by the photomixer, we designed custom
components to ensure proper thermalization of the photomixer at the still plate of the
dilution refrigerator[188]. A general schematic of the setup is shown in Fig. 7.1.3. The two
near-infrared CW lasers are located outside the cryostat and connected to the THz pho-
tomixer via cryo-compatible optical fiber and a vacuum-compatible feedthrough mounted
on the top of the cryostat. The THz photomixer, thermally anchored at the still plate,
is connected with this optical fiber and requires a separate biasing line. The coupling of
radiation to the sample stage located at the mixing chamber occurs in free space.

Fig. 7.1.4 illustrates the design and realization of the custom components fabricated
to integrate the photomixer into the dilution refrigerator. The main components are the
optical stage and the sample stage. The optical stage mounts the THz photomixer on top
of the sample stage and has three rods to ensure proper thermal connection to the still
plate. It has three set screws allowing movement in the z-direction, to adjust the focus.
The sample stage is shielded to protect against thermal radiation from the top stage, which
irradiates at around 1 K. The stage also features a small hole (1 cm diameter) to enable
THz radiation to reach the sample stage. All parts are fabricated from high-purity oxygen-
free copper and coated with 1 µm of gold to ensure high thermal conductivity required for
proper thermalization [204].
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Figure 7.1.4: Custom designed components. (a) In red the designed custom components.
The shielded sample stage is thermally anchored to the mixing chamber stage while the optical
stage is thermally anchored to the still plate. (b) Custom oxygen-free copper components,
gold-coated and integrated into the BlueFors dilution refrigerator. (c)-(d) Detailed design of
the sample stage (c) and of the optical stage (d). The CAD design of the custom parts was
performed by Leon Schubert [188] under my supervision.
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7.1.3 Testing of the Experimental Setup

To confirm that our experimental setup achieves proper thermalization, we conducted a
test cool-down while monitoring the temperatures of the still plate and the mixing cham-
ber[188]. In Fig. 7.1.5, we plot the temperature over time measured at the still plate (blue)
and the mixing chamber (red). Without switching on the laser radiation or the photomixer
bias, the temperatures stabilize at 1.166 K and 66 mK for the still plate and mixing cham-
ber, respectively. Upon pumping the photomixer optical radiation at the highest power,
which corresponds to dissipating power PL at the still plate, we observe an increase in tem-
perature at both the mixing chamber (74 mK) and the still plate (1.199 K). We also record
the temperature while applying the external bias necessary to generate THz radiation in
the photomixer. At this stage, a photocurrent flows through the photomixer, adding an
additional heat source (I2

ph
RA) to the still plate as described in Eq. 7.1.2, resulting in a

further increase in the still plate temperature (1.204 K).
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Figure 7.1.5: Test cooldown of the THz optoelectronic setup. The still plate tem-
perature (blue) and mixing plate temperature (red) measured during the test cooldown and
photomixer operation. The red shaded region indicates the period when the photomixer is
pumped with optical radiation at maximum power. The green shaded region indicates the
period when the photomixer is both pumped with optical radiation and biased. The measure-
ments were performed by Leon Schubert[188] under my supervision.

Notably, the temperature increase induced by the Joule heating of the photomixer
is significantly lower than that caused by the near-infrared laser radiation alone. This
indicates that the primary source of heat is the optical radiation rather than the Joule
heating, as we have roughly predicted from Eq. 7.1.2. The temperature of the mixing
chamber increases by a few mK when the lasers are switched on but does not change
appreciably when the DC bias is applied. While the increase in base temperature at the
still plate can be attributed to the increased heat load, the temperature rise at the mixing
chamber may be explained by enhanced thermal radiation from the still plate due to its
elevated temperature. Therefore, the insertion of the THz photomixer into the dilution
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refrigerator causes a slight temperature increase of approximately 8 mK. The additional
heat source does not interfere with the dilution process, allowing us to shine THz radiation
while maintaining the sample at millikelvin temperatures (< 100 mK) which are well below
the typical critical temperatures of MATBG devices.
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7.2 Development of THz antennas for e#cient light
coupling

