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1 Introduction

1.1 Example

Complex Demography
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?

substructure
population growth

recent speciation
introgression?

recombination within loci
can we still detect selection?

1.2 How to study
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ECTS and work load per week
For Computational Methods in Evolutionary Biology, 9 ECTS ≈ 0.6 per week, 18 hours per week:

• 4 hours lecture (each 45 min + break)

• 3 hours exercise sessions

• 6 hours homework (exercises)

• 5 study lecture contents

For Comp. Meth. Pop. Gen., 6 ECTS = 0.75 per week, 22.5 hours per week,

• all as above plus

• 2 hours of practicals and additional exercise session

• 1 hours learn software, apply to data, prepare presentation

• 1.5 more hours to learn algorithms and maths
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How to study the content of the lecture
For the case that you are overwhelmed by the contents of this course, and if you don’t have a good

strategy to study, here is my recommendation:

1. Try to explain the items under “Some of the things you should be able to explain”

2. Discuss these explanations with your fellow students

3. Do this before the next lecture, such that you can ask questions if things don’t become clear

4. Do the exercises (at least some of them) in time

5. Study all the rest from the handout, your notes during the lecture, and in books

What will the exam be like
You can bring:

• pocket calculator

• formula sheet, hand-written by yourself

What you need to answer the questions:

• understanding concepts

• be able to apply concepts

• do calculations

• think during the exam

• (not just reproduce facts)

1.3 Wright–Fisher model and Kingman’s Coalescent

Basic assumptions of the Wright–Fisher model

• non-overlapping generations

• constant population size

• panmictic

• neutral (i.e. no selection)

• no recombination

• N diploid individuals  population of 2N haploid alleles (in case of autosomal DNA)
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Wright–Fisher model
Each allele chooses an ancestor in the generation before.
Generation
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Samples are assumed to be taken purely randomly from the population.
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This induces a specific random distribution for the genealogies of the sampled alleles.
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Haploid population of size Ne
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Average time until two ancestral lineages coalesce: Ne generations.
Scale time: (1 time unit) = (Ne generations) ⇒ pairwise coalescence rate = 1
µ := mutation rate per generation

θ := 2Ne · µ

is the expected number of mutations between 2 random individuals
Let Ne −→∞

Time until two lineages coalesce
W : time in generations until two lineages coalesce, X = W/Ne.

Pr(W > k) =

(
1− 1

Ne

)k
≈ e−k/Ne

Pr(X > t) = Pr(W > t ·Ne) ≈ e−t

For Ne →∞ the “≈” becomes “=”.Thus

W is geometrically distributed with success probability 1
Ne

.

X is (for Ne →∞) exponentially distributed with rate 1.

Geometric distribution

Pr(W > k) = (1− p)k

Pr(W = k) = (1− p)k−1 · p
EW = 1/p

●

●
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Exponential distribution

Pr(X > t) = e−λt

f(t) = λ · e−λt

EX = 1/λ
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If there are k lineages traced back, each of the(
k

2

)
=
k · (k − 1)

2

pairs of lineages coalesces with rate 1 (per Ne generations).

Going to the limit Ne → ∞ we can neglect that more than two lineages coalesce in the same
generation.

Thus, the total rate of coalescence is
(
k
2

)
and the expected value for the time back until the first

coalescence is
1(
k
2

) =
2

k · (k − 1)

time units (of Ne generations).
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Minimum of independent exponentials
If X1, X2, . . . , Xn are exponential random variables with rates λ1, λ2, . . . , λn, then the minimum of

the Xi is exponentially distributed with rate Λ = λ1 + λ2 + · · ·+ λn. (E.g. each λi is the rate of certain
events, and Xi is the waiting time for the first of these event.)

This implies that for k lineages (and Ne →∞) the waiting time (in units of Ne generations) is exponen-
tially distributed with rate

(
k
2

)
.

(Doob-)Gillespie algorithm
To simulate the process, first simulate the waiting time for the first event according to an exponential

distribution with rate Λ.

Then make a random decision which type of event occurred, using the probabilities

λ1

Λ
,
λ2

Λ
, . . . ,

λn
Λ
.

Proceed with the next and all other events accordingly.

This is often called Gillespie’s algorithm. Dan Gillespie applied it in the 1970ies to simulate
chemical reactions. The algorithm was, however, known long before, e.g. by Doob in the 1940ies.

The Kingman Coalescent
21 3

Zeit in 
Generationen

Zeit in 
N Generatioenkk−1........

2N/(k(k−1))

2N/(6*5)

2N/(5*4)

2N/(4*3)

2N/(3*2)

2N/(2*1)

2/(6*5) = 0,667

2/(k(k−1)) = 2/(7*6) = 0,0476

2/(4*5) = 0,1

2/(4*3) = 0,167

2/(3*2) = 0,333

2/(2*1) = 1

E(total length)

= k · 2

k · (k − 1)
+ · · ·+ 2 · 2

2 · 1

=

k∑
i=2

i · 2

i · (i− 1)
=

k∑
i=2

2

i− 1

= 2 ·
k−1∑
h=1

1/h

Simulating Kingman’s coalescent for k lineages
Apply Doob-Gillespie algorithm.(
k
2

)
pairs of lineages, each pair coalescing with rate 1.
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• Draw the time τ until the first two lineages coalesce from exponential distribution with rate
(
k
2

)
.

• choose one of the
(
k
2

)
pairs of lineages (each with the same probability of 1/

(
k
2

)
) and coalesce them

to one lineage

• Draw next time interval from exponential with rate
(
k−1

2

)
and let two of the k− 1 coalesce, and so

on, until the last two lineages coalesce.

typical coalescent trees for n = 8:
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simulated coalescent tree with n = 500:

Time to the most recent ancestor (TMRCA)

8



E(TMRCA) =
1(
k
2

) +
1(
k−1

2

) + · · ·+ 1(
3
2

) +
1(
2
2

)
=

2

k · (k − 1)
+

2

(k − 1) · (k − 2)
+ · · ·+ 2

3 · 2
+

2

2 · 1

= 2 ·
(

1

k · (k − 1)
+

1

(k − 1) · (k − 2)
+ · · ·+ 1

3 · 2
+

1

2

)
= 2 ·

(
k − (k − 1)

k · (k − 1)
+

(k − 1)− (k − 2)

(k − 1) · (k − 2)
+ · · ·+ 3− 2

3 · 2
+

2− 1

2

)
= 2 ·

(
−1

k
+

1

k − 1
− 1

k − 1
+

1

k − 2
+ · · · − 1

3
+

1

2
− 1

2
+

1

1

)
= 2 ·

(
1− 1

k

)

In the diploid case
If Ne is the effective population size of individuals, and the locus under consideration is diploid,

time is scaled in units of 2Ne generations or, in some programs, in 4Ne generations. We then define

θ = 4 ·Ne · µ.

The expected waiting time until the ancestral lineages of two gene copies coalesce is then 2·Ne generations.
The expected values

E(total length) = 2 ·
k−1∑
i=1

1/i and E(TMRCA) = 2 ·
(

1− 1

k

)
hold in the diploid case in units of 2Ne generations.

Simulate coalescent with mutations
k lineages ⇒

• each of
(
k
2

)
= k·(k−1)

2 pairs of lineages coalesce with rate 1

• each of k lineages mutate with rate θ/2

⇒ time τi to next event is exponentially distrib. with rate k·(k−1)
2 + k · θ2

Then, the probabilities are proportional to the rates, that
is:

Next event is mutation with probability

k · θ2
k·(k−1)

2 + k · θ2
=

θ

k − 1 + θ

and coalescence with probability

k − 1

k − 1 + θ
.

Some things that you should be able to explain

• Wright–Fisher model for population genetics

• Coalescent model; rate of coalescence of k lineages
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• Geometrically distributed coalescent times, approximated by exponential

• Rates of independent processes add up

• the typical genealogy of a sample from W-F population

– long internal branches

– very short tip branches for large sample size

– how to calculate expected values for

∗ total of all branch lengths

∗ TMRCA: time to the most recent ancestor

– how can we let population size go to ∞

• Why time is scaled in const.·Ne generations

• θ = 4Neµ or θ = 2Neµ or. . .

1.4 Estimators for θ and Tajima’s D

Two estimators of θ
θπ (“Tajima’s π” or “nucleotide diversity”) Average number of pairwise differences.

θW (“Watterson’s θ”) = number of mutations∑k−1
i=1 1/i

Both are unbiased estimators of θ, i.e. EθW = Eθπ = θ.

Note the difference

parameter: • hypothetical value in theoretical model;

• example: θ = 4Neµ

• non-random (in classical frequentistic stats)

• assumed usually in stats: there is a true value that is unknown

statistic: • a function of the data (that is, is caluclated from the data)

• examples: θW and θπ,

• are random variables because data is also random due to

– randomly sampling from natural variation

– random process

– measurement error

estimator: • statistic to estimate the value of a parameter

• example: θW and θπ are estimators for θ

Example: Ward et al. (1991) sampled 360 bp sequences from mtDNA control region of n = 63 Nuu
Chah Nulth and observed 26 mutations.

θW =
26∑62
i=1 1/i

= 5.5123

This corresponds to 0.0153 Mutations per base and per 2 · Ne generations.Assuming a mutation rate
µ̂ ≈ 6.6 · 10−6 per generation per site this leads to an effective population size of

N̂e =
θW /360

2 · µ̂
≈ 1150 females

How precise is this estimation?

var(θW ) =
θ∑n

i=1 1/i
+ θ2 ·

∑n
i=1 1/i2

(
∑n
i=1 1/i)

2
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Theorem 1 Any unbiased estimator of θ has variance at least

θ∑n−1
k=1

1
k+θ

.

(Here, we assume that the estimation is based on a single locus without recombination).

For the Nuu Chah Nulth data we get:

θW = 5.5123

σθW = 3.42

Confidence range? (2σ-rule would leed to negative values...)
Conclusion: Ne could perhaps also be 200 or 3000 females.
How can we improve this estimate? Sample more individuals? How many individuals n would we

need to get σθW = 0.1 ·θ? From the formula for varθW follows that we need n ≈ 2 ·e100/θ. For θ = 5, this
is n ≈ 109. For θ = 1, this is n ≈ 1043. number of water molecules on earth≈ 1047 number of seconds
since big bang≈ 4.3 · 1017

Solution: sample many loci!

References

[Fel06] J. Felsenstein (2006) Accuracy of Coalescent Likelihood Estimates: Do We Need More Sites,
More Sequences, Or More Loci?Mol. Biol. Evol., 23.3: 691–700.

How to sample if

• one read is 600 bp long

• costs for developing a new locus is 40$

• costs for collecting a sample is 10 or 0.10$

• costs for a single read is 6$

• you can spend 1000$

• true θ is 1.8 (per locus)

Optimal sampling scheme: n = 7 or n = 8 , respectively, individuals and 11 loci.
With this sampling scheme we get:

σθW ≈ 0.2 · θ and σθπ ≈ 0.22 · θ

(all this is based on infinte-sites assumptions)
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Tajima’s D
π π WWθ  > θ   : θ  < θ   :

D := θπ−θW
σ̂θπ−θW

substructure?
population
growth?
selection?

Some of the things you should be able to explain

• θ, θW , θπ, Tajima’s D

• difference between parameters and statistics and which of the different θs is which

• How do population growth, substructure and selection shape the genealogy of a random sample
and how is this reflected in Tajima’s D?

• Why does a single locus (or several completely linked loci) not allow for reasonable estimates?

• why are more loci usually better than more or longer sequences?

• Why do we need to know µ to estimate Ne from data and vice versa?

1.5 Outline of methods

1.5.1 ML with Importance Sampling

The Likelihood

ψ = (ψi)i vector of model parameters

D sequence data

LD(ψ) = Prψ(D) =
∑

all Genealogies G

Prψ(D | G) · Prψ(G).

When taking branch lengths into account:

LD(ψ) = Prψ(D) =

∫
all Genealogies G

Prψ(D | G) · Pψ(dG).

12



Importance Sampling
Draw G1, . . . , Gk (approx.) i.i.d. with density Q and approximate∫

Prψ(D | G) Pψ(dG) ≈ 1

k

k∑
i=1

Prψ(D | Gi) · Pψ(Gi)

Q(Gi)
.

efficient for ψ with
Q(Gi) ≈ const. · Prψ(D | Gi) · Pψ(Gi)

Methods differ in their choice of Q.

Griffiths & Tavaré (1994)
Q: Generate G backwards in time, greedy proportional to coalescence and mutation probabilities.

Choose between all allowed events.
Good for infinite sites models, inefficient if back-mutations are allowed.

1.5.2 MCMC for frequentists and Bayesians

Felsenstein, Kuhner, Yamato, Beerli,. . .
For some initial ψ0, sample Genealogies G approx. i.i.d. according to Prψ0

(G | D) by Metropolis-
Hastings MCMC.

Coalescent is a natural prior for G!
Two flavours:

for frequentists: use G1, . . . , Gk for Importance Sampling

Optimize approx. Likelihood → ψ1

Iterate with ψ0 replaced by ψ1

for Bayesians: Then sample ψ conditioned on Genealogies and iterate to do Gibbs-sampling from
Pr(ψ,G | D).

Problems of full-data methods

• usual runtime for one dataset: several weeks or months

• complex software, development takes years

• most programs not flexible, hard to write extensions

1.5.3 Approximate Bayesian Computation (ABC)

Pritchard et al. (1999)
Approximate Bayesian Computation

1. Select summary statistics S = (Si)i and compute their values s = (si)i for given data set

2. Choose tolerance δ

3. repeat until k accepted ψ′:

• Simulate ψ′ from prior distribution of ψ

• Simulate genealogy G according to Prψ′(G).

• Simulate data and compute values s′ of S

• accept ψ′ if ‖s− s′‖ ≤ δ

Only possible if a few summary statistics suffice. We will later discuss refinements and extensions of
this approach.
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Beaumont, Zhang, Balding (2002)

“[...] the MCMC-based method is consistently superior to the summary-statistics-based methods and
highlights that it is well worth making the effort to obtain full-data inferences if possible.”

“[...] there are advantages to the use of summary statistics, both in the ease of implementation and in
the time to obtain the results [...]”

“Further research is needed to find a more rigorous way for choosing summary statistics, including the
use of orthogonalization and ‘projection-pursuit’ methods”

Some of the things you should be able to explain
Basic ideas of the following approaches in computational population genetics

• maximum likelihood with importance sampling

• full-data Bayesian with MCMC

• Approximate Bayesian Computation (ABC)

2 Importance sampling for genealogies

D: data set of DNA sequences sampled from a population. In case of a structured population
sampling locations are known.

Aim: Estimate parameters Θ := (θi,Mij)ij .
Maximum-Likelihood (ML) approach: Find the set of parameter values that maximizes the likelihood:

Θ̂ := arg max
Θ

PrΘ(D)

How to compute the likelihood? Let us first consider the case that genealogies without branch lengths

are sufficient for the model:

LD(Θ) = PrΘ(D) =
∑

all genealogies G

PrΘ(G) · PrΘ(D | G).

Problem 1: There are many genealogies G

Idea: sample a smaller number of genealogies G and estimate the sum from their contributions
PrΘ(G) · PrΘ(D | G).

Problem 2: many G contribute very little to the sum

Importance sampling: Sample preferably G that contribute more and correct for the sampling bias.

Importance Sampling
Assume we need to calculate a sum

∑
G∈G f(G) over a large set G.

Further assume that p is a probability distribution on G, such that

• p(G) is approximately proportional to f(G)

• Given any G ∈ G, there is an efficient way to calculate f(G)/p(G)

• There is an efficient way to generate random G according to the distribution p.

14



Then we can generate G1, G2, . . . , Gn, all independent of each other according to p and approximate

∑
G∈G

f(G) ≈ 1

n

n∑
i=1

f(Gi)

p(Gi)
.

Note: if p(G) is exactly proportional to f(G), that is f(G) = c · p(G), then
∑
G f(G) = c, which we can

calculate as c = f(G0)/p(G0) with any G0 with f(G0) 6= 0.

How can we compute the integral
∫ b
a
h(x)dx of this function h?

h

Approximation by a step function: If x1, . . . , xk are the means of the partition intervals and c = b−a
k

is their width, then ∫ b

a

h(x) dx ≈
k∑
i=1

c · h(xi) =
b− a
k

k∑
i=1

h(xi).

Maybe save some time by just taking a sample of k values h(x).∫ b

a

h(x) dx ≈ b− a
k

k∑
i=1

h(Xi) =
1

k

k∑
i=1

h(Xi)
1
b−a

.

f

Maybe we know a function f that approximates h

15



f

We can sample more from the relevant range but we have to correct this by the Importance-Sampling
formula: ∫

h(x) dx ≈ 1

k

k∑
i=1

h(Xi)

q(Xi)

where X1, . . . , Xk are independent samples from a distribution whose density q is proportional to f . The
closer f is to h, the better the approximation.

Sketch of proof of the IS formula

∫ b

a

h(x)dx =

∫ b

a

h(x)

q(x)
· q(x)dx

= Eq
h(X)

q(X)

≈ 1

k
·
k∑
i=1

h(Xi)

q(Xi)
,

where Eq is the expectated value under the assumption that X has probability density q, and X1, . . . , Xk

are independently sampled with probability density q.

2.1 Griffiths und Tavaré

References

[1] Griffiths and Tavaré (1994) Ancestral Inference in Population Genetics Statistical Science 9(3):
307-319.

We roughly follow the rationale and notations of

References

[1] Felsenstein, Kuhner, Yamato, Beerli (1999) Likelihoods on Coalescents: A Monte Carlo Sam-
pling Approach to Inferring Parameters from Population Samples of Molecular Data. In: Seillier-
Moiseiwitsch (Ed.): Statistics in Molecular Biology and Genetics IMS Lecture Notes-Monograph
Series, Vol. 33, pp. 163–185

Start with an initial guess Θ0. Define the history of a sample to be H = (H1, H2, . . . ,H`), where the
historical events Hk can be

1. lineages i and j coalesce

2. mutation on lineage i

3. lineage i from island a traces back to island b

16



and H1, H2, . . . ,H` goes from present to past.
For the Importance Sampling procedure, many histories H(1), H(2), . . . ,H(M) are generated. For each

history H(i) are sampled H
(i)
1 , H

(i)
2 , . . . step by step from the tips to the root of the tree. Given the

data, not all events are possible. E.g., lineages cannot coalesce if they are of different allelic type. If the
infinite-site mutation model is used (to make the Griffith-Tavaré scheme efficient), not all mutations are

allowed.

• Let bij(θ0) be the rates of the jth event h = H
(i)
j in the ith sampled history H(i) and

• let (aijk(θ0))k be the series of rates of all events that are in accordance with the data and the
infinite-sites assumption, and

• (rij(θ)) the total rate of all possible events, disregarding the data.

Then, the probability to choose h was bij(θ0)/
∑
k aijk(θ0). Thus,

∏
j bij(θ0)/

∑
k aijk(θ0) is the importance-

sampling probability Qθ0(H(i)) of the entire history H(i).According to the importance-sampling formula
we get for all θ that are not too far from θ0:

L(D)(θ) ≈ 1

M

M∑
i=1

∏
j

bij(θ)

rij(θ)

/∏
j

bij(θ0)∑
k aijk(θ0)


=

1

M

M∑
i=1

∏
j

bij(θ) ·
∑
k aijk(θ0)

rij(θ) · bij(θ0)

For example, let this be the ith sampled history under infinite-sites assumptions:

(only segregating sites shown)

step 1: bi,1(θ) = 1, rij(θ) =
(4
2

)
+ 4 · θ2

step 2: bi,2(θ) = θ/2, rij(θ) =
(3
2

)
+ 3 · θ2

step 3: bi,3(θ) = 1, rij(θ) =
(3
2

)
+ 3 · θ2

step 4: bi,4(θ) = θ/2, rij(θ) = 1 + 2 · θ2
step 5: bi,4(θ) = 1, rij(θ) = 1 + 2 · θ2

∏
j

bij(θ)

rij(θ)
=

1

6 + 2 · θ
· θ/2

3 + 1.5 · θ
· 1

3 + 1.5 · θ
· θ/2

1 + θ
· 1

1 + θ

For example, let this be the ith sampled history under infinite-sites assumptions:
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(only segregating sites shown)

step 1: allowed are coalescence of first two lineages or mutation of 2nd position
in sequence 4.

bi,1(θ0) = ai,1,1(θ0) = 1, ai,1,2(θ0) = θ0/2

step 2: allowed is mutation of position 1 in on lineage 1 or position 2 on
lineage on lineage 3

bi,2(θ0) = ai,2,1(θ0) = ai,1,2(θ0) = θ0/2

step 3: allowed are coalescence of lineages 1 and 2 or mutation on lineage 3

bi,3(θ0) = ai,3,1(θ0) = 1, ai,3,2(θ0) = θ0/2

step 4: position 2 can mutate in lineage 1 or 2

bi,4(θ0) = ai,4,1(θ0) = ai,4,2(θ0) = θ0/2∏
j

bij(θ0)∑
k aijk(θ0)

=
1

1 + θ0
2

· θ0/2
θ0
2 + θ0

2

· 1

1 + θ0
2

· θ0/2
θ0
2 + θ0

2

• Advantage over MCMC: Histories are sampled really independent of each other.

• Disadvantage: For finite-sites models many different mutation events are allowed in each step,
which makes the method very inefficient. Stephens and Donnelly (2000) found a solution for this,
which we could discuss maybe later in the semester.

So, importance sampling helps to calculate

LD(Θ) = PrΘ(D) =
∑

all genealogies G

PrΘ(G) · PrΘ(D | G).

But how to do this if we account for (continuous) time points of events, including branch lengths, and
have:

LD(Θ) = PrΘ(D) =

∫
all genealogies G

PrΘ(D | G) PΘ(G)dG

where PΘ(G) is the density of the (structured) coalescent distribution at the genealogy G.
What does this mean?
How to compute PΘ(G)?
And what is dG?

How to compute PΘ(G)
Example: Kingman coalescent with mutations as part of G (different than in LAMARC). Let rk =(

k
2

)
+ k θ2 be the total rate if k lineages are present.

PΘ(G) = r5 · e−r5·τ1 · 1/r5 ·
r4 · e−r4·τ2 · 1/r4 ·
r3 · e−r3·τ3 · θ/2/r3 ·
r3 · e−r3·τ4 · 1/r3 ·
r2 · e−r2·τ5 · θ/2/r2 ·
r2 · e−r2·τ6 · 1/r2

= e−r5·τ1−r4·τ2−r3·(τ3+τ4)−r2·(τ5+τ6) ·
(
θ
2

)2
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So what is dG?
Let’s first ask: What is the dx in ∫ 1

0

x2dx ?

dx is used in an ambigous way. This is sloppy but intuitive.
It means “a small environment around x”, but also the size of this environment.
To explain this we be a little bit less sloppy for a few minutes and write dx for the environment and

dx for its size.
For some large n ∈ N and x ∈ R we can define dx = [x− 1

2n , x+ 1
2n ].Then, dx = 1/n.

We can approximate
∫ 1

0
x2dx by

∑
x∈{ 1

n ,
2
n ,...,

n
n}

x2 · 1

n
=

∑
x∈{ 1

n ,
2
n ,...,

n
n}

x2 · dx n→∞→
∫ 1

0

x2dx

dx is always meant to be “infinitesimally small”, i.e. dx→ 0

What is a probability density?

P (x) is the probability density of a random variable X in x if

Pr(X ∈ dx) ≈ P (x) · dx

and the “≈” becomes a “=” for “infinitesimally small” dx.

This is again sloppy and intuitive. It actually means that

lim
dx→0

Pr(X ∈ dx)

dx
= P (x)

It then follows that

Pr(X ∈ [a, b]) =

∫ b

a

P (x)dx.
0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Exponential distribution densitiy, rate 2

x

D
en

si
ty

Examples
The density of the exponential distribution with rate λ at x is

λe−λx.

The density of the normal distribution with mean value µ and standard deviation σ is

1

σ
√

2π
· e−

(x−µ)2

2σ2 .

Now for dG
Let dG be a small environment around the genealogy G. This means, dG consists of all genealogies

G′ that have the same topology as G and if τ1, . . . , τn are the points in time where coalescent events or
migrations of lineages or thelike occurr in G, and τ ′1, . . . , τ

′
n are the corresponding points in time for G′,

then
∀k≤n|τk − τ ′k| ≤ ε.

Thus, the volume dG of dG can be defined to be (2ε)n.
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The density PΘ(G) is then defined by

PrΘ(G′ ∈ dG) ≈ PΘ(G) · dG

where PrΘ(G′ ∈ dG) is the probability that a genealogy G′ that was generated according to the prob-
ability distribution of a structured coalecent with parameter values Θ results to be in the environment
dG of G, or, more precisely:

PrΘ(G′ ∈ dG)

dG

dG→0−→ PΘ(G)

The equation

LD(Θ) = PrΘ(D) =

∫
all genealogies

PrΘ(D | G) PΘ(G)dG

should now make some more sense to us. But how can we compute it? We use Importance Sampling.
Importance Sampling for computing the likelihood of for a range of parameter values Θ: Generate

genealogies G1, . . . , Gk (more or less) independently according to a probability density Q(Gi) that we
can calculate. Then,

LD(Θ) =

∫
all genealogies G

Pr
Θ

(D|G) · PΘ(G)dG

≈ 1

k

k∑
i=1

PrΘ(D|Gi) · PΘ(Gi)

Q(Gi)
.

Method differ in their choice of Q (e.g. via MCMC, see next section) and will be most efficient if

Q(G) ≈ const. · Pr
Θ

(D|G) · PΘ(G).

Note: If Q(G) = c · PrΘ(D|G) · PΘ(G) then LD(Θ) = 1
c .

Some of what you should be able to explain

• The formula

LD(Θ) =

∫
PrΘ(D|G)PΘ(G)dG

and all its terms, including dG

• what is a probability density, in particular PΘ(G)

• how to compute PΘ(G)

• importance sampling: idea and formula

• Griffiths–Tavaré method

3 MCMC with Lamarc (or Migrate)
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Rate parameters and time scales
For autosomal DNA:

per per 2Ni per 1/µ
generation generations generations

mutation rate µ θi
2 = 2Niµ 1

migration rate of

ancestral lineage from i mij γij = 2Nimij Mij =
mij
µ =

2γij
θi

tracing back to j
coalescence
on island i 1/(2Ni) 1 1

2Niµ
= 2

θi

Number of alleles on island i that choose their parent allele on island j:

2Ni ·mij = γij

example: two populations, time unit 1/µ generations
total rate when k lineages in pop 1 and ` lineages in pop 2:

r(k, `) =
k · (k − 1)

2
· 2

θ1
+k ·M1,2 +

` · (`− 1)

2
· 2

θ2
+ ` ·M2,1 =

k · (k − 1)

θ1
+k ·M1,2 +

` · (`− 1)

θ2
+ ` ·M2,1

p(G) = r(4, 3) · e−r(4,3)·1.3 ·
2/θ1

r(4, 3)
·

·r(3, 3) · e−r(3,3)·0.2 ·
2/θ1

r(3, 3)
·

·r(2, 3) · e−r(2,3)·0.4 ·
2/θ2

r(2, 3)
·

·r(2, 2) · e−r(2,2)·1.2 ·
M1,2

r(2, 2)
·

·r(1, 3) · e−r(1,3)·0.7 ·
2/θ2

r(1, 3)
·

·r(1, 2) · e−r(1,2)·0.7 · θ2/2
r(1,2)

· r(1, 1) · e−r(1,1)·0.4 · M2,1

r(1,1)
· r(2, 0) · e−r(1,1)·0.5 · 2/θ1

r(2,0)

= e−r(4,3)·1.3 ·θ1 ·e−r(3,3)·0.2 ·θ1/2·e−r(2,3)·0.4 ·θ2/2·e−r(2,2)·1.2 ·M1,2 ·e−r(1,3)·0.7 ·θ2/2·e−r(1,2)·0.7 ·θ2/2·e−r(1,1)·0.4 ·

M2,1 ·e−r(1,1)·0.5 ·θ1/2 = e−r(4,3)·1.3−r(3,3)·0.2−r(2,3)·0.4−r(2,2)·1.2−r(1,3)·0.7−r(1,2)·0.7−r(1,1)·0.4−r(1,1)·0.5 ·
(

2
θ1

)3
·
(

2
θ2

)3
·

M1,2 ·M2,1

Combining IS with MCMC

References

[1] M. Kuhner, J. Yamato, J. Felsenstein (1995) Estimating effective population size and mutation rate
from sequence data using Metropolis-Hasings sampling. Genetics 140: 1421–1430

[2] P. Beerli, J. Felsenstein (2001) Maximum likelihood estimation of a migration matrix and effective
population sizes in n subpopulations by using a coalescent approach.PNAS 98.8: 4563–4568

• MIGRATE-N http://popgen.sc.fsu.edu/Migrate/Migrate-n.html

• LAMARC http://evolution.genetics.washington.edu/lamarc/lamarc.html
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LAMARC strategy

Begin with initial parameter guess Θ0 = (θ
(0)
1 , θ

(0)
2 , . . . ,M

(0)
12 ,M

(0)
12 ,M

(0)
23 , . . . ), repeat the following

steps for i = 0, 1, 2, . . . ,m− 1

1. Metropolis–Hastings MCMC sampling of genealogies G1, G2, . . . , Gk (approx.) according to the
posterior density pΘi(G|D) given the data D. What is Metropolis–Hastings MCMC?

2. importance sampling:

LD (Θ)

LD (Θi)
≈ 1

k

k∑
j=1

pΘ (Gj)

pΘi (Gj)
=: FΘi(Θ)

Why is this justified as importance sampling?

3. Θi+1 := arg maxΘ FΘi(Θ)

and hope that Θm ≈ Θ̂ = arg maxΘ LD(Θ)

Justification of step 2

LD (Θ)

LD (Θi)
≈

1
k

∑k
j=1

PrΘ(D|Gj)·pΘ(Gj)
pΘi

(Gj |D)

PrΘi(D)
(importance sampling)

=
1

k

k∑
j=1

PrΘ (D|Gj) · pΘ (Gj)

pΘi (Gj |D) · PrΘi(D)

=
1

k

k∑
j=1

PrΘ (D|Gj) · pΘ (Gj)

pΘi (Gj , D)

=
1

k

k∑
j=1

PrΘ (D|Gj) · pΘ (Gj)

PrΘi (D|Gj) · pΘi (Gj)
=

1

k

k∑
j=1

pΘ (Gj)

pΘi (Gj)

The last equation follows from PrΘ (D|Gj) = PrΘi (D|Gj), which holds since the mutation rate is always
1 and thus the D is independent of Θ when G is given.

Markov-Chain Monte Carlo (MCMC)
MCMC: construct Markov chain X0, X1, X2, ... with stationary distribution Pr(G | D) and let it

converge.

Markov property:

∀i,x : Pr(Xi+1 = x|Xi) = Pr(Xi+1 = x|Xi, Xi−1, . . . , X0)

In words: The probabilty for the next state may depend on the current state but not additionally on the
past.

“Equilibrium” or “Stationary distribution” p:

∀i,x : p(x) =
∑
y

p(y) · Pr(Xi+1 = x|Xi = y)

In words: If you choose an element of the state space according to p and go one step, the probability
to be in x is p(x) not only in the first step but also in the second step and consequently in any further
step.When you are once in equilibrium, you’ll be forever.

Theorem 2 If X0, X1, X2 . . . is a aperiodic, irreducible Markov chain on a finite state space S with
equilibrium p, it will converge against the equilibrium p in the following sense:

∀x,y : Pr (Xn = x|X0 = y)
n→∞−→ p(x)
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Irreducible means:
∀x,y∃i∀m : Pr(Xi+m = x|Xm = y) > 0

Aperiodic means:
∀x,y,m : gcd ({k ∈ N|Pr(Xk+m = x|Xm = y) > 0}) = 1,

where gcd means “greatest common divisor”.
(let’s watch a Tcl/Tk simulation of a Markov chain)
“Equilibrium” or “Stationary distribution” p:

∀i,x : p(x) =
∑
y

p(y) · Pr(Xi+1 = x|Xi = y)

Stronger condition than equilibrium: reversibility (or “detailed balance”)

p(x) · Pr(Xi+1 = y|Xi = x) = p(y) · Pr(Xi+1 = x|Xi = y)

In words: If you start in equilibrium, and it is reversible, a move from x to y is as probable as a move
from y to x.

Alternative explanation: If you watch a movie of the process starting in a reversible equilibrium, the
probability of what you see does not change if you watch the movie backwards.

Given the probability distribution Pr(.|D), how can we construct a Markov chain that converges
against it?

One possibility: Metropolis–Hastings
Given current state Xi = x propose y with Prob. Q(x→ y)
Accept proposal Xi+1 := y with probability

min

{
1,
Q(y → x) · Pr(y | D)

Q(x→ y) · Pr(x | D)

}
otherwise Xi+1 := Xi

(All this also works with continuous state space, with some probabilities replaced by densities.)

Why Metropolis–Hastings works

Let’s assume that Q(y→x)·Pr(y | D)
Q(x→y)·Pr(x | D) ≤ 1. (Otherwise swap x and y in the following argument).Then,

if we start in x, the probability Pr(x→ y) to move to y (i.e. first propose and then accept this) is

Q(x→ y) · Q(y → x) · Pr(y | D)

Q(x→ y) · Pr(x | D)
= Q(y → x)

Pr(y | D)

Pr(x | D)

If we start in y, the probability Pr(y → x) to move to x is

Q(y → x) · 1,

since our assumption implies Q(x→y)·Pr(x | D)
Q(y→x)·Pr(y | D) ≥ 1.

This implies that the reversibility condition

Pr(x | D) · Pr(x→ y) = Pr(y | D) · Pr(y → x)

is fulfilled.This implies that Pr(. | D) is an equilibrium of the Markov chain that we have just constructed,
and the latter will converge against it.(let’s watch a simulation in R)

Applying Metropolis–Hastings

• You are never in equilibrium (your target distribution), but you can get close if you run enough
steps.

• You can take more than one sample from the same chain, but you should run enough steps between
the sampling steps to make the sampled objects only weakly dependent.

• Your initial state may be “far from equilibrium” (i.e. very improbable). So you should run the
chain long enough before you start sampling (“burn-in”).
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Lamarc’s Metropolis–Hastings step
Proposal chain: Remove a randomly picked branch and let the ancestral lineage of the isolated subtree

coalesce with the rest accoring to Θ. Total rate of all that can happen to lineage on island 1 or 2 with k
other lineages:

λ1(k) =
k · 2
θ1

+M1,2 λ2(k) =
k · 2
θ2

+M2,1

Example:

Step 1: Choose a random branch (each with same prob) and
remove it.

0.0

1.3
1.5

1.9

4.5

4.9

5.4

To reconnect genealogy generate missing branch according to
coalescent model.

0.0

1.3
1.5

1.9

4.5

4.9

5.4

Step 2:

• generate random time T1 from exp-distribution with rate
λ1(2).

• If 1.3 + T1 < 1.5, this is the time for the next event
(coalescence or migration).

• Otherwise (as shown here) stop at 1.5.

1.7

0.0

1.3
1.5

1.9

4.5

4.9

5.4

Step 3:

• draw exponential time T2 with rate λ1(1)

• Let’s say T2 = 0.2 (rounded)

• As 1.5 + T2 < 1.9, an event takes place

• Choose migration (as here) with prob. M1,2/λ1(1) or
coalescence with prob. (2/θ1)/λ1(1)
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1.7

0.0

1.3
1.5

1.9

4.5

4.9

5.4

Step 4: continue at time 1.7

• draw exponential time T3 with rate λ2(3)

• if 1.7 + T3 > 1.9 continue line down to 1.9

• (we always stop where the rate needs to be updated)

1.7

3.2

0.0

1.3
1.5

1.9

4.5

4.9

5.4

Step 5: continue at 1.9

• draw exponential time T4 with rate λ2(2)

• Let’s say T4 ≈ 1.3, such that 1.9 + T4 = 3.2 < 4.5.

• Choose migration event with prob. M2,1/λ2(2).