A significant challenge when dealing with THz radiation, is the large wavelengths of photons
of these energies (1 THz corresponds approximately to 300 µm) which are much larger than
the typical size of MATBG devices, resulting in a very small cross-section for the absorption
process[34]. One potential strategy to address this issue is to integrate the device into
an antenna structure. Due to strong field enhancement, the antenna concentrates the
incident THz light around the gap region, funneling the incident radiation to the active
area. Various types of antennas have been extensively implemented in photodetectors
based on 2D materials to enhance radiation coupling[92, 205–208]. Our approach is similar
to those followed by these other research groups. In its simplest definition, an antenna is a
transition device between a free-space wave and a guided wave, and vice versa[209]. It can
act as an emitter of radiation which converts a current into photons or as receiver which
operates in the opposite way. In both cases the antenna acts as a boundary condition for
the electric field and consequently, the behavior of an antenna is strongly dependent on its
geometry.
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Figure 7.2.1: Dipole and bow-tie antennas. (a) Schematics illustrating the general
working principle of a dipole antenna in the receiving configuration. The incoming electric
field ⇁E moves the carriers in the conductor, transforming the incident photon into a current.
Notably the length of the antenna L determines the resonant condition according to ϖ/2 = L.
(b) Schematics of all the geometrical parameters constituting a bow-tie antenna. In this
geometry the resonance condition is not given by Eq. 7.2, but it has to be calculated according
to these geometrical parameters.

Dipole and bow-tie antennas

The simplest type of antenna is the half-wave dipole antenna as the one illustrated in
Fig. 7.2.1a, which consists of two infinitely thin metallic wires[209]. In the transmitting
scenario, given the geometry of the dipole antenna, the movement of charge carriers within
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the conductor generates an electric field polarized along the direction of the dipole (Fig.
7.2.1a). Similarly, in the receiving scenario, it funnels the incident radiation along this
direction. The length of the antenna determines the resonance condition, denoted as φ↘. At
this specific condition, the imaginary part of the dipole’s impedance, or reactance, is zero,
resulting in a purely resistive impedance. This condition simplifies impedance matching
with the transmission line, ensuring maximum power transfer by minimizing reflections
and losses. For a dipole antenna, the resonance condition occurs when its length is half
the wavelength of the operating frequency:

φ↘ = 2L (7.2.1)

A more versatile geometry is represented by the bow-tie antenna. Bow-tie antennas
provide more broadband absorption compared to dipole antennas. However, the resonance
condition is not as straightforward as in the dipole case (Eq. 7.2) and depends on more
parameters than just the length[210] (see Fig. 7.2.1b). There is a large range of antennas
available other than the dipole and bow-tie, such as log-spiral, log periodic etc.[196]. In
our experiment, we chose a bow-tie antenna design, which is a notably simpler geometry
compared to the others and makes the fabrication and design easier. To properly design
the antenna geometry, we use COMSOL Multiphysics to simulate the spectral response of
the bow-tie antennas, exploring di!erent geometrical parameters.

Design of THz antennas for photovoltage experiment with superconducting
MATBG

To properly design the THz antennas required for the photodetection experiment with
superconducting MATBG, we consider the physical parameters involved in the photode-
tection process, which will also reflect on the antenna geometry. The primary energy scale
is defined by the superconducting gap of MATBG. As discussed in Chapter 1, to break
Cooper pairs and generate quasiparticles, the THz photon energy must exceed the super-
conducting gap of approximately 1 meV ↑ 0.24 THz (ETHz > $SC). The photon excitation
energies in the experiments are determined by the spectral range of the THz source, which
spans approximately 0.5-1.5 THz, corresponding to an energy range of 2-6 meV. Consid-
ering that the source power is greater at the lower end of the spectrum (Fig. 7.1.2d), we
designed the antenna geometry to achieve resonance at approximately f ↘ = 0.5 THz. This
frequency represents the optimal balance between having a photon energy higher than the
MATBG superconducting gap and the available power delivered to the sample.