• [or coalescence with prob. (2/θ2)/λ2(2)]

1.7

3.2

4.2

0.0

1.3
1.5

1.9

4.5

4.9

5.4

Step 6:

• draw exponential time T5 with rate λ1(1), let’s say T5 ≈
1.0.

• as 3.2 + 1.0 < 4.9, event takes place, e.g. with prob.
(2/θ1)/λ1(1) a coalescence
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Lamarc’s Metropolis–Hastings step
Target distribution density: pΘ(G|D), where Θ is the current set of parameter values, G is the

genealogy and D is the data.

Proposal chain: Remove a randomly picked branch and let the ancestral lineage of the isolated subtree
coalesce with the rest accoring to Θ.
⇒

Q(G′ → G)

Q(G→ G′)
=

pΘ(G)

pΘ(G′)

⇒ The MH acceptance probability is:

min

{
1,
Q(G′ → G) · pΘ(G′|D)

Q(G→ G′) · pΘ(G|D)

}
= min

{
1,
pΘ(G) · pΘ(G′, D)/Pr(D)

pΘ(G′) · pΘ(G,D)/Pr(D)

}
= min

{
1,
pΘ(G) · Pr(D|G′) · pΘ(G′)

pΘ(G′) · Pr(D|G) · pΘ(G)

}
= min

{
1,

Pr(D|G′)
Pr(D|G)

}
How to compute Pr(D|G)? Felsenstein’s pruning!

We assume that all sites evolve independent of each other. ⇒

Pr(D|G) =
∏
i

Pr(Di|G),

where Di is the i-th column in the alignment.
How to compute Pr(Di|G)? For any nucleotides (or amino acids) x, y let px be the frequency of x

and Prx→y(`) be the probability that a child node has type y, given that the parent node had type x
and the branch between the two nodes has length `. Let’s first assume that Di knows the nucleotides
at the inner nodes of G:

A T A C T

C
A

A

C

`1 `1

`3

`2 `2

`4

`6
`5

Pr(Di|G)

= pC · PrC→A(`5) · PrC→C(`6) ·
PrA→A(`3) · PrA→A(`4) ·
PrA→A(`1) · PrA→T (`1) ·
PrC→C(`2) · PrC→T (`2)·

How to compute or define Prx→y(`)?

Jukes-Cantor model for DNA evolution

• All nucleotide frequencies are pA = pC = pG = pT = 0.25.

• “mutation events” happen at rate λ and let the site forget its current type and select a new one
randomly from {A,C,G,T}. (New one can be the same as old one.)

⇒
Prx→y(`) =

{
=

(
1− e−λ`

)
· 1

4 if x 6= y
= e−λ` +

(
1− e−λ`

)
· 1

4 if x = y

(More sophisticated sequence evolution models in the phylogenetics part of the lecture.)
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Felsenstein’s pruning algorithm
How to compute Pr(Di|G) if (as usual) the data do only contain the nucleotides for the tips of the

tree?

For any node k of the genealogy and any nucleotide (or amino acid) x define wk(x) to be the probability
that, given the nucleotide (or a.a.) in k is x, the tips that stem from k get the nucleotides (or a.a.) given
in Di. Then

Pr(Di|G) =
∑

x∈{A,C,G,T}

px · wr(x),

where r is the root of the genealogy,and for any node k with child nodes i and j and corresponding
branch lengths `i and `j we get:

wk(x) =

 ∑
y∈{A,C,G,T}

Prx→y(`i) · wi(y)

 ·
 ∑
z∈{A,C,G,T}

Prx→y(`j) · wj(z)



Felsenstein’s pruning algorithm
If b is a tip of G, then wb(x) is 1 if x is the nucleotide at b in Di, and wb(x) is 0 otherwise.

With the recursion forwk(x) given above, we can compute wk(x) for all x and all k starting with the
tips and ending in the root r.

From the wr(.) we can compute Pr(Di|G).

Some of the things you should be able to explain

• Time scaling of 1/µ generations and how to calculate p(G) for the structured coalescent

• convergence of Markov chains against equilibria

– formula and what it means

– sufficient conditions for this convergence

– when is an equilibrium reversible and why are not all equilibria reversible

• MCMC, in particular Metropolis–Hastings

• How Importance Sampling and MCMC is combined in LAMARC

– proposals for changes in the genealogy

– why LAMARC’s Metropolis–Hastings ratio is so simple

– Felsenstein’s pruning

– Jukes-Cantor model and how to compute its transition probabilities

Other MCMC strategy than in LAMARC

References

[1] I. J. Wilson, D. J. Balding (1998) Genealogical inference from microsatellite data. Genetics 150:
499-–510

• assign data to inner nodes

• when choosing new parent node take mutation probs into account

• more intelligent proposals but larger state space

• may be superior for microsatellite data
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Ancestral Recombination Graph
When recombination occurs, ancestral lineages for
the left and the right part of the sequence split up.
Each site has a tree-shaped ancestry, and these trees
have complex stochastic dependencies.
LAMARC can also sample Ancestral Recombination
Graphs instead of trees. If k lineages are present,
the total recombination rate is ρ · k.
As the coalescence rate is

∝ k · (k − 1),

the number of lineages will not go to ∞.
Due to random fluctuations, the number of lineages
will sooner or later reach 1 (ultimate ancestor).

LAMARC must define for each recombination event which segments follow which lineage.

Excursus: simulation of ARG in ms

• Must define:

– recombination rate (per locus)

– number of positions (or unbreakable segments)

• Stop when each nucleotide (or segment) has found its MRCA

• Can be very slow when large genomic regions are simulate

• Other programs such as scrm allow to neglect long-range dependencies

LAMARC Search Strategies

initial chains: several short chains to optimize driving values

final chain: longer chain to narrow the final interval

burn-in: discard e.g. first 5% of each chain

symptom of too few chains: parameters are still changing directionally

θ0

θ2
θ3

θ4
θ5

θ6
θ7

θ1

symptom of too short chains: parameters leap wildly from chain to chain

θ0

θ2
θ3

θ5
θ7

θ1

θ4
θ6
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(MC)3=MCMCMC
=Metropolis-Coupled MCMC= MCMC with “heated chains”.
If βi ∈ (0, 1] is heat parameter for chain i, then chain i samples from distribution pβi : x 7→

pβi(x)·const, with β1 = 1.
The usual MH acceptance prob. for chain i is

min

{
1,
p(y)βi

p(x)βi
· Qy→x
Qx→y

}
.

Sometimes a swap between the current state xi of chain i and the current state xj of chain j is proposed.
The acceptance with probability

min

{
1,
p(xj)

βi

p(xi)βi
· p(xi)

βj

p(xj)βj

}
fulfills the requirements of both chaines (check this!).

Bayesian Lamarc
Aim: sample parameter values Θ (and Genealogies) according to the posterior probability distribution

Pr(Θ|D) (or Pr(Θ, G|D)) given the data D.

• needs priors Pr(Θ) for the parameters

• Gibbs sampling scheme: iterate uptdate of the Θ, given D and G, and update of G, given Θ and
D.

Gibbs samping
Assume we want to sample from a joint distribution Pr(A = a,B = b) of two random variables,

and for each pair of possible values (a, b) for (A,B) we have Markov chains with transition probabilities

P
(A=a)
b→b′ and P

(B=b)
a→a′ that converge against Pr(B = b|A = a) and Pr(A = a|B = b).

Then, any Markov chain with transition law

P(a,b)→(a′,b′) =



1
2P

(B=b)
a→a + 1

2P
(A=a)
b→b if a = a′ and b = b′

1
2P

(B=b)
a→a′ if a 6= a′ and b = b′

1
2P

(A=a)
b→b′ if a = a′ and b 6= b′

0 else

Priors in Bayesian Lamarc
When new values for Θ are to be proposed,

• e.g. the new values of θ and the recombination rate are chosen according to a exponential prior
that is uniform on the log scaled interval [10−5, 10]and the

• growth rate g is chosen uniformly from [−500, 1000].

• For the MH acceptance step use a U that is uniform on [0, 1] and accept if

U <
Pr(G|Θproposal)

Pr(G|Θold)
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Some of the things you should be able to explain

• Difference between LAMARC and Wilson-Balding approach

• Ancestral Recombination Graph (ARG) and its properties

• short and long chains in LAMARC

• how to check convergence in LAMARC

• MCMCMC (heated chains)

• Differences btw. Bayesian and frequentist LAMARC

• Gibbs sampling

4 IM, IMa, IMa2

1 every or 
every 2nd
generation

1 every 3rd
generation

4
2

0
0

0
0

 y
e

a
rs

 /
 2

8
0

0
0

 g
e

n
e

ra
ti

o
n

s

Won, Hey (2005)

Hey, Nielsen (2007)

5300

Chimps

Ancestral

Western Chimps
7600

Central Chimps

27900

give confidence ranges
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m1

m2

N1 N2

NA

time

t

mi: proportion of individuals of pop. i that are replaced by
immigrants

Ni: effective size of pop. i

NA: effective size of ancestral population

t: number of generations since the split

µ: mutation rate per generation

Asymptotics and rescaled parameters:

Ni → ∞ 2Nimi → Mi

N2/N1 → r 4N1µ → θ

NA/N1 → a t/(2N1) → τ

Θ = (θ, r, a, τ,M1,M2)

IM is an implementation of a Bayesian sampler with flat priors, e.g.

Mi ∼ Unif([0, 10]), τ ∼ Unif([0, 10])
log(r) ∼ Unif([−10, 10]), log(a) ∼ Unif([−10, 10])

Proposals G∗ for genealogy updates like in Lamarc with MH acceptance probability

min

{
1,

Pr(D|Θi, G
∗)

Pr(D|Θi, Gi)

}
,

where Gi is the current genealogy and Θi is the current vector of parameter values in MCMC step i.
Proposals for parameter updates: Given the current value λ of some parameter, the new value is

proposed from Unif[λ−∆, λ+ ∆]. MH acceptance probability:

min

{
1,
p(Gi|Θ∗)
p(Gi|Θi)

}

IM can handle datasets of unlinked loci (but NO intralocus-recombination!).
D = (D1, . . . , Dn), Di: data from locus i. G = (G1, . . . , Gn), Gi: genealogy of locus i (including

topology, branch lengths, migration times, coalescent times)

p(Θ|D) =
p(Θ) · Pr(D|Θ)

Pr(D)
=
p(Θ) ·

∏
i Pr(Di|Θ)

Pr(D)
=

p(Θ)

Pr(D)
·
n∏
i=1

∫
Gi

Pr(Di|Gi,Θ) · p(Gi|Θ)dGi

additional parameters: locus-specific mutation scalars ui with constraint
∏
i ui = 1.

Updating (u1, . . . , un): choose i and j and propose

u∗i = x · ui and u∗j = uj/x,

where log(x) ∼ Unif(−δ, δ).
In IMa, some MCMC steps are replaced by faster numerical computation. We discuss this first in a

1-population model with sample size m.

• Let τk be the time while the number of lineages is k, measured in 1/µ generations.

• ⇒ coalescence rate is 2/θ
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• ⇒ p(G|Θ) =
(

2
θ

)m−1 · exp(−fm/θ),

• where fm :=
∑m
i=2 τi · i · (i− 1)

Assume a flat prior θ ∼ Unif(0, θmax). This implies (with the substitution θ = fm/x):

p(G) =

∫ θmax

0

p(θ) · p(G|θ) dθ =
1

θmax

∫ fm/θmax

∞

(
2x

fm

)m−1

· e−x · −fm
x2

dx

=
2m−1

θmaxf
m−2
m

· Γ(m− 2, fm/θmax),

where Γ(a, b) =
∫∞
b
xa−1e−xdx is the “incomplete Gamma-function”.

This implies

p(θ|G) =
p(G|θ) · p(θ)

p(G)
=

(fm/θ)
m−2

exp (−fm/θ)
θ · Γ(m− 2, fm/θmax)

Hence, given fm, the posterior probability can be computed and the expression above gives a smooth
curve.

• works in a similar way for models with subpopulations with migration

• for the split time τ a standard MH step is required

• population growth not allowed in IMa (other than IM)

• “branch sliding” proposals for G: move randomly chosen branch a random distance. Current
migration events are removed and replaced by a Poisson number of migration events conditioned
on odd or even.

Likelihood Ratio Testing with IMa
Let

Θ̂0 = argmax p(Θ|D) in the general model

and
Θ̂r = argmax p(Θ|D) in a restricted model, e.g. without migration.

Since we use uniform priors for all parameters (some log-scaled), we get

p(Θ0|D)

p(Θr|D)
=

Pr(D|Θ0) · p(Θ0)

Pr(D|Θr) · p(Θr)
=
LD(Θ0)

LD(Θr)

Hence, Λ̂ = log
(
p̂(Θ0|D)
p̂(Θr|D)

)
is an approximation of the log likelihood-ratio and thus, 2Λ̂ is approximately

χ2
d-distributed under the null hypothesis of the restricted model, where d is the number of additional

parameters in the general model.However, this approximation is only appropriate for extremely large
datasets. IMa assesses the significance of Λ̂ by comparing it to values of Λ̂ from simulations based on
the null hypothesis (restricted model).

Bayes factors
Other authors use so-called Bayes factors to decide between two models M1 and M2:

BM1,M2 =
Pr(D|M1)

Pr(D|M2)
,

where

Pr(D|M) =

∫
p(D,Θ|M)dΘ

=

∫
Pr(D|M,Θ) · p(Θ|M)dΘ

≈

 1

m

m∑
j=1

1

Pr(D|Θj ,M)

−1

,
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where Θ1, . . . ,Θm are the samples from an MCMC run.

Why harmonic mean estimator for Pr(D)?
Let θ1, . . . , θm be (approx.) independent samples according to p(θ|D). Then,

1 =

∫
p(θ)dθ ≈ 1

m

m∑
i=1

p(θi)

p(θi|D)
(importance sampling)

=
1

m

m∑
i=1

p(θi)
Pr(D|θi)·p(θi)

Pr(D)

(Bayes formula)

= Pr(D) · 1

m

m∑
i=1

1

Pr(D|θi)
.

⇒
Pr(D) ≈ 1

1
m

∑m
i=1

1
Pr(D|θi)

Advantages of Bayes factors:

• can also support the restricted model while tests can only support the general model by statistically
rejecting the restricted one.

• can also compare non-nested models

Problems:

• Prior has influence even for large amount of data

• harmonic mean estimator can have infinite variance (more sophisticated methods exist)

• Tests and Bayesian model selection can lead to opposite results (Lindley’s paradox).

Study accuracy of different possibilities to apply IMa if there is recombination within loci (which is
usually the case):

References

[1] J.L. Strasburg, L.H. Rieseberg (2010) How robust are “isolation with migration” analyses to viola-
tions of the im model? A simulation study.Mol. Biol. Evol. 27(2):297-310.

Note that meanwhile LAMARC also works with demographic models of populations splits.

Some of the things you should be able to explain

• Model assumptions and time scaling in IM and IMa

• IM/IMa assumptions for paramter variations among loci

• likelihood-ratio testing vs. Bayes factors

• harmonic mean estimator to compute marginal model probability from MCMC samples

5 Approximate Bayesian Computation (ABC)

Problems of full-data methods:

• usual runtime for one dataset: several weeks or months

• complex software, development takes years

• most programs not flexible, hard to write extensions
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Pritchard et al. (1999)

• Compute MRCA of human Y chromosome in population models with growth.

• Find strong signal of population expansion in all populations.

• Explanations: recent expansion from a small ancestral population in the last 120,000 years or
natural selection on the Y chromosome.

• data: 8 microsatellite loci from 445 humans

• Try various microsatellite mutation models

• Use summary statistics:

1. mean accross loci in the variance of repeat numbers

2. mean effective heterozygosity

3. number of distinct haplotypes

Pritchard et al. (1999)
Approximate Bayesian Computation

1. Select summary statistics S = (Si)i and compute their values s = (si)i for given data set

2. Choose tolerance δ

3. repeat until k accepted parameter combinations Θ′:

(a) Simulate Θ′ from prior distribution of Θ

(b) Simulate genealogy G according to PrΘ′(G).

(c) Simulate data and compute values s′ of S

(d) accept Θ′ if ‖s− s′‖ ≤ δ

Only possible if a few summary statistics suffice. Otherwise acceptance will be rare.
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5.1 ABC with local regression correction

Ideas of Beaumont, Zhang, Balding (2002):

• combine ABC with local regression:

Θ

S

s

Θtrue Θ

S

s

Simulate data for some parameter combinations Θ and compute corresponding s.

classical ABC samples for p(Θ|S = s) Θ

S

s

Θ

S

s

Θ

S

s

regression-ABC sample for p(Θ|S = s)Θ

S

s

• Accept in a wider range but put a smaller weight on s′ if |s− s′| is large.

s S

weight
1

0

classical ABC

s S

weight
1

0

ABC with

local regression

Epanechnikov-Kernel
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Kδ(t) =

{
3

4·δ ·
(

1−
(
t
δ

)2)
for |t| ≤ δ

0 for |t| > δ

Note that the area under the kernel is 1, as∫ δ

−δ

3

4 · δ
·
(

1−
(x
δ

)2
)
dx = 1
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0.
0
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Epanechnikov-Kernels with

δ = 1 and δ=2

Beaumont, Zhang, Balding (2002)
Simulate pairs (Θ(i), s(i)) and fit local regression model, i.e. find α and β to minimize∑

i

(
Θ(i) − α− (s(i) − s)Tβ

)2

·Kδ(‖s(i) − s‖),

where ||v|| =
√∑

i v
2
i (or some other vector norm).

Consider
Θ

(i)
∗ = Θ(i) − (s(i) − s)T β̂

as random sample from Pr(Θ | S = s).
Posterior density estimation:

p̂(Θ0 | S = s) =

∑
iK∆(Θ

(i)
∗ −Θ0) ·Kδ(‖s− s(i)‖)∑
j Kδ(‖s− s(j)‖)

where ∆ = density estimation bandwidth.

Reminder/Introduction to solution for normal regression

Problem: predict Y fromX1, X2,. . . ,Xm. Observations:

Y1 , X11, X12, . . . , X1m

Y2 , X21, X22, . . . , X2m

...
...