Another crucial aspect of the antenna’s geometry is the antenna gap size (lgap) and the
angle of the bow-tie arms (1). The lgap must be carefully selected to match the spatial
dimensions of typical MATBG devices. In all our simulations, we have used lgap = 25
µm, which is compatible with the size of our MATBG devices. Regarding the angle of the
bow-tie arms, a larger angle increases radiation coupling. However, this conflicts with the
experimental requirement of having electrodes perpendicular to the MATBG device for
electrical connection. Therefore, in both simulations and experimental realizations, we use
angles between 60→ and 90→. Taking these considerations into account, we first simulate
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Figure 7.2.2: Frequency response simulation of a bow-tie antenna. (a) Simulation
of the delivered power at the antenna feed versus the frequency of incident THz radiation for
various bow-tie antenna lengths, L using COMSOL. The other geometrical parameters are:
lgap = 25 µm, ϱ = 60→, thickness d = 60 nm and feed impedance Z0 = 50 $. (b) Resonance
wavelengths ϖ↘ for the bow-tie antennas simulated in (a), extracted from the peaks in delivered
power. The gray dashed line indicates the resonance condition for an ideal dipole antenna,
ϖ
↘ = 2L. (c) Simulation of the delivered power for di#erent values of feed impedance, Z0 for a

bow-tie antenna of length L = 157.7 µm, designed be resonant at approximately 0.5 THz. The
other geometrical parameters are: lgap = 25 µm, ϱ = 90→, thickness d = 60 nm and L = 157.7
µm. (d) Delivered power at 0.5 THz for the antennas simulated in (c). The simulations were
performed by Carl Hudeczek[189] under my supervision.

the behavior of the bow-tie antennas for di!erent lengths L, while keeping fixed the other
experimental parameters, specifically lgap = 25 µm, 1 = 60→, thickness d = 60 nm, and feed
impedance Z0 = 50 ’. In Fig. 7.2.2a, we simulate the power delivered at the antenna’s
feed vs. frequency for L ranging from 75 µm to 300 µm. We observe that at some specific
frequencies, there is a maximum of transferred power which corresponds to the resonance
frequency. By increasing the antenna length, the resonance frequency shifts towards lower
values. In Fig. 7.2.2b, we plot the resonance condition extracted from the simulation for
di!erent antenna lengths and compare it to the expected values for a dipole antenna. We
observe that the resonance wavelength for the bow-tie antennas is larger than the length
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of the antenna: φ↘ > 2L.
Another major challenge in the integration of this material into an antenna structure

is represented by the high input impedance. As the fabrication of low-resistance ohmic
contacts in 2D materials is challenging[150], there is a large impedance mismatch between
the metallic antenna and the 2D material which substantially limits the maximum power
transferable. Recent works have shown imporvements in the fabrication protocol to mini-
mize this e!ects on another 2D superconductor, NbSe2 [92]. Using the fabrication protocol
described in Chapter 3, we expect a contact resistance of our MATBG devices of approx-
imately a few k’/µm. In Fig. 7.2.2c, we simulate the delivered power for an antenna
designed for resonance frequency f ↘ = 0.5 THz, for di!erent values of input impedance
Z0, and in Fig. 7.2.2d, we plot the delivered power at 0.5 THz for di!erent values of Z0.
We notice that the maximum power delivery is achieved at 50 ’ and progressively drops
at higher impedance values. This simulation suggests that improvements in our fabrica-
tion protocol might be required to reduce the contact resistance and maximize the power
transfer.

a b
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Figure 7.2.3: Simulation and realization of THz bow-tie antennas. (a) Simulation of
the electric field enhancement |E|/|E0| for a bow-tie antenna. Experimental parameters are:
ϖ
↘ = 587.8 µm, L = 157.5 µm, lgap = 25 µm, ϱ = 90→ and thickness d = 60 nm. In this

simulation, the antenna arms are assumed to be perfect conductors. This boundary condition
in COMSOL sets the electric field perpendicular to the conductor’s surface. The simulation
was performed by Carl Hudeczek[189] under my supervision. (b) Experimental realization of
a single-layer graphene sample embedded in a bow-tie antenna. The experimental parameters
of the antenna are: L = 164.4 µm, lgap = 40 µm and ϱ = 60→. The device was fabricated by
Leon Schubert[188] under my supervision.