Yn , Xn1, Xn1, . . . , Xnm

with Xi =


X1i

X2i

...
Xni


Model: Y = a+ b1 ·X1 + b2 ·X2 + · · ·+ bm ·Xm + ε Equation system for a, b1, b2, . . . , bm:

Y1 = a + b1 ·X11 + b2 ·X12 + . . . + bm ·X1m + ε1

Y2 = a + b1 ·X21 + b2 ·X22 + . . . + bm ·X2m + ε2

...
...

...
...

...
...

...
...

. . .
...

...
...

...
Yn = a + b1 ·Xn1 + bn ·Xn2 + . . . + bm ·Xnm + εn
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Model:

Y1 = a + b1 ·X11 + b2 ·X12 + . . . + bm ·X1m + ε1

Y2 = a + b1 ·X21 + b2 ·X22 + . . . + bm ·X2m + ε2

...
...

...
...

...
...

...
...

. . .
...

...
...

...
Yn = a + b1 ·Xn1 + bn ·Xn2 + . . . + bm ·Xnm + εn

target variables Y Explanatory variables X1, X2, . . . , Xm Parameters to be estimated a, b1, . . . , bm
Independent normally distributed errors ε1, . . . , εm with unknown variance σ2.

Approach to estimate a and bi:

minimize residual sum of squares: f(β) :=
∑n
i=1

(
Yi − a−

∑m
j=1 bjXij

)2

For this be

β =


a
b1
...
bm

 , y =

 Y1

...
Yn

 und X =

 1 X11 . . . X1m

...
...

. . .
...

1 Xn1 . . . Xnm


and thus f(β) = 〈y −Xβ, y −Xβ〉 = ‖y −Xβ‖2.

This means: find β̂, such that ŷ = Xβ̂ has minimal euclidian distance to y.
Geometric solution: minimizing f(β) = ‖y −Xβ‖2 means that ŷ = Xβ̂ must be the projection of y

to the space spanned by the vectors x0, x1, . . . , xN (with x0 = (1, . . . , 1)T ). Therefore, y −Xβ must be
in a right angle on each xi,

This implies

∀i : 〈y −Xβ̂, xi〉 = 0,

and thus

(y −Xβ̂)TX = (0, . . . , 0),

y

y 2

1x

x

from which we obtain the solution β̂ = (XTX)−1XTy .

Note that the vectors β and β̂ above contain also the intercept; the notation changes below.

Solution of the local regression problem

Solution for j-th parameter: (α̂, β̂1, . . . , β̂k) =
(
XTWX

)−1
XTWΘ(j), where

Θ(j) =


Θ

(j)
1

Θ
(j)
2
...

Θ
(j)
m

: Values of the j-th parameter from m simulations,

s = (s(1), . . . , s(k)): Vector of summary statistics for observed data,

si = (s
(1)
i , . . . , s

(k)
i ): Vector of summary statistics from i-th simulation,

X =


1 s

(1)
1 − s(1) · · · s

(k)
1 − s(k)

1 s
(1)
2 − s(1) · · · s

(k)
2 − s(k)

...
...

. . .
...

1 s
(1)
m − s(1) · · · s

(k)
m − s(k)

 and

W is diagonal matrix with diagonal entries Kδ(||s1 − s||), . . . ,Kδ(||sm − s||).

Beaumont, Zhang, Balding (2002)
ABC with local regression
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1. Select summary statistics S = (Si)i and compute their values s = (si)i for given data set

2. Choose tolerance δ and bandwidth ∆

3. repeat for i = 1, . . . ,m:

(a) Simulate Θ(i) from prior distribution of Θ

(b) Simulate genealogy G according to PrΘ(i)(G).

(c) Simulate data and compute values s(i) of S

4. (α̂, β̂) = arg minα,β
∑m
i=1

(
Θi − α− (si − s)Tβ

)2 ·Kδ(||si − s||)

5. Θ
(i)
∗ := Θ(i) − (s(i) − s)T β̂

6. Approximate p(Θ|S = s) by
∑
iK∆(Θ(i)

∗ −Θ)·Kδ(‖s−s(i)‖)∑
j Kδ(‖s−s(j)‖)

Summary statistics used by Beaumont et al. (2002) for microsatellite data:

1. mean accross loci in the variance of repeat numbers

2. mean effective heterozygosity

3. number of distinct haplotypes

4. mean accross loci of kurtosis of repeat numbers

5. variance accross loci of variance of repeat numbers

6. mean accross loci of maximum allele-frequency

7. multivariate kurtosis

8. linkage disequilibrium (LD) measured with Hudson’s ∆2

5.2 MCMC without likelihoods

Marjoram et al. (2003) MCMC without likelihoods
Aim: For given dataD with summary statistics S = s sample paramter vectors according to p(Θ | ||S−

s|| ≤ ε).

1. If current parameter estimation is Θ′, propose Θ∗ with probability QΘ′→Θ∗

2. Simulate data D∗ according to Θ∗ and compute their summary statistics s∗.

3. If ||s∗ − s|| > ε reject proposal, else accept with probability

min

{
1,
p(Θ∗) ·QΘ∗→Θ′

p(Θ′) ·QΘ′→Θ∗

}
.

4. repeat steps 1 to 4.

Application example: Nuu Chah Nulth data, n=63 samples of HVR-I.

Estimate θ and time to the MRCA based on F84 substitution model.

Summary statistics: number of variable sites and number of haplotypes.

Simple approach: when updating parameters, generate entirely new tree. (will usually be rejected  
inefficient.)

Compromise: keep some information about the tree an modify it slightly for next step:

1. tree topology

2. times of coalescence events

3. number of mutations between two coalescents events
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Some of the things you should be able to explain

• Basic rejection ABC

• improvements in local-regression ABC

– use of Epanechnikov kernel in local regression

– local regression correction

– use of Epanechnikov smoothing kernel

– why this leads to higher accuracy in shorter runtime

• how to combine ABC with Metropolis-Hastings (“MCMC without likelihoods”)

5.3 Sequential / Adaptive ABC

Sequential ABC
Basic idea: Run several iterations of ABC, always using the results from the previous run (posterior

distribution of parameters) as priors for the new run.

Problem: priors are not allowed to depend on the data. Using posteriors as priors for the analysis of
the same data is cheating!

Solution: Make some correction like in importance sampling to make sure that the initial prior is
used for the final posterior.

Sequential/Adaptive ABC

References

[1] S.A. Sisson, Y. Fan, M.M. Tanaka (2007) Sequential Monte Carlo without likelihoodsPNAS
104: 1760–1765

[2] M.A. Beaumont, J.-M. Cornuet, J.-M. Marin, C.P. Robert (2009) Adaptive approximate
Bayesian ComputationBiometrika 96: 983–990

[3] S.A. Sisson, Y. Fan, M.M. Tanaka (2009) Correction for Sisson et al., Sequential Monte Carlo
without likelihoodsPNAS 106

[4] J.-M. Marin, P. Pudlo, C.P. Robert, R.J. Ryder (2012) Approximate Bayesian computational
methodsStatistics and Computing 22: 1167–1180

Sequential/Adaptive ABC (ABC-PMC)
Proposed by Beaumont et al. (2009); PMC=“Population Monte Carlo”

Notations for the description of the algorithm:

θ
(t)
i i-the sampled parameter in iteration t (for simplicity assumed one-dimensional in following pseu-

docode, but can be parameter vector in general.)

S vector of summary statistics

so vector of summary statistics for original data

ϕ densitiy of standard normal distribution N (0, 1) (can also be multivariate).

p(θ) prior probability density

p(s|θ) probability density of s given θ
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δ1 > δ2 > · · · > δT decreasing thresholds

In most applications θ is a vector (a multi-dimensional parameter). Then in the following pseudo-code
τ is the matrix such that τ2/2 (or actually τ · T (τ)/2, where T is the transpose operation) is a variance
matrix (also called covariance matrix).

References

[1] Filippi, S., Barnes, C.P., Cornebise, J. and Stumpf, M.P (2013) On optimality of kernels for
approximate Bayesian computation using sequential Monte Carlo Statistical applications in
genetics and molecular biology 12(1): 87–107

ABC-PMC
for i = 1, . . . , N do

repeat

Draw θ
(1)
i from prior and simulate s ∼ p(S|θ(1)

i )
until ||s, s0|| < δ1

ω
(1)
i := 1/N

end for
choose matrix τ1 such that τ2

1 /2 = empirical variance matrix of the θ
(1)
i

for t = 2, . . . , T do
for i = 1, . . . , N do

repeat

Draw θ∗i from (θ
(i−1)
1 , . . . , θ

(i−1)
N ) with probability distribution (ω

(i−1)
1 , . . . , ω

(i−1)
N )

Draw θ
(t)
i from N (θ∗i , τ

2
t−1) and simulate s ∼ p(S|θ(t)

i )

until ||s, s0|| < δt

ω
(t)
i :∝ p(θ(t)

i )
/∑

j ω
(t−1)
j · ϕ

(
τ−1
t−1 ·

(
θ
(t)
i − θ

(t−1)
j

))
end for
choose matrix τt such that τ2

t /2 = empirical variance matrix of the θ
(t)
i

end for

(:∝ means “set proportional to”, such that
∑
i ω

(t)
i = 1.)

5.4 Optimizing sets of summary statistics with PLS

Beaumont, Zhang, Balding (2002)

“[...] the MCMC-based method is consistently superior to the summary-statistics-based methods and
highlights that it is well worth making the effort to obtain full-data inferences if possible.”

[Note that “MCMC-based method” here refers to full-data methods]

“[...] there are advantages to the use of summary statistics, both in the ease of implementation and in
the time to obtain the results [...]”

“Further research is needed to find a more rigorous way for choosing summary statistics, including the
use of orthogonalization and ‘projection-pursuit’ methods”

Wegmann et al. (2009)
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Mandenka Yoruba Pygmy

3500 y

53,400 y

ABC estimations with microsatellite data.

Wegmann et al. (2009)

• combine MCMC-ABC with Beaumont et al.’s regression approach to sample from p(Θ|||S−s|| ≤ ε).

• apply Box-Cox transformation to each summary statistic with respect to the parameter of interest,
based on simulated data

• apply partial least squares (PLS) to find combinations of summary statistics that are informative
wrt the parameter of interest

• leave-one-out cross validation to optimize number of PLS components used

Simulation studies show improvements compared to other ABC methods but IMa is still better.
Wegmann et al. “[..] would not recommend using an ABC approach if a full-likelihood method exists

[..]”.

Box-Cox transformation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
3

−
2

−
1

0
1

2
3

Box−Cox transformations

5
1
0.5
0
−1
−10

X(λ) =


(X+c)λ−1

λ for λ 6= 0

ln(X + c) for λ = 0
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Idea: fit λ and c such that the residuals of the regression model Y = α+βX look as normally distributed
as possible.

Comparison PCA vs. PLS
Let S be the covariance matrix of the vectors x1, . . . , xn (with xi = (xi1, . . . , xim)) that are normal-

ized, that is µxi = 0 and σxi = 1. Then, the principal component directions v1, . . . , vm satisfy:

vj = argmax
α

{
Var

(∑
i

xiαi

) ∣∣∣∣∣ ||α|| = 1,∀`<j vT` Sα = 0

}

The PLS directions ϕ1, . . . , ϕm satisfy:

ϕj = argmax
α

{
Cor2

(
y,
∑
i

xiαi

)
Var

(∑
i

xiαi

) ∣∣∣∣∣ ||α|| = 1,∀`<j : ϕT` Sα = 0

}

= argmax
α

{
Cov2

(
y,
∑
i

xiαi

) ∣∣∣∣∣ ||α|| = 1,∀`<j : ϕT` Sα = 0

}

Note that the condition vT` Sα = 0 just means that the new vector
∑
j αj · xj ist orthogonal on the

previous ones
∑
k v`,kxk (for any ` < j).

To see this, note that from µxk = 0 = µxj follows

S(k,j) = Cov(xk, xj) =
1

m− 1

∑
i

(xki − µxk) · (xji − µxj ) =

∑
i xkixji
m− 1

and thus

vT` Sα =
∑
k,j

v`,k

∑
i xkixji
m− 1

· αj =
1

m− 1

〈∑
k

v`,kxk ,
∑
k

αjxj

〉
.

(Remember that the scalar product 〈v, w〉 =
∑
i viwi of two vectors v and w has the geometric interpre-

tation 〈v, w〉 = ||v|| · ||w|| · cos(γ), where γ is the angle between the vectors. Thus, 〈v, w〉 = 0 holds if
and only if v and w are orthogonal on each other.)

The scalar product will also be useful on the next slide, on which the algorithm to compute PLS is
shown.

The slope of a regression line with response variable y and explanatory variable x (both of length m)
can be expressed as

b = Cov(x, y)/σ2
x

and the intercept is a = µy − b · µx.

If y is centered and x is normalized such that µx = µy = 0 and σx = 1, we obtain the regression line

y = a+ bx = 0 +
Cov(x, y)

1
x =

∑
(xi − µx)(yi − µy)

m− 1
x

=

∑
xiyi

m− 1
x =

〈x, y〉
m− 1

x.

partial least squares (PLS)
Aim: find combinations of explanatory variables x1, . . . , xm that have highest covariance with variable

y.

let y be centered and xj be normalized, i.e. µy = 0, µxj = 0, σxj = 1.

1. ((m− 1)-fold of) univariate regression coefficient: ϕj := 〈xj , y〉 :=
∑
i xjiyi ⇒ y ≈ 1

m−1 ·ϕj ·xj

2. first partial least squares direction: z1 :=
∑
j ϕj · xj
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3. first regression coefficient: δ := 〈z1,y〉
〈z1,z1〉 ⇒ y ≈ δ · z1

4. now orthogonalize x1, x2, . . . , xm with respect to z1: x
(2)
j := xj − 〈z1,xj〉〈z1,z1〉 · z1

5. and compute the residuals: y(2) := y − δ · z1

repeat 1-5 with xj and y replaced by x
(2)
j and y(2).  z2, x

(3)
j , y(3)

iterate to get z1, z2, . . . , zm.

PLS for multiple response variables
Wegmann et al. (2009) PLS for multiple response variables (here: summary statistics), implemented

in the command plsr in the R package pls.

Several possible generalizations of PLS exist for multiple response variables y1, . . . , yq, e.g. SIMPLS:
For all i = 1, . . . ,m let ϕi be the vector α, for which zi := x1α1 + · · ·+ xnαn maximizes

q∑
j=1

Cov2(zi, yj)

subject to the conditions that ||α|| = 1 and that ∀k<i : 〈zi, zk〉 = 0.

References

[BS06] A.-L. Boulesteix, K. Strimmer (2006) Partial least squares: a versatile tool for the analysis of
high-dimensional genomic dataBriefings in Bioinformatics 8.1: 32–44

Some of the things you should be able to explain

• Why can’t we just iterate ABC on a data set, always using posteriors from previous run as prior?

• How this is corrected in ABC-PMC

• What is PLS and how can it be applied to improve sets of summary statistics, e.g. for ABC?

6 Jaatha and dadi

6.1 Wild Tomatoes and Jaatha 1.0

Tomato Data

Solanum peruvianum, Canta, Peru

Solanum chilense, Moquegua, Peru

Complex Demography
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?

substructure
population growth

recent speciation
introgression?

recombination within loci
can we still detect selection?

Jaatha
JSFS associated approximation of the ancestry

Malayalam word for “past”.

Strategy: Compare data to data that has been simulated with various combinations of parameter
values.

Demographic Model

past

τ

present

sample 25

θ

sample 25

s · θ
m2

m1

growth rate

g = ln(s)/τ
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Summarizing the JSFS

0 n

0

m−2
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m−1
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JSFS: n*m−2 classes
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0 n

0

m−2

4321

m

m−1

4

3

2

1

Jaatha: 23 classes

JSFS =
Joint Site Frequency
Spectrum Comparison of summaries:
A. Tellier, P. Pfaffelhuber, B. Haubold,
L. Naduvilezhath, L. Rose, T. Städler,
W. Stephan, D. Metzler (2011) Estimating pa-
rameters of speciation models based on refined
summaries of the joint site frequency spectrum.
PLoS ONE 6(5): e18155.
doi:10.1371/journal.pone.0018155

m

τ

slog

log

log

How do the 23 summary statistics depend on
the parameters?
Linearize on each of the 8x8x8 cuboids.

Simple methods in continuous parameter space
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parameter space (3D cuboid)

s
u

m
m

a
ry

 s
ta

ti
s
ti
c
s
’ 
v
a

lu
e

s

8x8x8=512 sub−cuboidsquick method: average of cuboid centers weighted with Poisson model likelihood

and numerically optimize Poisson likelihood in 3D space

slow method: interpolate local regression in

How to get from E to Likelihoods?

Actually not likelihoods but composite likelihoods, that is: approximations that neglect certain
dependencies.

Composite Likelihood Approach ⇒ 23 summary statistics are treated as independent and Poisson
distributed. (As if all polymorphisms were independent of each other.)

This means, if s1, s2, . . . , s23 are the observed summary statistics and λ1, λ2, . . . , λ23 their expecta-
tions, the composite likelihood is

λs11 · e−λ1

s1!
· λ

s2
2 · e−λ2

s2!
· · · λ

s23
23 · e−λ23

s23!