In Fig. 7.2.3a, we present a COMSOL simulation of the spatial distribution of the
electric field enhancement for a bow-tie antenna with a resonance frequency of 0.5 THz
(L = 157.7 µm). Notably, the central region of the antenna exhibits the highest radiation
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intensity, which is where the sample is positioned. Following insights from the simulations,
we proceed with the fabrication of test samples. Given the challenges of the stacking process
of twisted bilayers described in Chapter 3, we fabricate the test samples using single-layer
graphene encapsulated in hBN. Our approach is as follows: first, we pre-fabricate the
antenna arms using a photolithography technique and evaporate chromium/gold (5 nm/50
nm), leaving an antenna gap of approximately 50-60 µm. Then, we stack a single-layer
graphene sample encapsulated with hBN using the standard van der Waals technique
described in Chapter 3 and deposit it within the antenna gap, where the electric field
enhancement is maximal. In the final fabrication step, the antenna arms are electrically
connected to the sample using electron-beam lithography and evaporating chromium/gold
(5 nm/50 nm). Fig. 7.2.3b shows an optical image of a chromium/gold (5 nm/50 nm)
antenna fabricated on a silicon chip with similar geometrical parameters as those used
for the simulation in Fig. 7.2.3a. This test sample will be used as a calibration for the
cryogenic THz setup described in Section 7.1.



Conclusion and Perspectives

The superconducting state formed by twisting two graphene layers at the magic-angle of
1.1→ (MATBG) leads to a novel superconducting phase with a carrier density of only 1011

electrons per cm2. The utilization of ultra-low carrier density moiré superconductors rep-
resents a novel concept from the material perspective to enable far-infrared SPD, which is
notoriously underdeveloped. In this thesis, we have taken a major step towards exploit-
ing MATBG for infrared SPD, investigating both the fundamental physics of this uncon-
ventional superconducting phase[P2] and demonstrating, for the first time, near-infrared
SPD[P1]. Since the discovery of MATBG in 2018 [114], researchers worldwide have begun
investigating these captivating materials, discovering an entire family of graphene-based
superconductors that share these unique superconducting properties [95–97, 145]. As a
result, the scope of this thesis extends beyond MATBG to include the entire family of
graphene-based superconductors.

Given the novelty and sensitivity of two-dimensional moiré superconductors, significant
e!ort has been dedicated to the experimental aspects of this research. Firstly, in optimiz-
ing the fabrication of twisted bilayer graphenes, which is extremely challenging due to low
yield. In Chapter 3, we have carefully described the most recent progress and detailed the
fabrication protocol perfected over the years for MATBG samples. This protocol guaran-
tees high fabrication yield and quality[P6]. Achieving highly reproducible and high-quality
MATBG samples is crucial for obtaining a sharp superconducting transition, necessary
for the SPD applications presented here. Similarly, in Chapter 4, we have described the
implementation of a custom-made optoelectronic setup for SPD, which combines optics
and electronics and constitutes a major experimental undertaking.

The following chapters focused on the experimental results achieved. In Chapter 5
we have described the first optoelectronic experiment in which we illuminated the super-
conducting state of MATBG with a near-infrared source while monitoring the electronic
transport. By measuring the bolometric response upon light illumination, we were able to
investigate the thermal properties of the superconducting state. This work provided the
first measurement of the thermal conductivity in the superconducting state of MATBG, a
fundamental thermal property important for photodetection applications. This represents
the first optoelectronic study to examine the thermal properties and light-matter interac-
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tion in the superconducting state of MATBG, and one of the first optoelectronic studies
in MATBG overall. This work constitutes an important contribution to understanding the
fundamental physics of the superconducting state of MATBG.