Runtime (Jaatha version 1; limited to 4 parameters
Given model with 4 parameters and sample sizes for two populations, simulate data and fit local

linear models. 3-5 days

Analyse dataset with quick method: 1-3 seconds

Analyse dataset with slow method: 15 minutes

Compromise “J-Med”: <15 seconds

References

[1] L. Naduvilezhath, L. Rose, D. Metzler (2011) Jaatha: A Fast Composite Likelihood Approach to
Estimate Demographic parameters.Molecular Ecology, 20(13): 2709–2723

Demographic Models

present

Constant Model Growth Model Fraction−Growth Model

τ

θq · θθ θ q · θm m m

(1 + q)θ 2θ 1.05θ

q · θ
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Demographic Models
m

θθ

τ

noMig Model FixedTau Model

present

τ= 0.36

q · θ

s · θ

(1 + s) · θ

q · θ

s · θ

(1 + s) · θ

Tomato data: parameter estimations and bootstrap confidence intervals
7 loci, varying from 0.8 to 1.9 kb in size, sampled 23 individuals (i.e. 46 sequences) per species

Parameter Constant Growth Fraction-Growth noMig fixedTau

θ̂1 9.41 10.30 12.56 13.34 12.22
(7.14-12.59) (8.29-13.02) (9.61-16.38) (10.29-17.35) (9.37-15.09)

q̂ 1.83 4.24 4.29 8.67 4.94
(1.23-2.69) (2.58-6.95) (2.71-6.38) (5.34-15.00) (3.28-7.85)

m̂ 0.36 0.36 0.73 0 0.55
(0.06-4.89) (0.09-2.34) (0.39-1.27) (0.22-1.03)

τ̂ 0.41 0.37 0.79 0.14 0.36
(0.05-1.82) (0.11-0.93) (0.37-1.63) (0.10-0.23)

ŝ q̂ 1 0.05 0.44 0.33
(0.18-0.98) (0.11-1.10)

log-likelihood -189.51 -119.70 -101.58 -133.06 -93.96

Growth model: Tomato estimates vs. simulation study
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parametric-bootstrap confidence intervals

• Simulate 200 datasets according to inferred parameter values

• Infer parameters for each simulated dataset

• For any parameter θ let θ̂ be the original estimation and θ∗0.025 and θ∗0.975 the 0.025- and 0.975-
quantiles of the estimates for the bootstrap datasets

• parametric-bootstrap confidence interval:

[2θ̂ − θ∗0.975, 2θ̂ − θ∗0.025]
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• based on the idea that L(θ−θ̂) ≈ L(θ̂−θ∗), where θ∗ is the estimate from some bootstrap simulation

• (some refinements exist, e.g. BCa bootstrap intervals)

Simulation-based significance testing

• Simulated data according to NoMig model with ML parameter values

• Estimated parameters from simulated data with other models

• Only few (≈ 5 out of 1000) estimated migration rates were as high as for tomato data

• log likelihood-ratios “Mig-NoMig” < 25 (most < 0) for simulated data, > 30 for tomato data with
models “fraction-growth” and “growth”

∂a∂i

fastsimcoal2 and ∂a∂i

References

[1] Excoffier, L., Marchi, N., Marques, D. A., Matthey-Doret, R., Gouy, A., Sousa, V. C. (2021)
fastsimcoal2: demographic inference under complex evolutionary scenarios Bioinformatics 37:4882-
4885.

• Very fast simulator

• built-in jsfs based composite-likelihood method

References

[1] R.N. Gutenkunst, R.D. Hernandez, S.H. Williamson, C.D. Bustamante (2009) Inferring the joint
demographic history of multiple populations from multidimensional SNP frequency data PLoS
Genetics

• also a composite likelihood approach

• computes expected JSFS by diffusion approximation

• uses full JSFS

Jaatha vs. ∂a∂i vs. IM

Simulation Study

• Growth model, equally-sized founder populations

• 100 loci, no recombination within loci

• θ ∈ [5, 20] (per locus)

• size ratio q ∈ [0.05, 20]

• divergence time τ ∈ [0.01, 20]

• migration rate m ∈ [0.05, 5]

• IM runs for 10 datasets, stopped after 5 weeks
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6.2 Jaatha 2.0

Jaatha 2.0

• R package

• Also for more than 4 parameters

• Training data are simulated when needed

References

[1] Lisha A. Mathew, Paul R. Staab, Laura E. Rose, Dirk Metzler (2013) Why to account for finite
sites in population genetic studies and how to do this with Jaatha 2.0. Ecology and Evolution
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Parameter 1

Simulations with 7 or 200 loci
First experiment with infinite-sites model, demographic parameters inspired by tomato data:
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m
θ θ

θ

θ

q

s

(1+s) 

present

τ

θ = 12.22 (per locus)
τ = 0.36
m = 0.55
q = 4.94
s = 0.33

Recombination rate between 5 and 20 per locus; 25 sampled sequences per population and locus

Simulation Results with 7 loci
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Simulation Results with 200 loci
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• 100 loci

• θ, q, τ , m, α estimated simultaneously

• ti/tv ratio fixed and assumed to be known

• 7 extra summary stats for double hits and
separate counts of ti and tv within and be-
tween pops
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7 demographic parameters,
only 7 loci

• τ0 very small, suggesting ongoing gene flow

• estimation quite imprecise

• infinite-sites estimation substantially different from finite-sites estimations

• However, gene flow is significant (simulation-based composite-likelihood ratio test)
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6.3 Application to genome-wide data

NGS data of Arabidopsis thaliana

• 1.1 million SNPs (after filtering out ambiguous)

• 12 individuals from Spain, 12 from Italy, 5 from Novosibirsk (outgroup)

Model assumptions
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• split of southern European populations, constant migration, constant sizes

• Finite-sites, estimate ti/tv

• separately for first or second codon position or UTR (FS), third codon position (Th), and non-
coding (NC).

τ m α θsite
complete data set 0.16 3.45 2.87 3.54 · 10−3

1st or 2nd codon pos or UTR 0.12 2.81 4.83 2.73 · 10−3

3rd codon pos 0.19 3.31 1.53 3.70 · 10−3

non-coding 0.18 3.33 2.26 4.31 · 10−3

Parameter estimates for A. thaliana using FSM. Jaatha’s estimates using the HKY model for the mutation rate θ, time

τ of the split of both demes, the subsequent migration rate m between populations, and the rate heterogeneity parameter α. The

parameter τ is scaled in 2Ne generations, m is twice the number of immigrants to each deme per generation, and θ is 2Ne times

the mutation rate per base.

Significance of population structure: for 100 simulated panmictic populations τ was always estimated
smaller.

6.4 Statistics in jaatha beyond jsfs

Summary statisics with linkage
Idea: Group loci by how often the 4-gamete condition is violated

 Novel summary statisitics based on spectrum of loci

6.5 Conclusions

Conclusions

• intra-locus recombination difficult to handle rigorosly but allows for composite-likelihood approxi-
mations

• more loci needed for getting reasonable estimates

• small datasets require different methods and different sets of summary statistics than large datasets

• not always appropriate to use time-consuming methods for small datasets

• very large datasets can also be analysed with simple methods if not too many parameters to be
estimated

• improving choice of summary statistics or smooth estimators for JSFS may be more important
than numerics
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Some of the things you should be able to explain

• JSFS

• Composite-likelihood approach and Poisson approximation

• Why is the JSFS further summarized in jaatha or ABC?

• bootstrap confidence interval and simulation-based p-values

7 Coalescent with Recombination read from left to right and
its approximations

7.1 Why the Coalescent with Recombination read from left to right is not
Markovian

Usual wording in the literature:

Ancestral Recombination Graph (ARG): graph representing (possible) genealogies of sequence pos-
titions and recombination points between them

Coalescent with Recombination: probabilistic ARG model induced by coalescent model with recom-
bination

(Sometimes I may say ARG when I mean the Coalescent with Recombination)

Ancestral
to sample

not 
ancestral

Lineages can coalesce even if they
are not ancestral to the same loci

7.2 SMC, SMC’: Markovian ARGs

References

[WH99] Wiuf C, Hein J. (1999) Recombination as a point process along sequences. Theor. Popul.
Biol. 55: 248–259

[MVC05] McVean, GA, Cardin, NJ (2005). Approximating the coalescent with recombination. Phi-
los Trans R Soc Lond B Biol Sci 360, 1459:1387–93. Introduce the sequentially Markov
coalescent (SMC)

[MW06] Marjoram, P, Wall, JD (2006) Fast “coalescent” simulation. BMC Genet 7:16 Introduce
SMC’

[EF11] Excoffier, L, Foll, M (2011) fastsimcoal: a continuous-time coalescent simulator of genomic
diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27(9):1332–4. im-
plementation of SMC’ combined with ABC
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[EM+21] Excofffier, L, Marchi, N, Marques, DA, Matthey-Doret, R, Gouy, A, Sousa, VC (2021)
fastsimcoal2: demographic inference under complex evolutionary scenarios. Bioinformatics
37(24):4882–4885

Past

Present

not allowed in
SMC or SMC'

Past

Present

allowed in SMC'
but not in SMC

7.3 MaCS, SCRM: closer approximations of the Coalescent with migration

References

[CMW09] Chen, GK, Marjoram, P, Wall, JD (2009) Fast and flexible simulation of DNA sequence
data. Genome Res 19(1):136–42 introduce MaCS (“Markovian Coalescent Simulator”)

[SZML15] Staab, PR, Zhu, S, Metzler, D, Lunter, G (2015) scrm: efficiently simulating long sequences
using the approximated coalescent with recombination. Bioinformatics 31(10):1680–2

Past

Present

a

Past

Present

a bc

Main idea of SCRM and MaCS
If distance b− a is greater than threshold (e.g. 100 kb), neglect possibility of coalescence.

Past

Present

a bc

Past

Present

a b
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Rationale: recombination will anyway quickly separate the lines.

Main difference between SCRM and MaCS
If distance b− a is smaller than threshold:

SCRM:

Past

Present

a bc

Simulate recombination in non-ancestral segments
when needed.

MaCS (at least original version):

Past

Present

a b

Neglect recombination in non-ancestral segments.

Simulation in Staab et al. (2015)

• 20 sequences

• sequence length 1000 kb

• ρ = 4000 for the entire region (that
is 4 / kb)
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fastsimcoal
scrm
MaCS Simulation in Staab et al. (2015)

• fastsimcoal implementation of
SMC’

• newer versions of fastsimcoal (fast-
simcoal2) or MaCS may of course
give different results

• not clear how much accuracy is ac-
tually needed for ABC
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8 Hidden-Markov model approaches for coalescents with re-
combination

8.1 The Pairwise Sequential Markov Chain (PSMC) Approach

References

[LD11] Li, H, Durbin, R (2011) Inference of human population history from individual whole-genome
sequences. Nature 475(7357):493–6

• More loci and few samples better than vice versa, so how about sample size 2 but whole-genome?

• Even a single diploid genome contains a lot information on demographic history of the whole
population

• (implicitly) estimate coalescence times of many regions

• Ne at a time in history is inverse of frequency of coalecence at that time.

• Markov model for how pairwise coalescence time varies along the genome

What PSMC results may look like

years ago

P
op

ul
at

io
n 

si
ze

diploid from pop. A
diploid from pop. B
combined

For actual results see https://www.nature.com/articles/nature10231

Li and Durbin’s findings for human populations

• Data: diploid genomes of 1 Chinese male, 1 Korean male, 3 Europeans, 2 Yoruba (West-Africa)

• Reconstruct within-population Ne histories from diploid genomes of individuals and between-
population from X chromosomes of male individuals from the two populations.

• Chinese and European ancestry: very similar population sizes before 10-20 kya, including a bot-
tleneck 10-60 kya.

• gene flow between all populations 20-40 kya.

• seems like West-Africans and non-Africans decended from a homogeneous population at most 100
kya.

57

https://www.nature.com/articles/nature10231


Pairwise Sequential Markov Chain (PSMC)
Split pair of input sequences into bins of 100 bp

0: homozygous

1: heterozygous

11 0 0 1 0 0 0 1 1 1 0 1

• Hidden Markov chain of coalecent tree lengths according to SMC

• Coalescent trees emit observed 0-1 sequence.

Let θ = 4N0µ and ρ = 4N0r, where µ and ρ are per 100 bp.

Emission probabilities for 2-sequence coalescent of length s:

0 ? 1

s

0: e−θs

1: 1− e−θs

SMC transition rate from tree length s to tree length t
First for t < s:

s
tt

u

For the simple case of constant Ne = N0:

(
1− e−ρt

) 1

t

∫ t

0

1 · e−(t−u)·1du =
(
1− e−ρt

) 1− e−t

t

For Ne(t) = N0 · λ(t):

(
1− e−ρt

) 1

t

∫ t

0

1

λ(t)
· e−

∫ t
u

1
λ(v)

dvdu

Note that PSMC uses SMC (not SMC’) and thus neglects cases like .

SMC transition rate from tree length s to tree length t
Now t > s and Ne(t) = N0 · λ(t):

s
tt

u (
1− e−ρs

) 1

s

∫ s

0

1

λ(t)
· e−

∫ t
u

1
λ(v)

dvdu

In the case of t = s account for the probability e−ρs that no recombination takes place.
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8.2 Excursus: hidden Markov models (HMMs)

Hidden Markov Models (HMMs) in general
X1, X2, . . . , Xn hidden (=unobserved) Markov chain on finite state spaceM. S1, S2, . . . , Sn series of

“signals” with observations s1, s2, . . . , sn.

3 4 5 6 71 2

hidden: 

observed:

Px→y : transition probability Pr(Xi = y | Xi−1 = x)

ex(s) : emission probability Pr(Si = s | Xi = x) (Si depends only on Xi)

HMM examples
application hidden observed

PSMC Coalscent times homozygous or heterozygous
CpG island detection in island or not nucleotides

Structure which cluster alleles
PAC closest relative haplotype alleles

protein profileHMM sequence position amino acid
alignment pairHMM alignment pair of sequences
nanopore sequencing tuple of nucleotides electrostatic signal

HMM application examples
CpG island detection

a c g t

a c g tI I I I

A C G T profileHMM of a protein family

nanopore sequencing

image source:
https://commons.wikimedia.org/wiki/File:202001_nanopore_sequencing.svg DataBase Center for

Life Science (DBCLS)

Creative Commons License

https://doi.org/10.7875/togopic.2020.01

CATCG

ATCGA

ATCGC

ATCGG

ATCGT

pairHMM for sequence alignment
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Classical HMM algorithms

forward algorithm: Calculate Likelihood of parameters, that is, for given parameter values the prob-
ability Pr(S1 = s1, S2 = s2, . . . , Sn = sn) of the observed sequence s1, . . . , sn, summing over all
possible chains x1, . . . , xn.

backward algorithm: Calculates the same as forward algorithm in another way.

forward–backward algorithm Calculates for each i and x, y of the Markov chain state space

Pr(Xi = x | S1 = s1, S2 = s2, . . . , Sn = sn) and

Pr(Xi = x,Xi+1 = y | S1 = s1, S2 = s2, . . . , Sn = sn)

Baum–Welch algorithm: Fit HMM parameter to given observation s1, s2, . . . , sn.

Viterbi algorithm: Find most probable chain of hidden states x1, x2, . . . , xn for given observation
s1, s2, . . . , sn (and given parameter values).

HMM forward algorithm

fi(x) = Pr(S1 = s1, S2 = s2, . . . , Si = si, Xi = x)

Pr(S1 = s1, S2 = s2, . . . , Sn = sn) =
∑
x∈M

fn(x)

fi(x) =
∑
y∈M

fi−1(y) · Py→x · ex(si)

Time complexity: O(|M|2 · n).
(if all transitions x → y for x, y ∈ M al-
lowed)

Forward algorithm with vector–matrix operations
With fi = (fi(x), fi(y), . . . , fi(k))

P =


Px→x Px→y . . . Px→k
Py→x Py→y . . . Py→k

... . . .
...

Pk→x Pk→y . . . Pk→k

 , e(a) = (ex(a), ey(a), . . . , ek(a)))
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the forward recursion takes the form

fi = (fi−1 · P ) ◦ e(si),

where ◦ is the entrywise Hadamard product.

HMM backward algorithm

bi(x) = Pr(Si+1 = si+1, Si+2 = si+2, . . . , Sn = sn | Xi = x)

Pr(S1 = s1, S2 = s2, . . . , Sn = sn) =
∑
x∈M

px · ex(s1) · b1(x)

bi(x) =
∑
y∈M

Px→y · ey(si+1) · bi+1(y)

combination of forward and backward variables
From Pr(S1 = s1, . . . , Sn = sn | Xi = x) = Pr(S1 = s1, . . . , Si = si | Xi = x) · Pr(Si+1 = si+1, . . . , Sn = sn | Xi = x)

follows

Pr(Xi = x | S1 = s1, . . . , Sn = sn) =
Pr(Xi = x, S1 = s1, . . . , Sn = sn)

Pr(S1 = s1, . . . , Sn = sn)

=
fi(x) · bi(x)

Pr(S1 = s1, . . . , Sn = sn)

and

Pr(Xi−1 = x,Xi = y | S1 = s1, . . . , Sn = sn) =
fi−1(x) · Px→y · ey(si) · bi(y)

Pr(S1 = s1, . . . , Sn = sn)
.

This allows us to calculate for given s1, . . . , sn the expected numbers of emissions of any s from any x ∈ M and the numbers
of transitions x→ y for all x, y ∈ M, averaged over all hidden chains weighted with their posterior probabilities.

These expected values are used in the Baum–Welch algorithm, an EM algorithm to estimate transition and emission proba-

bilities (from emissions only; chains are still hidden).

Baum–Welch algorithm
Expectation–Maximization algorithm to estimate HMM parameters from observed data.
Begin with initial HMM transition and emission probability values and repeat the following steps

until convergence:

E step: • With the current HMM parameters apply forward–backward algo to get

Pr(Xi = x,Xi+1 = y|s1, . . . , sn) and Pr(Xi = x|s1, . . . , sn)

for each step i and all MC states x and y.

• With this calculate the expected values for the fractions of transitions to y from x and the
distribution of emissions from x, e.g.:∑

i

Pr(Xi = x,Xi+1 = y|s1, . . . , sn)

/∑
i

Pr(Xi = x|s1, . . . , sn)

M step: Fit the transition probabilities and emission probabilities to the expected relative frequencies
and repeat E-step and then M-step with the updated parameters.
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Viterbi algorithm

vi(x) = max
(x1,...,xi−1)∈Mi−1

Pr(S1 = s1, S2 = s2, . . . , Si = si, X1 = x1, . . . , Xi−1 = xi−1,Xi = x)

Allows us to trace back the most probable x1, x2, . . . , xn for given s1, s2, . . . , sn.

vi(x) = max
y∈M

vi−1(y) · Py→x · ex(si)

8.3 Back to PSMC

How HMM algorithms are applied in PSMC

• time is binned with boundaries 0.1 · e ik log(1+10Tmax) − 0.1 for i = 0, 1, . . . , k

• thus, each run of the forward, backward has O(k2 · n) runtime

• parameter estimation with Baum–Welch, combined with Powell’s numerical optimization algorithm

Possible Problem for PSMC approach

• used data is distribution of nucleotide diversity across genomic regions

• but this distribution may depend also on variation in mutation rates

• Li and Durbin (2011) carry out simulation study

– mutation rate variation according to human–macaque alignment

– result is that these rate variations alone would not explain PSMC results

• More simulation studies for robustness in supplement to Li and Durbin (2011)

8.4 MSMC and MSMC2

MSMC

References

[SD14] Schiffels, S, Durbin, R (2014) Inferring human population size and separation history from
multiple genome sequences. Nat Genet 46(8): 919–25

• input multiple sequences

• Hidden Markov chain states refer to most recent coalescent events

• Aim to get better resolution for more recent demographic history

• Calculations based on SMC’ (instead of SMC)
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Hidden state in MSMC: time and lineages of most recent coalescence
Emissions:

1 23 4 56 7 1 23 4 56 7 1 23 4 56 7 1 23 4 56 7 1 23 4 56 7

(0.04, 2, 5) (0.02, 1, 3) (0.02, 1, 3) (0.06, 4, 6) (0.03, 5, 6)

singleton 
(outside)

no mutation singleton 
(outside)

singleton 
(inside)

higher-freq.
variant

MSMC neglects:

• all dependencies that are neglected in SMC’

• all other information contained in coalescent outside pair (grey lines)

• emissions depend not only on chain state

MSMC2

References

[SW20] Schiffels S., Wang K. (2020) MSMC and MSMC2: The Multiple Sequentially Markovian Coa-
lescent. In: Dutheil J.Y. (eds) Statistical Population Genomics. Methods in Molecular Biology,
vol 2090. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0199-0_7

• MSMC for practical purposes limited to 8 haplotypes

• Biases in MSMC due to approximations in the HMM emission rates

• MSMC2: composite likelihood approach using pairwise coalescents

Some of what you should be able to explain

• Differences between SMC, SMC’, MaCS, SCRM and the Coalescent with Recombination

• PSMC

– model assumptions and HMM approach

– how to draw conclusions

• HMM algorithms

– forward

– forward–backward

– Baum–Welch

– Viterbi

• basic ideas of MSMC and MSMC2
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9 The program STRUCTURE

examples

References

[1] M. Linnenbrink, J. Wang, E.A. Hardouin, S. Künzel, D. Metzler, J.F. Baines (2013) The role of
biogeography in shaping diversity of the intestinal microbiota in house mice Molecular Ecology
22(7): 1904–1916. (have a look at Fig 1)

[2] B.M. vonHoldt et al. (2011) A genome-wide perspective on the evolutionary history of enigmatic
wolf-like canids Genome Research 21(8): 1294–1305. http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3149496/figure/F4/

1
1

2
2

3
3

4
4

6
6

References

[PSD00] Pritchard, Stephens, Donnelly (2000) Inference of Population Structure Using Multilocus Geno-
type Data Genetics 155: 945–959

[FSP03] Falush, Stephens, Pritchard (2003) Inference of Population Structure Using Multilocus Geno-
type Data: Linked Loci and Correlated Allele Frequencies.Genetics 164: 1567–1587

[FSP07] Falush, Stephens, Pritchard (2007) Inference of population structure using multilocus genotype
data: dominant markers and null alleles. Mol. Ecol. Notes

[HFSP09] Hubisz, Falush, Stephens, Pritchard (2009) Inferring weak population structure with the as-
sistance of sample group information.Mol. Ecol. Resources 9: 1322–1332

9.1 no admixture, no sampling locations

A: a:

Hardy-Weinberg

AA Aa aa

AA

aa

aA

Aa

AA

aa

aA

Aa

AA

aa

aA

Aa

Wahlund effect
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Linkage disequilibrium due to population structure
A: B:
a: b:

(A, B): (A, b):

(a, B): (a, b):

(A,B) (A,b)

(a,B) (a,b)

(A, B)
(a,b)

Structure: A program for model-based clustering of genotypes (Microsatellites, SNPS, AFLPs, . . . )

N diploid individuals, L loci, K (sub)populations

unknown which individuals belong to which population, even if sampling locations are known, i.e.
subpopulations may not correspond to sampling locations.

known is the genotype of individual each i at locus `:

X = (x
(i,1)
` , x

(i,2)
` )i≤N,`≤L

unknown are the populations from which individual i originates:

Z = (z(i))i≤N

and the frequencies of allele j at locus ` in population k:

P = (pk`j)k≤K,`≤L,j≤J`

Assumption 1: each population is in Hardy-Weinberg equilibrium

Assumption 2: linkage equilibrium between loci

Bayesian approach: approximate sample from

Pr(Z,P | X) ∝ Pr(Z) · Pr(P ) · Pr(X | Z,P )

Priors for origin population of individual i:

Pr(z(i) = k) = 1/K

Dirichlet prior for allele frequencies in each population:

pk` ∼ D(λ1, λ2, . . . , λJ`) with λ1 = λ2 = · · · = λJ` = 1

(uniform distribution on all distributions)

Pr(X|Z,P ) :

Pr(x
(i,a)
` = j | Z,P ) = pz(i)`j
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Dirichlet distribution
If Y ∼ D(α1, . . . , αk) then

Pr(Y = (y1, . . . , yk)) = c(α)·
k∏
i=1

yαi−1
i

if all yi ≥ 0 and
∑
i yi = 1, else

0.

E(Y ) =
(α1, . . . , αk)∑

i αi

100 samples from D(1,1,1)

(0,1,0)

(1,0,0)(0,0,1)

100 samples from D(10,10,10)

(0,1,0)

(1,0,0)(0,0,1)

100 samples from D(0.1,0.1,0.1)

(0,1,0)

(1,0,0)(0,0,1)

100 samples from D(10,20,30)

(0,1,0)

(1,0,0)(0,0,1)
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100 samples from D(0.2,.001,.2)

(0,1,0)

(1,0,0)(0,0,1)

Important property of Dirichlet distributions
Let N = (n1, . . . , nK) multinomially distributed with (unknown) probabilities P = (p1, . . . , pK), i.e.

Pr(N = (n1, . . . , nk)) =
(n1 + n2 + · · ·+ nk)!

n1! · n2! · · ·nk!

k∏
i=1

pnii .

If the prior distribution of P is D(λ1, . . . , λk), then the posterior distribution of P given N = (n1, . . . , nk)
is

D(λ1 + n1, . . . , λk + nk).

(Exercise!)
MCMC method for sampling from Pr(Z,P |X): Start with Z(0) (e.g. sampled from prior) and iterate

2 steps for m = 1, 2, 3, . . . :

1. Sample P (m) from Pr(P |X,Z(m−1))

pk`.|X,Z ∼ D(λ1 + nk`1, . . . , λJ` + nk`J`),

where nk`j = #
{

(i, a)|x(i,a)
` = j and z(i) = k

}
. (using the important property of the Dirichlet

distribution.)

2. Sample Z(m) from Pr(Z|X,P (m))

Pr(z(i) = k|X,P ) =
Pr(x(i)|P, z(i) = k)∑K

k′=1 Pr(x(i)|P, z(i) = k′)
,

using Pr(x(i)|P, z(i) = k) =
∏L
`=1 pk`x(i,1)

`

· p
k`x

(i,2)
`

.

9.2 with admixture

admixture: present individuals stem from k populations that were admixed recently.

Q :
(
q

(i)
k

)
i≤N,k≤K

= proportion of individual i’s genome originating from population k
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Z :
(
z

(i,a)
`

)
= population of origin of allele copy x

(i,a)
`

Pr
(
x

(i,a)
` = j

∣∣∣Z,P) = p
z

(i,a)
` ,`,j

, Pr
(
z

(i,a)
` = k

∣∣∣Q) = q
(i)
k

Prior on Q:

q(i) =
(
q

(i)
1 , . . . , q

(i)
k

)
∼ D(α, . . . , α),

where α is also random with prior α ∼ unif([0, αmax]).
Note:

α = 0 ⇔ no admixture

α→∞ ⇔ all completely admixed

1
1

2
2

3
3

4
4

6
6

[.5cm] Interpretation of bars

without admixture: probabilities of subpopulations to be the origin of individual

with admixture: relative contributions of subpopulations to the genome of the individual

MCMC for case of admixture
Start with initial P (0), Q(0), Z(0) and α(0) and iterate for m = 1, 2, . . . :

1. Sample P (m) and Q(m) from Pr(P,Q|X,Z(m−1)) :

update pk,`,j based on the number of ` copies of type j that come from population k

nklj =
{

(i, a)|x(i,a)
` = j and z

(i,a)
` = k

}
and sample q(i)|X,Z according to

D
(
α+ #

{
(`, a) : z

(i,a)
` = 1

}
, . . . , α+ #

{
(`, a) : z

(i,a)
` = K

})
2. Sample Z(m) from Pr(Z|X,P (m), Q(m)) according to:

Pr
(
z

(i,a)
` = k

∣∣∣X,P,Q) =
q

(i)
k · pk`x(i,a)

`∑K
h=1 q

(i)
h · ph`x(i,a)

`

3. Metroplis Hastings step α(m−1)  α(m):

propose α′ ∼ N (α, some σ2), reject immediately if α′ < 0, else perform MH step.

Inference for Z,P,Q from MCMC samples
for example for Q it seems obvious to estimate

E(qi|X) ≈ 1

M

M∑
m=1

q
(m)
i ,
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but the theoretical posterior mean is

E(qi|X) =

(
1

K
, . . . ,

1

K

)
due to symmetries in the model (numbering of populations exchangeable).

 use modes of
(
q

(1)
i , . . . , q

(M)
i

)
i

instead of means or use Noah Rosenberg’s software CLUMPP to

evaluate STRUCTURE output.

Inference for the number K of populations

Pr(K|X) ∝ Pr(X|K) · Pr(K)

can be approximated using the harmonic mean estimator

Pr(X|K) ≈M

/
M∑
i=1

1

Pr
(
X
∣∣K,Z(i), P (i), Q(i), α(i)

) ,
but the harmonic mean estimator is know to be imprecise.

Instead, we hope that −2 logL( ̂Z,P,Q, α|X) is approximately normally distributed and estimate

Pr(X|K) ≈ e−µ̂/2−σ̂
2/8

with µ̂ = 1
M

∑M
i=1−2 log Pr

(
X|Z(i), P (i), Q(i), α(i)

)
and σ̂2 = 1

M

∑M
i=1

(
−2 log Pr

(
X|Z(i), P (i), Q(i), α(i)

)
− µ̂

)2
Pritchard et al. write about this approximation:

“In fact the assumption underlying [this] are dubious at best, and we do not claim (or believe) that
our procedure provides a quantitatively accurate estimate of the posterior distribution of K. We see it
merely as an ad hoc guide to which models are most consistent to the data, with the main justification
being that it seems to give reasonable answers in practice.”

and:

“The inferred value of K may not always have a clear biological interpretation.”

and about the multiple-modes problem:

“[The] Gibbs-sampler did not manage to move between two modes in any of the runs”

Data examples
Bird example: Without using informations on sampling locations, STRUCTURE gave clear clusters

corresponding to sampling locations, up to a few exceptions. Neighbor-Joining results did not show clear
clusters when labels were removed.

http://www.genetics.org/content/155/2/945/F4.large.jpg

http://www.genetics.org/content/155/2/945/F3.expansion.html

Human data: Found K ≥ 2 corresponding to African and European origin of samples. Evidence for
K > 2 may indicate substructure.

Some of the things you should be able to explain

• Wahlund effect and its analogon for linkage

• Dirichlet distribution and how they are used in Structure

• How Dirichlet priors lead to Dirichlet posteriors

• MCMC method in structure

• meaning of Structure barplots with and without admixture
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9.3 taking sampling locations into account

First attempt: populations correspond to sampling locations with a few migrants in the last few gener-
ations.

g(i): sampling location of individual i

ν: probability that i is immigrant or offspring of an immigrant in the last G generations, where G is
not too large.

⇒ q
(i)
g(i) = 1 with probability 1− ν and for t ≤ G:

q
(i)
g(i) = 1− 2−t and q

(i)
j = 2−t with probability 2tν

(k−1)
∑G
T=0 2T

(neglecting the possibility of more than

one migranting ancestor in the last G generations.)

in MCMC: sampling of q(i) is conditioned P , X and Z.
Falush et al. (2003) allow for LD between loci. Advantages:

1. detection of admixture further back into past

2. inference of population of origin of chromosomal regions

3. more accurate estimate of statistical uncertainty when linked loci are used

Sources of LD:

mixture LD: variation in ancestry among sampled individuals (Prichard et al.)

admixture LD: correlation of ancestry along each chromosome causes additional LD between linked
markers (Falush et al.)

background LD: within population decaying on a much shorter scale, e.g. tens of kb in humans. (not
yet in STRUCTURE)

Approach of Falush et al. (2003):

• breakpoints occur as Poisson process at rate r

• uniform prior on log(r)

• use HMM to sample from conditional distribution of Z

• data allowed to be unphased

more options: correlated allele frequencies between populations according to star-shaped phylogeny of
populations with drift rates F1, . . . , FK and ancestral allele frequency distribution pA ∼ D(λ1, . . . , λJ`).

pk`.|pA ∼ D
(
pA`1

1− F1

F1
, . . . , pA`K

1− FK
FK

)

(be careful with this model!)
Approach of Hubisz et al. (2009): Allow uncertainty in the information about sampling location

r ∼ unif([0, rmax]) (informativeness of sampling location)

q(i) ∼ D (αh1
, . . . , αhK ) , if individual i comes from location h

αhk ∼ Γ
(
r · αglob

k , 1/r
)
, (which entails that the mean is α

glob
k )

α
glob
k ∼ unif(0, αmax)

Hubisz et al.: “However, we would still encourage users to run the original models as well, and to
check that substantial differences between the results from the new and the old models seem biologically
sensible.”
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When STRUCTURE has problems

• number of clusters not well-defined when allele frequencies vary slowly accross the landscape

• inbreeding or relatedness between individuals

In this case, the software INSTRUCT may help, cf.

References

[GWB07] H. Gao, S. Williamson, S.D. Bustamante (2007) An MCMC Approach for Joint Infer-
ence of Population Structure and Inbreeding Rates from Multi-Locus Genotype Data.
Genetics (online)

9.4 Faster alternatives to STRUCTURE for large datasets

9.4.1 ADMIXTURE

ADMIXTURE

• is based on the same modeling approach as STRUCTURE

• (faster) ML optimization instead of Bayesian sampling

References

[GWB07] D.H. Alexander, J. Novembre, K. Lange (2009) Fast Model-Based Estimation of Ancestry in
Unrelated IndividualsGenome Res. 19: 1655–1664

optimization strategy: similar to Newton’s method

Problem: Huge Hesse matrix (2nd derivatives) as there are many parameters.

Q: qik is proportion of individual i genome coming from population k

F : fk` is the frequency of allele 1 of locus ` in population k (assuming two alleles per locus).

⇒ Many second derivatives
∂2

∂qik∂fk`
.

Also the constraints 0 ≤ fkj ≤ 1, qik > 0,
∑
k qik = 1 make optimization a bit tricky.

ADMIXTURE uses Block Relaxation Algorithm

• like Newton method uses first two derivatives

• To optimize L(Q,F ) iterate

– update Q for fixed F

– update F for fixed Q

• no mixed 2nd derivatives ∂2L
∂qik∂fk′`

needed

• need ∂2L
∂qik∂qi′k′

only if i = i′.

• need ∂2L
∂fk`∂fk′`′

only if ` = `′.

• optimization problems are convex.
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9.4.2 fastSTRUCTURE

fastSTRUCTURE

References

[1] A. Raj, M. Stephens, J.K. Pritchard (2013) Variational Inference of Population Structure in Large
SNP Datasetspreprint available on bioRχiv

Variational Distributions: tractable family of distributions to approximate posterior.

Variational Bayesian Inference: Instead of sampling from posterior, optimize parameters of varia-
tional distributions

Kullback-Leibler Divergence: (=relative entropy)

DKL(q||p) = Eq log
q(X)

p(X)
=

∫
x

q(x) log
q(x)

p(x)
dx

Approach: Find variational distribution q that minimizes DKL(q||p) to posterior p.

Unrealistic assumption to make variational distributions q tractable:
Z, P , and Q are independent.

Their joint variational distribution density is the product of multinomial probabilities for Z, Dirichlet
densities for Q, and beta densities for P .

The parameters of these distributions are optimized.
Also here, the optimization of the parameters of one of distribution, keeping the others fixed, is a

convex optimization problem.

9.4.3 snmf() in the Bioconductor R package LEA

The LEA package
http://membres-timc.imag.fr/Olivier.Francois/LEA/index.htm

Installation:

source("https://bioconductor.org/biocLite.R")

biocLite("LEA")

References

[1] E. Frichot, F. Mathieu, T. Trouillon, G. Bouchard, O. François (2014) Fast and efficient estimation
of individual ancestry coefficientsGenetics 196 (4): 973–983

[2] E. Frichot, S.D. Schoville, G. Bouchard, O. François (2013) Testing for associations between loci
and environmental gradients using latent factor mixed models Molecular Biology and Evolution 30
(7): 1687–1699

(We focus on the sNMF method of Frichon et al., 2014)
Ideas behind sNMF:

• By not assuming Hardy-Weinberg equilibrium

– we may lose a bit of information but

– make the method more robust against inbreeding

– and make the method computationally less demanding.

• Combine efficient solutions from numerics / statistics
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– linear regression / least squares:

Minimize S(q) =
∑
j(yj −

∑
k qkVkj)

2 by q̂ = (V TV )−1V T y

– regularization / ridge regression::

In linear regression avoid overfitting by extreme coefficients by an additional penalty. That
is, minimize

S(q) =
∑
j

(yj −
∑
k

qkVkj)
2 + α ·

∑
k

q2
k

for some regularion penalty α > 0.

– convex optimization:

minimize a convex function f on a convex definition range D ⊆ Rn.

Convex Optimization
D is convex if ∀x ∈ D, y ∈ D, λ ∈ [0, 1] : λ · x+ (1− λ) · y ∈ D.

f : D → R is convex if ∀x ∈ D, y ∈ D, λ ∈ [0, 1] :

f(λ · x+ (1− λ) · y) ≤ λ · f(x) + (1− λ) · f(y).

Nice: All local minima of convex functions on convex sets D are global minima and form a convex set.