More importantly, in Chapter 6, we performed a proof-of-concept experiment in which,
by voltage-biasing MATBG close to the superconducting transition and illuminating it
with a highly attenuated laser source, we successfully demonstrated near-infrared SPD.
This exciting result marks the first major step towards our long-term vision of extending
superconducting SPD to long-wavelength photons and constitutes a major achievement in
this PhD thesis.

In the endeavor of extending detection to lower energy photons, in Chapter 7, we
discussed the most recent progress in extending SPD to the far-infrared and THz range.
Specifically, we have discussed the implementation of a novel optoelectronic THz setup
capable of operating at millikelvin temperatures while providing tunable THz excitation.
Simultaneously, we have shown recent advances in designing and fabricating THz antennas
to couple radiation to the sample e”ciently.

Perspectives

This PhD thesis opens up several promising avenues for future research. The most im-
mediate and promising follow-up is using MATBG as a far-infrared SPD. Initial steps in
this direction are encouraging (see Chapter 7). One approach could be to replicate the
proof-of-principle experiment conducted in the near-infrared, described in Chapter 6, us-
ing far-infrared radiation. In the near-infrared experiment, incident single photons caused
a complete disruption of the superconducting state, resulting in a large voltage output [P1].
However, given that the superconducting gap of MATBG is approximately 1 meV, a single
THz photon (↑ 4 meV) may not generate enough quasiparticles to break superconductiv-
ity fully. Therefore, alternative detection mechanisms that o!er greater sensitivity could
also be explored. Bolometric detection, as proposed in [34], remains a viable option for
THz SPD. Another promising detection scheme could involve a kinetic inductance readout,
where the absorbed photon shifts the resonance frequency, ↼f , proportional to the ratio
of generated quasiparticles (↼nqp) to Cooper pairs (ns): ↼f ↑ ↼nqp/ns. Given MATBG’s
record-low carrier density of 1011 electrons per cm2, a significant change in kinetic in-
ductance is expected even with the absorption of a low-energy photon[P1]. Additionally,
implementing nanostructures similar to superconducting nanowire SPDs could be another
viable direction.

Beyond SPD, the THz millikelvin setup presents an intriguing experimental probe for
studying correlated phases in 2D materials. Previous optoelectronic studies on MATBG,
such as those described in this thesis, have used excitation wavelengths much larger than the
flatband bandwidth, targeting high-energy dispersive bands [P2, P8]. However, the investi-
gation of flatbands with far-infrared radiation remains largely unexplored[P9]. Specifically,
the correlated band gaps with energies below 1 meV (Chapter 2), typically measured in
transport, could be studied by applying THz radiation at low temperatures. This direc-
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tion is of notable interest, as evidenced by recent works that have attempted to explore
interactions in MATBG using THz photocurrent [211] and spectroscopy [212], as well as
the development of far-infrared spectroscopy tools at millikelvin temperatures [195].

Another follow-up research direction, building on Chapter 5, could involve investigating
the thermal properties of MATBG. In the experiment described in Chapter 5, the bolo-
metric response of MATBG electrons was probed using near-infrared radiation. Future
experiments could employ configurations where local micro-heaters induce the tempera-
ture gradient [213, 214], enabling more e”cient heating of the electronic ensemble and
providing directional heat flows in sample geometries that are easier to model and in-
vestigate. A limitation of our previous experiment was the restricted range of electronic
temperatures we could explore, which was well below the critical temperature. To address
this, alternative temperature readout mechanisms, such as Johnson noise thermometry,
could be utilized to o!er more sensitive and broader readout schemes [175, 179, 215].