Example for convex optimization: Minimize

S(q) =
∑
j

(yj −
∑
k

qkVkj)
2 + α ·

∑
k

q2
k

(where α > 0) with the side condition that ∀k : qk > 0.

This can be solved efficiently by nonnegative matrix factorization (NMF), see

References

[1] J. Kim, H. Park (2011) Fast nonnegative matrix factorization: an active-set-like method and com-
parisons. SIAM J. Sci. Comput. 33:3261-3281

How these methods are combined in Frichot et al.’s sNMF.

Notations:

j ∈ {0, 1, 2} genotype at diploid locus; 1 means heterozygous

xi`(j) ∈ {0, 1} 1 if individual i has genotype j at locus `.

qik fraction of i’s genome coming from subpopulation k

gk`(j) frequency of genotype j at locus ` in population k

Aim: Find q = (qik)ik and g = (gk`(j))k`j that minimize

LS(q, g) =
∑
i,`,j

(
xi`(j)−

∑
k

qikgk`(j)

)2

Choose some α > 0, then start with initial (q, g) and iterate the following steps 1 and 2 until you
observe convergence:

1. keeping the current q fixed, update g:
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(a) minimize (like in linear regression):

LS1(g) = LS(q, g) =
∑
i,`,j

(
xi`(j)−

∑
k

qikgk`(j)

)2

(b) set all negative gk`(j) to 0

(c) ∀k, ` : normalize (gk`(0), gk`(1), gk`(2) such that
∑
j gk`(j) = 1.

2. keeping the current g fixed, update q:

(a) Apply NMF to numerically minimize

LS2(q) =
∑
j`i

(
x`(j)−

∑
k

qikgk`(j)

)2

+
∑
i

α ·

(∑
k

qik

)2

with the boundary condition ∀j, k : qjk ≥ 0.

(b) normalize q such that ∀i :
∑
k qik = 1.

Some of the things you should be able to explain

• Different types of LD and how they are covered in STRUCTURE

• Limitations in STRUCTURE

• alternative tools and what is different in them

• LEA:

– why not assuming Hardy-Weinberg

– ridge regression

– convex optimization

10 The genetic footprints of selection: simulation and detection

We will now consider the effect of selection and adaptation on genealogies. We will discuss how these
effects can be simulated, because

1. this is a way to specify the theoretical model and

2. if we know how to simulate data, we can apply ABC and similar methods for statistical inference
of model parameters.

Possible scenarios for the case of positive selection (directional selection):

1. A beneficial mutation appears once, spreads in the population and will eventually be fixed

2. there is a balance between mutation and selection

3. selection pressure changes in time and a certain allele is favored for a while and increases in
frequency during that time

Other forms of selection:

background selection , also called negative selection

balancing selection can lead to maintance of two alleles over a long period of time

diversifying selection : new types appear by mutation and have an advantage until the reach a certain
frequency
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etc.

Basic model of positive selection: Each individual i in a population of size N has a fitness wi, which
is the expected number of kids. The N surviving offspring of the next generation are sampled from the
kids of all individuals. Thus, the expected number of surviving offspring of i is wi/

∑N
j=1 wj . Let’s

assume a simple scenario: haploid population with one type A of fitness 1 + s and one type a of fitness
1.

Moran model
Assume a population of 2N gametes. An alternative to the Wright-Fisher model is the Model of

Moran(1958): Each gamete has a rate of 1 to generate one offspring and replace one randomly chosen
gamete. For N → ∞ and time scaled in units of N (not 2N !) generations, the genalogy of a sample

from the Moran model converges to the standard Kingman coalescent. Add selection to Moran model:

Type A produces offspring at rate 1 and type a at rate (1− s). This approximates the diploid case with

fitness 1 of AA, 1 − s of Aa, and (1 − s)2 ≈ 1 − 2s of aa. (Note that capital letter A does not indicate
dominance.)

Transition rates of number of allele A gametes in Moran model with selection:

i→ i+ 1 at rate
(2N − i) · i

2N

i→ i− 1 at rate
(2N − i) · i

2N
· (1− s)

More facts about Moran model with selection:

Fixation probability: If we start with i gametes of type A, the fixation probability of A is

1− (1− s)i

1− (1− s)2N
≈ 1− e−is

1− e−2Ns

Fixation time: Assume that type A starts with one gamete. Conditioned on the fixation of A, the
expected value of the fixation time is in the limit of large populations is asymptotically

2

s
logN

generations.

For proofs see:

References

[D08] R. Durrett (2008) Probability Models for DNA Sequence Evolution 2nd Ed., Springer

In mathematical population genetics two cases are considered:

weak selection: as N →∞, s→ 0 such that Ns→ s̃ <∞.

strong selection: as N → ∞, s is stays constant, with the consequence that the fixation time of the
advantageous allele is 0 on the time scale of N generations.
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10.1 Ancestral Selection Graphs

References

[NK97] C. Neuhauser, S.M. Krone (1997) Ancestral processes with selection Theor. Pop- Biol. 51:210–
237

[KN97] S.M. Krone, C. Neuhauser (1997) The genealogy of samples in models with selection. Genetics
145:519–534

Ancestral Selection Graph (ASG)
Weak selection: 2Ns → s̃ as population size 2N → ∞. Each pair of ancestral lineages coalesces at

rate 1. At rate θ/2 lineage of type a mutates into A and vice versa. Each lineage x is hit by “arrow” at

rate s̃. Arrow was shot by random indivdual y from population. If (further in the past) x was of type
a and y of type A, replace (in future direction) x by type A. To find out whether this applies, trace
lineages back into past. At latest when all lineages are coalesced, types of all lineages are determined.

This happens almost surely after finite time because number j of lineages to trace back jumps to j + 1
at rate s̃ · j only but jumps to j − 1 at rate j · (j − 1)/2.

ASG for frequency-dependent selection with advantage of rare alleles

References

[N99] C. Neuhauser (1999) The ancestral graph and gene genealogy under frequency-dependent selection.
Theoretical Population Biology 56:203–214

When lineage x is hit by “replacement arrow” from y, it shoots a “check arrow” to some random

individual z from the population. It copies the type of y if and only if the type of z is different than
that of y. Thus, lineages of x, y, and z have to be traced back. But again all lineages will coalesce in

finite time because rate of adding lineages is linear whereas rate of coalescence is quadratic in number of
lineages. In structured population one can also assume that the arrows are shot locally to model that

selection depends on local frequencies.

10.2 Simulating selective sweeps and other kinds of strong selection
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In the case of strong selection, coalescent based simulation faces the problem that in time span of
length 0 advantageous type becomes fixed, and backward in time all lineages would coalesce at that time.
In case of the ancestral recombination graph (ARG) there is even no time for recombination. However,

if we model a locus that is far from selected locus, recombination rate is also high and in mathematical
models we could also let it go to ∞ such that lineages can escape the selective sweep. In the simulation

programm MSMS, however, the approach is to first simulate the locus under selection for finite N , and
then the ARG around (or next to) it conditioned on the frequency trajectory of the selected allele.

References

[EH10] G. Ewing, J. Hermisson (2010) MSMS: a coalescent simulation program including recombination,
demographic structure and selection at a single locus.Bioinformatics 26(16): 2064–2065

Strategy: First simulate the site under selection forward in time with discrete generations and finite
N . Then generate the ARG backwards in time conditioned on the simulated development of allele
frequencies. Allows to specify when selection starts and when it ends (or some condition, e.g. fixation).

MSMS model for selected locus
Works for fitness function of haploids or diploids.

Selection can depend on deme.

Fitness of genotypes aa, aA and AA on deme i:
(1 + saai ), (1 + saAi ), and (1 + sAAi )
Also balancing selection possible by choosing saai < saAi > sAAi

A

a

A

a

A

a

A

a

A

a

Migration

Mutation next generation
is formed

according to 
relative Frequencies

Deme j Deme i 

mij : fraction of island j immigrants on island i

mii := 1−
∑
j 6=imij .

xi : relative frequency of A on island i

µ : mutation rate a→ A

ν : mutation rate A→ a

ηAi :=
∑
j

mijxj
(
1 + (1− xj)saA + xjs

AA
)

ηai :=
∑
j

mij(1− xj)
(
1 + xjs

aA + (1− xj)saa
)

x′i :=
(1− ν)ηAi + µηai

ηAi + ηai

Then, the number of copies of A on island i in the next generation is drawn from binomial distribution
with parameters (2Ni, x

′
i). For ARG backwards simulations, continuous time is assumed. For this, each

generation from the forward simulation is replaced by suitable time span.
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MSMS simulation strategy for ARG
Simulate migration, coalescence, mutation and recombination. As far as possible use that the time to

the first event (back in time) of several possible events with exponential waiting time is also exponentially
distributed with rate being the sum of the single rates. But take into account that rates vary in time

due to population size changes and changes of allele frequencies at locus under selection. Lineages can

coalesce only if they have the same type A or a at the selected locus.

E.g. if there are k lineages of type A on island i, the total coalescence rate of these lineages is

k · (k − 1)

4Nixi

as long as type A has frequency xi on island i.
Migration and Mutation rate must be corrected for allele frequencies simulated afore. If mij is the

fraction of island i inhabitants that immigrated from island j, then the fraction of immigrants from j of
type A is xjmij . Thus, the fraction of immigrants among the type A inhabitants of island i is xjmij/xi.

Similarly, lineages of type A are traced back to be mutated from lineages of type a on island i at rate
µ · (1− xi)/xi.

Simulating the ARG, given the locus under selection
During the backwards simulation, all lineages have sequences with “active” and “inactive” sections.

Active means:
a mutation in such a region would lead to
a polymorphic site in the sampled sequences.

active
nonancestral,

inactive

inactive
(only  lineage)

A

A

A

a

a

A

Mutation

A

A

A

• If recombination happens, non-ancestral material is deactivated. If a region is active in only one
lineage, it becomes inactive.

• When a recombination happens in an inactive range, its exact location is usually irrelevant.

• Exception: If the locus under selection is in the inactive region, it matters whether recombination
happened left or right of it.

We must alway keep track of the type a or A of each lineage at the selected locus, even if this locus
is outside the range for which we simulate the ARG. In particular, when recombination leads to a split

of a lineage, one lineage keeps the locus under selection (which one is clear from the position of the
recombination point). The type of the other lineage is of type A or a with probabilities xi or 1 − xi,
respectively.

There have been plans to make it possible in msms to simulate quite generals scenarios with more than
one locus under selection but it is not clear whether development will go on, see https://github.com/delt0r/msms.

Alternative: use a forward simulater, e.g. SLiM

Some of the things you should be able to explain

• Moran model with selection

• Fixation probability and fixation time with selection

• mathematicians’ distiction between weak and strong selection

• Ancestral selection graph and its extension for frequency-dependent selection

• Simulation strategy in MSMS
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10.3 Statistics for detecting genomic footprints of selection

Classical genetic signal of selection: dN/dS.

We will now discuss statistics to detect genomic signals of various kinds of selection processes. These
statistics are just examples; many more statistics can be found in the literature and in several software
packages.

10.3.1 Detecting selective sweeps

Kimura (1971) has shown for standard neutral model that the expected number of mutated sites with
frequency of derived allele in [p, p+ dp] is

φ0(p)dp =
θ

p
dp.

Fay and Wu (2000) have generalized this to mutations neighboring a sweep with selection strength s,
recombination rate r between the sites, initial frequency of ε, and C := 1 − εr/s. In this case, φ0 is
replaced by (approximately)

φ1(p) =

(
θ

p
− θ

C

)
· I0<p<C +

(
θ

C

)
· I(1−C)<p<1,

where IA = 1 if A is fulfilled and IA = 0 otherwise.
⇒ Expected number of sites with k derived alleles in sample of n:

En,k =

∫ 1

0

(
n

k

)
pk(1− p)n−kφ(p)dp
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[2] J. Fay, C.-I. Wu (2000) Hitchhiking under positive Darwinian selection Genetics 155: 1405–1413
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Kim and Stephan (2002) propose composite-likelihood ratio statistic. Here, “composite” means
that stochastic dependencies (linkage) among neutral sites are neglected, and just the product of the
probabilities Pn,k for all sites is used.

Nielsen et al. (2005) propose a variant of this, which

• is not restricted to one null model; instead average site-frequency spectrum of full chromosome is
used.

• provides correction for ascertainment bias

L(Θ) ∝ Pr(Di|Θ, Ai) = Pr(Di|Θ) · Pr(Ai|Di,Θ)

Pr(Ai|Θ)

where Di is the data at SNP i, and Ai is the condition why i is considered.

Software: SweepFinder2 http://degiorgiogroup.fau.edu/sf2.html
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References

[1] Y. Kim and R. Nielsen (2004) Linkage Disequilibrium as a Signature of Selective Sweeps. Genetics
167:1513–1524

propose statistic ω based on LD (linkage disequilibrium) pattern.
Given two loci with alleles A/a and B/b with frequencies πA, πB , πa, πb and frequency πAB of haplo-

type AB, one possible measure of LD is

r2 =
(πAB − πA · πB)2

πA · πB · πa · πb

(= squared correlation of indicator functions of A and B)

Kim and Nielsen’s ω
Given S segregating sites, split them into the set L of the first ` sites and the other S − ` sites R.

Then compute

ω` =

(∑
i,j∈L r

2
ij +

∑
i,j∈R r

2
ij

)/((
`
2

)
+
(
S−`

2

))(∑
i∈L,j∈R r

2
ij

)
/(` · (S − `))

and set
ω = max

`
ω`.

To assess significance of any evidence for selection indicated by such statistics, we need to use a null
model that accounts for population structure and demography.

XP-CLR
XP-CLR: cross-population composite-likelihood ratio test

Detects sweeps in one of two closely related species (or populations).

References

[1] H. Chen, N. Patterson, D. Reich (2010) Population differentiation as a test for selective sweeps.
Genome Research 20:393–402

XP-CLR
Assume sweep at locus A in population 1. Locus B is linked to locus A.

s strength of selection in sweep

r recombination rate between the two loci
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p2 allele frequency at locus B in population 2

w parameters of demographic model such as split time, genetic drift rates. . .

f(p1|p2, w, s, r) approximate probability density of allele frequency at locus B in population 1, condi-
tioned on r, s, p2 and w, combining several theoretical results, e.g. by Durrett and Schweinsberg
(2004)

XP-CLR
Data set consists of sites i that are linked to selected site with ri and have allele frequency pi,2 in

population 2 and mi/n in population 1 (where n is the sample size in population 1).

composite likelihood approach: neglect linkage among sites i

CL(r, w, s) =

k∏
i=1

∫ 1

0

f(p1,i|pi,2, w, s, ri) ·
(
n

mi

)
· pmi1,i · (1− p1,i)

n−mi dp1,i

The statistic is then:

2 ·
(

max
s,r,w

logCL(r, w, s)−max
w

logCL(r, w, 0)

)

10.3.2 Stats for detecting incomplete sweeps and soft sweeps

Extended Haplotype Homozygosity

References

[1] P.C. Sabeti, D. Reich,. . . , E.S. Lander (2002) Detecting recent positive selection in the human
genome from haplotype structure.Nature 419: 832–837

EHH(x) Among all pairs of sampled sequences the fraction of those that are identical in the range from
x cM downstream to x cM upstream of the candidate site.

iHS for incomplete sweeps

References

[1] B.F. Voight, S. Kudaravalli, X. Wen, J.K. Pritchard (2006) A map of recent positive selection in
the human genome.PLoS Biology 4: e72

Scale genomic location x in units of 4Ner (for autosomes), where r is the recombination rate and use
EHH with linear interpolation between SNPs. Let a and b be the first points up- and downstream of
the candidate site where EHH(x) ≤ 0.05. Then define:

iHH =

∫ b

a

EHH(x) dx

Calculate iHHA and iHHD separately for ancestral and derived allele. Then define:

uiHS = ln
iHHA

iHHD
(unscaled iHS)

iHS =
uiHS − µp

σp
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In

iHS =
uiHS − µp

σp

µp and σp are mean and standard deviation of uiHS estimated from SNPs in which the derived allele
has the same distribution as in the candidate site.

Software: http://hgdp.uchicago.edu/Software/ or R package rehh

References

[1] Y. Field,. . . , J.K. Pritchard (2016) Detection of human adaptation during the past 2000 years.
Science 354: 760–764

idea of Single Density Score (SDS): if rare allele gets under recent positive selection, its tip branch
lenghts are shorter than those for ancestral allele.

Software: https://github.com/yairf/SDS

1. Assume there are n diploid individuals in the sample of unphased data.

2. “singleton” is a derived allele that appears in only one the 2n sequences of diploid individuals

3. for each diploid individual i we consider the two sites that are the nearest to the candidate in
upstream and downstream direction, respectivly, among all singletons that are heterozygous in i.
Let di be the distance between these two sites.

4. from the distances di of i with derived or ancestral alleles first estimate the average tip branch
lenghts t̂d and t̂a for both groups

5.

SDS∗ = log
t̂d

t̂a

6. SDS is normalized SDS∗ with µ and σ estimated from SNPs of similar frequency as candidate
site

estimating t̂d and t̂a from (di)i

• Consider one individual i, assume that the two tip branches leading to its alleles have lengths ti,1
and ti,2.

• let U andD be the distances upstream and downstream to the first singletons that are herterozygous
in i, such that di = U +D.

• If we neglect recombination and assume a mutation rate µ, then U and D are independent and
approximately exponentially distributed with rate (ti,1 + ti,2) · µ.

• Thus, conditioned on ti,1 + ti,2, di = U + D is approx. Γ-distributed with shape parameter 2 and
rate parameter (ti,1 + ti,2) · µ.

• Also the distribution of ti,j for all i with ancestral type at the candidate site and that for all i with
the derived type are assumed to be Γ distributions.

• Field et al. found this fitting well with simulation studies

• Γ distribution densities are relatively convenient for likelihood optimization

• Using an empirical branch length distributions can, to some extent, account for sequencing errors
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References

[1] H.M.T. Vy, Y. Kim (2015) A Composite-Likelihood Method for Detecting Incomplete Selective
Sweep from Population Genomic Data. Genetics 200: 633-649

propose another statistic for detecting incomplete sweeps and compare it to iHS and nSL.