In conclusion, the experimental work presented in this thesis has successfully demon-
strated the potential of the superconducting state of MATBG for infrared SPD. These
findings strongly encourage further exploration to extend SPD capabilities to lower ener-
gies using MATBG and other low-carrier density graphene-based superconductors. This
seminal work paves the way for the development and design of innovative quantum devices
and sensors that exploit the unique characteristics of moiré superconductors, ultimately
advancing the field of quantum sensing.
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[146] Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J.
Fast pick up technique for high quality heterostructures of bilayer graphene and
hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

[147] D´ıez M´erida, J. Probing Magic-Angle Twisted Bilayer Graphene with Monolithic
Gate-Defined Josephson Junctions Master Thesis, Ludwig Maximilians University
of Munich. 2024.

[148] Sharpe, A. L., Fox, E. J., Barnard, A. W., Finney, J., Watanabe, K., Taniguchi,
T., Kastner, M. A. & Goldhaber-Gordon, D. Emergent ferromagnetism near three-
quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

[149] Zhang, Y.-H., Mao, D. & Senthil, T. Twisted bilayer graphene aligned with hexag-
onal boron nitride: Anomalous Hall e!ect and a lattice model. Phys. Rev. Res. 1
(2019).

[150] Wang, L., Meric, I., Huang, P. Y., Gao, Q., Gao, Y., Tran, H., Taniguchi, T., Watan-
abe, K., Campos, L. M., Muller, D. A., Guo, J., Kim, P., Hone, J., Shepard, K. L.
& Dean, C. R. One-dimensional electrical contact to a two-dimensional material.
Science 342, 614–617 (2013).

[151] Pizzocchero, F., Gammelgaard, L., Jessen, B. S., Caridad, J. M., Wang, L., Hone,
J., Bøggild, P. & Booth, T. J. The hot pick-up technique for batch assembly of van
der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

[152] Khestanova, E., Guinea, F., Fumagalli, L., Geim, A. K. & Grigorieva, I. V. Universal
shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat.
Commun. 7, 12587 (2016).

[153] Haigh, S. J., Gholinia, A., Jalil, R., Romani, S., Britnell, L., Elias, D. C., Novoselov,
K. S., Ponomarenko, L. A., Geim, A. K. & Gorbachev, R. Cross-sectional imaging
of individual layers and buried interfaces of graphene-based heterostructures and
superlattices. Nat. Mater. 11, 764–767 (2012).

[154] Purdie, D. G., Pugno, N. M., Taniguchi, T., Watanabe, K., Ferrari, A. C. & Lom-
bardo, A. Cleaning interfaces in layered materials heterostructures. Nat. Commun.
9, 5387 (2018).

[155] Pobell, F. Matter and methods at low temperatures 3rd ed. (Springer, Berlin, Ger-
many, 2006).



BIBLIOGRAPHY 165

[156] Frossati, G. Experimental techniques: Methods for cooling below 300 mK. J. Low
Temp. Phys. 87, 595–633 (1992).

[157] Sydoriak, S. G. & Roberts, T. R. Vapor Pressures of 3He-4He Mixtures. Phys. Rev.
118, 901–912 (1960).

[158] Thalmann, M., Pernau, H.-F., Strunk, C., Scheer, E. & Pietsch, T. Comparison of
cryogenic low-pass filters. Rev. Sci. Instrum. 88, 114703 (2017).

[159] Glattli, D. C., Jacques, P., Kumar, A., Pari, P. & Saminadayar, L. A noise detection
scheme with 10 mK noise temperature resolution for semiconductor single electron
tunneling devices. J. Appl. Phys. 81, 7350–7356 (1997).

[160] Stremler, F. G. Introduction to Communication Systems 3rd ed. (Pearson, Upper
Saddle River, NJ, 1990).

[161] Principles of lock-in detection and the state of the art, White Paper, Zurich Instru-
ment (2016).

[162] User Manual UHF 600 MHz Lock-in Amplifier, Zurich Instruments (2016).

[163] Svelto, O. Principles of Lasers 5th ed. (Springer, New York, NY, 2010).

[164] Oh, M., Nuckolls, K. P., Wong, D., Lee, R. L., Liu, X., Watanabe, K., Taniguchi,
T. & Yazdani, A. Evidence for unconventional superconductivity in twisted bilayer
graphene. Nature 600, 240–245 (2021).

[165] Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the elec-
tronic structure of bilayer graphene. Science. 313, 951–954 (2006).

[166] Lisi, S., Lu, X., Benschop, T., de Jong, T. A., Stepanov, P., Duran, J. R., Margot,
F., Cucchi, I., Cappelli, E., Hunter, A., Tamai, A., Kandyba, V., Giampietri, A.,
Barinov, A., Jobst, J., Stalman, V., Leeuwenhoek, M., Watanabe, K., Taniguchi,
T., Rademaker, L., van der Molen, S. J., Allan, M. P., Efetov, D. K. & Baumberger,
F. Observation of flat bands in twisted bilayer graphene. Nat. Phys. 17, 189–193
(2021).

[167] Gierz, I., Petersen, J. C., Mitrano, M., Cacho, C., Turcu, I. C. E., Springate, E.,
Stöhr, A., Köhler, A., Starke, U. & Cavalleri, A. Snapshots of non-equilibrium Dirac
carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).

[168] Tielrooij, K. J., Piatkowski, L., Massicotte, M., Woessner, A., Ma, Q., Lee, Y.,
Myhro, K. S., Lau, C. N., Jarillo-Herrero, P., van Hulst, N. F. & Koppens, F. H. L.
Generation of photovoltage in graphene on a femtosecond timescale through e”cient
carrier heating. Nat. Nanotechnol. 10, 437–443 (2015).

[169] Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T.,
Peres, N. M. R. & Geim, A. K. Fine structure constant defines visual transparency
of graphene. Science 320, 1308 (2008).

[170] Burkhard, G. F., Hoke, E. T. & McGehee, M. D. Accounting for interference, scat-
tering, and electrode absorption to make accurate internal quantum e”ciency mea-
surements in organic and other thin solar cells. Adv. Mater. 22, 3293–3297 (2010).



166 BIBLIOGRAPHY

[171] Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Klang,
P., Andrews, A. M., Schrenk, W., Strasser, G. & Mueller, T. Microcavity-integrated
graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

[172] Efetov, D. K., Shiue, R.-J., Gao, Y., Skinner, B., Walsh, E. D., Choi, H., Zheng, J.,
Tan, C., Grosso, G., Peng, C., Hone, J., Fong, K. C. & Englund, D. Fast thermal
relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out.
Nat. Nanotechnol. 13, 797–801 (2018).

[173] Fetter, A. & J. D. Walecka. Quantum theory of many-particle systems (McGraw-
Hill, 1971).

[174] Aamir, M. A., Moore, J. N., Lu, X., Seifert, P., Englund, D., Fong, K. C. & Efetov,
D. K. Ultrasensitive calorimetric measurements of the electronic heat capacity of
graphene. Nano Lett. 21, 5330–5337 (2021).

[175] Fong, K. C., Wollman, E. E., Ravi, H., Chen, W., Clerk, A. A., Shaw, M. D., Leduc,
H. G. & Schwab, K. C. Measurement of the electronic thermal conductance channels
and heat capacity of graphene at low temperature. Phys. Rev. X. 3, 041008 (2013).

[176] Banerjee, A., Hao, Z., Kreidel, M., Ledwith, P., Phinney, I., Park, J. M., Zimmer-
man, A. M., Watanabe, K., Taniguchi, T., Westervelt, R. M., Jarillo-Herrero, P.,
Volkov, P. A., Vishwanath, A., Fong, K. C. & Kim, P. Superfluid sti!ness of twisted
multilayer graphene superconductors. arXiv, 2406.13742 (2024).
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