References

[1] A. Ferrer-Admetlla, M. Liang, T. Korneliussen, R. Nielsen (2014) On Detecting Incomplete Soft or
Hard Selective Sweeps Using Haplotype Structure. Mol. Biol. Evol. 31: 1275–1291

Many sweeps detected in European D. melanogaster are due to out-of-Africa adaptations.

In humans, population size and short time span make it improbable that out-of-Africa adaptations
were due to new mutations.

If selection acts on standing variation, that is, the advantageous allele existed before selection began,
the sweep signal (“soft sweep”) is less clear. Reason: several haplotypes that carry the advantageous
allele and thus increase in frequency may differ in neighboring neutral SNPs.

Methods based on site-frequency spectra (like SweepFinder) or LD based statistics (like ω) may be
appropriate to detect sweeps only if they are hard.

Ferrer-Admetlla et al. (2014) propose a haplotype-based statistic nSL

n : number of sampled haplotypes (=sequences)

Sn : number of segregating sites

H : n× Sn matrix, where Hik is indicator function that haplotype i carries the derived allele at site k

pk : position of segregating site k in units of recombination distance

Hi,pk:p` : row vector for segregating sites between pk and p` (may be empty).

Lij(x) : max {r − ` : p` < x < pr, Hi,p`:pr = Hj,p`:pr}

SLD(k) :
2·
∑
i<j Lij(pk)·Hik·Hjk

(
∑
iHik)·((

∑
iHik)−1)

SLA(k) :
2·
∑
i<j Lij(pk)·(1−Hik)·(1−Hjk)

(n−
∑
iHik)·(n−1−

∑
iHik)

Note that SLD(k) is the average lengths of ranges that are identical by state around the derived
allele and SLA(k) is the same for the ancestral allele.

nSL(k) := ln

(
SLA(k)

SLD(k)

)
Variant: replace nSL(k) by standardized version

nSL(k)− E (nSL(k))

σ (nSL(k))
,

where E and standard deviation σ are conditioned on
∑
iHik, the number of sequences that have the

derived allele at k. That is, estimate mean and sd from other loci with the same number of derived
alleles in the sample.

10.3.3 Signals of sweeps and demography

Several studies compare different sweep statistics, for example:
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References

[1] A. Vatsiou, E. Bazin, O.E. Gaggiotti (2016) Detection of selective sweeps in structured populations:
a comparison of recent methods.Molecular Ecology 25: 89–103

compare iHS, XP-CLR, nSL and several other statistics for detecting sweeps in different demographic
scenarios.

Vatsiou et al. (2016)
Scenarios of population structure/demography

• Four islands, migration between all

• Four islands, stepping-stone

• One population splits into two, later each of them splits into two, resulting in hierarchical island
structure

• Stepping-stone with 52 populations and hard sweep in half of the populations of mutant that is
detrimental in other half

In first three scenarios: hard or soft sweep in one of the four populations.

Vatsiou et al. (2016)
Strategies for setting thresholds (“p values” !?) for sweep signals:

in main text: 5% loci with highest values of the statistics.

limitation: this will always exist, also if there was no sweep signature by selection

in online supplement: use simulations of neutral loci according to same population structure/demography
model to set thresholds

limitation: true population structure/demography usually unknown. Furthermore two different
approaches are possible:

• threshold is value such that only 5% of the simulation show loci with such high (or higher)
values

• threshold is value such that 5% of the loci from all simulation reach this (or higher) values.
Such thresholds are not p values for the null hypothesis “everything neutral”.

Vatsiou et al. (2016)
Main results:

• XL-PCR and hapFLK are best for performing soft sweeps

• all single statistics had problems when migration rates were higher or for weaker selection or
incomplete sweeps

• improvements by combining statistics, e.g. XP-CLR with iHS or nSL.

Problem: When population demography is unknown, how can we decide which patterns are significant
evidence of selective sweeps?

naive idea: demography is the same for all loci outlier must be under selection
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Bottlenecks can create outliers! (and branch length distribution is long-tailed anyways)

Possible approach

1. Infer population structure and demography from genomic data of putatively neutral loci

2. Use ω and/or SweepFinder statistic to search for evidence of selection in candidate loci (or genomic
scans)

3. Simulate many datasets according to inferred demographic model, each neutral and with same
amount of data as in candidate loci (or genomic scan). Account for ascertainment (e.g. by rejection
sampling).

4. For each simulated neutral dataset i compute maximum value si of statistic.

5. Choose a threshold s for the statistic, such that only e.g. 5% of the si are larger.

6. Consider only loci as significant if their statistic value exceeds threshold s.

References

[1] P. Pavlidis, J.D. Jensen, W. Stephan (2010) Searching for Footprints of Positive Selection in Whole-
Genome SNP Data from Nonequilibrium Populations.Genetics 185: 907–922

propose and explore with simulated data the following procedure and apply it to Drosophila melanogaster
data, where demography is known from previous studies:

1. Simulate loci according to known population demography with and without selection.

2. Use this simulated data to train a Support Vector Machine (SVM), which is a computational
method for discriminant analysis (aka supervised learning). Input data are (slightly modified) ω
and SweepFinder and other statistics based on combining the two, e.g. the distance of the positions
where the two methods would locate the site under selection.

3. The trained SVM is then applied to descriminate between loci that have been affected by a selective
sweep from neutral loci.

Still a problem: How to infer demography if we do not know which loci were really neutral?

Possible approach: Simultaneously infer population demography and fraction of loci affected by
sweeps (and other kinds of selection).

10.3.4 Does the gene list make sense?

Once lists of genes that show evidence of selection have been identified, it is common practice to argue
that the gene list makes sense by showing that certain GO categories are significantly overrepresented.

Pavlidis et al. (2012) explain why this may not make much sense.
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[1] P. Pavlidis, J.D. Jensen, W. Stephan, A. Stamatakis (2012) A Critical Assessment of Storytelling:
Gene Ontology Categories and the Importance of Validating Genomic Scans. Mol. Biol. Evol. 29:
3237–3248

Pavlidis et al. (2012) simulate completely neutral sequences mimicking the structure of D. melanogaster
X chromosomes and scanned for sweeps.

False positives for sweeps tended to be clustered on the chromosomes.

As genes of related function can also be clustered on the chromosome, some GO categories were
significantly overrepresented.

10.3.5 Balancing selection

Genetic signatures of balancing selection:

• enrichment of intermediate gene frequencies

• trans-specific polymorphisms

• increased frequency of polymorphic sites

References

[1] M. DeGiorgio, K.E. Lohmueller, R. Nielsen (2014) A model-based approach for identifying signatures
of balancing selection in genetic data. PLOS Genetics 10: e1004561

• Composite-likelihood ratio test for balancing selection

• Based on modelling the effect on linked neutral loci

• Software BALLET (BALancing selection LikElihood Test)

• Define and examine two different statistics T1 and T2

• Apply method to human data and detect previously found loci but also new ones

S : locus under strong balancing selection with two alleles A1, A2 with maintained frequencies x and
1− x.

ρi = 2Nri, where N is the population size and ri is the per-generation recombination rate btw. S and
locus i.

data : n genomes from population, 1 from outgroup (e.g. chimp for humans)

C : estimated genome-wide divergence time btw. in- and outgroup

Ln(x, ρi) expected value for total length of all branches of an ingroup genealogy for samples at site i,
given n, x and ρ.

Hn(x, ρi) Expected time since the root of the ingroup genealogy at site i, given n, x and ρ

The probability that a site that is segregating is polymorphic in within the ingroup sample can be ap-

proximated by pn,ρ,x ≈
Ln(x, ρ)

2C −Hn(x, ρ) + Ln(x, ρ)
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Hn(x, ρ) and Ln(x, ρ) can be computed by solving linear equation systems with variables Lk,n−k and
Hk,n−k, which are (for fixed x and ρ) the expected total ingroup genealogy length and height given a
sample with k A1-linked and n− k A2-linkes lineages.

With the total rate

λk,n−k =

(k
2

)
x

+

(n−k
2

)
1− x

+
k · (θ2 + ρix) · (1− x)

x
+

(n− k) · (θ1 + ρi(1− x)) · x
(1− x)

we obtain, for example:

Lk,n−k =
n

λk,n−k
+

(
k
2

)
· Lk−1,n−k

x · λk,n−k
+

(
n−k

2

)
· Lk,n−k−1

(1− x) · λk,n−k

+
k · (θ2 + ρi · x) · (1− x) · Lk−1,n−k+1

x · λk,n−k

+
(n− k) · (θ1 + ρi · (1− x)) · x · Lk+1,n−k−1

(1− x) · λk,n−k

After numerically solving the equations systems for Ln and Hn and computing pn,ρ,x (approximately),
the composite likelihood for all can be computed:

L1 = max
x

∏
i∈M

(1− pni,ρi,x) ·
∏
i∈U

pni,ρi,x,

where M is the set of segregating sites that are monomorphic within the ingroup and U is the set of sites
that are polymorphic in the ingroup.

For the neutral null model, we set

L0 =
∏
i∈M

(1− p̃ni) ·
∏
i∈U

p̃ni ,

where p̃ni is the proportion of loci that are in U among all segregating sites with the same sample size
ni.

T1 := 2 · ln(L1/L0)

The statistic T2 is a refinement of T1. For T2 it is not only considered whether a site is polymorphic
in the ingroup, but also how many of the sampled sequences show the derived allele.

In simulations T2 works better than T1 but T1 may be advantageous when pooled sequencing is used.

Violations of Hardy-Weinberg equilibrium could also indicate balancing selection, but DeGiorgio et
al. propose to filter out loci with strong violations of Hardy-Weinberg equilibrium because this may
indicate mistakes in bioinformatic preprocessing (aligment/mapping/assembly).

Some of the things you should be able to explain

• Different types of sweeps

• Several statistics to detect various kinds of selection and the ideas behind these statistics

• problem to distinguish genomic footprints of selection from those of demography and why also
bootlenecks can create outliers

• why overrepresentation analysis of GO can be misleading
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11 Inferring recombination

11.1 Li&Stephens’ PAC approach

11.1.1 Estimating LD and recombination hotspots

Problems of models to estimate local recombination rates:

LAMARC etc. (ARG-based): not feasible for larger parts of the genome

Summary-statistics-based: lose too much information

some composite-likelihood methods: Hudson (2001), Fearnhead, Donnelly (2002), McVean (2002)
assume fixed recombination rate along the genome

References

[1] P. Fearnhead, P. Donnelly (2001) Estimating Recombination Rates From Population Genetic
DataGenetics 159: 1299–1318

Aim: Approximate the joint likelihood surface for the recombination rate and the mutation rate.

Model assumption: panmictic population, constant size N

θ = 4Nµ

µ Mutation rate per generation and chromosome

ρ = 4Nr

r Recombination rate per generation and chromosome

Two different mutation modes:

• infinite-sites model

• at each site finitely many types with transition matrix Pαβ

G set of all ancestral histories (containing all mutations) that are consistent with the data D, such that
∀G∈G Pr(D|G) = 1

Importance Sampling: If G1, . . . , Gm are sampled independently according to some density q with
G ⊆ supp(q), then

L(ρ, θ) ≈
∫
G
P (G|θ, ρ)dG ≈ 1

M

M∑
i=1

P (Gi|ρ, θ)
q(Gi)

What is a good proposal distribution q?

idea: Extend method of Stephens, Donnelly (2000) by recombination

H set of already sampled haplotypes

α potential type of j + 1st sampled haplotype

p(α|H) will, like in Stephens, Donnelly (2000), be approximated to be used in importance sampling
scheme

important: To use approximation q in importance sampling it must be possible to sample according
to q(.|H) and to compute q(α|H) for given α.
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We specify q(α|H) by showing how to sample from it:

initialization: Let x1, . . . , xs be the segregating sites in the j chromosomes in H.

recombination: For i = 1, . . . , s− 1 there is a recombination event in the middle between xi and xi+1

in α with probability

ai :=
(xi+1 − xi)ρ

(xi+1 − xi)ρ+ j
.

Let k be the number of recombinations and r = {r1, . . . , rk+1} the resulting fragments.

imputation: For nonancestral sites in H impute types according to their frequency at that site in H.

mutations: Each ri is simulated (independently of any rj) according to Stephens, Donnelly’s (2000)
approximation π̂ for sequence data.

To compute q(α|H) for the correction in the Importance Sampling formula, we need to sum over all
possible combinations of recombinations, imputations, and mutations that would lead to α.

This is done by dynamic programming: compute iteratively

qi(α) probability that simulated type will coincide with α at first i loci.

qi(α|`, t) as above, but conditioned that ith locus is a mutated copy of the ith locus inH` with Poisson(θt)
mutations.

For this, the following approximation is used:

qi(α) ≈
k∑

m=1

j∑
b=1

wmqi(α|b, tm/j)/j,

where w1, . . . , wk and t1, . . . , tk are the weights and points from the Gauß quadrature
∫∞

0
e−tf(t)dt ≈∑k

m=1 wmf(tm).
To compute qi(α|`, t) from previously computed qi−1(α|`, t) and qi−1(α) first compute the transition

matrix for time t:
Q(t) = exp (θt(P − I)/s) ,

where P as before is the transition matrix given that a mutation happens.

If H` is ancestral at locus i and has type β there, set

R := Qβ,αi(t),

and otherwise
R := (πiQ(t))αi ,

where πi is the vector of proportions of types in H at position i. Then:

qi(α|`, t) = [(1− ai−1) · qi−1(α|`, t) + ai−1 · qi−1(α)] ·R.

Using these regression formulas in a dynamic-programming approach, q(α|H) can be computed and
used to compute the proposal probability.

In the Importance Sampling step, the proposal probability is compared to the original ARG prob-
ability (ARG=ancestral recombination graph) and corrected accordingly to approximate the likelihood
function for ρ and θ in the ARG model.

Li and Stephens’ PAC approach, in contrast, replace the ARG model by a simpler model.
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Li & Stephens’ approach to analyze patterns of LD

References

[LS03] Na Li, Matthew Stephens (2003) Modeling Linkage Disequilibrium and Identifying Recombination
Hotspots Using Single-Nucleotide Polymorphism DataGenetics 165

ideas:

• relate LD directly to underlying recombination process

• Sometimes, block-like LD structure is reported. True or artifact of LD mapping? Allow for both.

• consider all loci simultaneously, not pairwise

• should be compuationally tractable even for complete chromosomes

Li & Stephens’ PAC approach

h1, h2, . . . , hn: haplotypes sampled from panmictic population with constant size and random mating

ρ: recombination parameter (may be a vector if recombination rate varies within the region of interest)

Product of Approximate Conditionals (PAC)

Pr(h1, . . . , hn|ρ) = Pr(h1) · Pr(h2|h1, ρ) · ... · Pr(hn|h1, . . . , hn−1, ρ)

approximate Pr(hk|h1, . . . , hk−1, ρ) by simpler q(hk|h1, . . . , hk−1, ρ).
Properties of Pr(hk|h1, . . . , hk−1, ρ)

1. hk is more likely to match another haplotype if the latter is frequent among h1, h2, . . . , hk−1

2. the probability of seeing a novel haplotype decreases as k increases

3. the probability of seeing a novel haplotype increases with θ = 4Neµ.

4. if a new haplotype does not exactly match any previous one, it will differ from one of those only
by a small number of mutations.

5. effect of recombination: the next haplotype will be composed by segments which are similar to
segments in previously sampled haplotypes. These segments tend to be longer if recombination
rates are low.

Assume the sampled haplotypes h1, h2, . . . , hn are typed at S biallelic loci (e.g. SNPs).

q(h1) =

(
1

2

)S
For the definition of q(hk+1|h1, h2, . . . , hk) let Xi := j if at the i-th locus, the closest relative of hk+1

among h1, . . . , hk is hj .

di distance between loci i and i+ 1

ci recombination rate between loci i and i+ 1 per site and per generation

ρi = 4Neci

The simplifying assuption is then that X1, X2, . . . , XS is a Markov chain on {1, . . . , k} with Pr(X1 =
j) = 1/k and

Pr(Xi+1 = j|Xi = `) =

{
(1− e−ρidi/k)/k if j 6= `

e−ρidi/k + (1− e−ρidi/k)/k if j = `
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Mutations
For SNP data we assume that each locus is hit by one mutation, such that

θ̃ := 1

/
n−1∑
m=1

1

m

is assumed to be the corrected rate of mutations per SNP site. Note that this does not exclude double
hits (just some bias if double hits are frequent.)

Then, with probability k

k+θ̃
the copy has the same type as the original

and with probability θ̃

(k+θ̃)
the haplotype has the other of the two possible alleles.

Compute q(hk+1|h1, . . . , hk) by HMM forward algo:

hk+1,≤j := (hk+1,1, . . . , hk+1,j) := types of the first j sites in hk+1

αj(x) := Pr(hk+1,≤j , Xj = x|h1, . . . , hk)

(note that with mutations any X1, . . . , XS can emit hk.)
Then,

q(hk+1|h1, . . . , hk) =

k∑
x=1

αS(x).

“dynamic programming”: we can compute all αj(x) by the recursion

αj+1(x) = Pr(hk+1,j+1|Xj+1 = x, h1, . . . , hk) ·
k∑

x′=1

αj(x
′) · Pr(Xj+1 = x|Xj = x′)

= Pr(hk+1,j+1|Xj+1 = x, hx,j+1) ·(
e−ρjdj/k · αj(x) +

(
1− e−ρjdj/k

)
· 1

k

k∑
x′=1

αj(x
′)

)

Remember the usual HMM algorithms!

HMM forward algorithm

fi(x) = Pr(S1 = s1, S2 = s2, . . . , Si = si, Xi = x)

Pr(S1 = s1, S2 = s2, . . . , Sn = sn) =
∑
x∈M

fn(x)

fi(x) =
∑
y∈M

fi−1(y) · Py→x · ex(si)

Li & Stephens’ bias correction
Simulations show that estimations of ρ based on q are biased.

For bias-correction replace ρj in the computation of Pr(Xj+1 = x′|Xj = x) by

ρj · ea+b log10 ρj ,
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where a and b are fitted to simulated data, taking the numbers of haplotypes and segregating sites into
account.

Models for ρ considered by Li and Stephens

1. constant ρ

2. single-hotspot model

3. all recombination rates ρ1, ρ2, . . . , ρS−1 may differ

Software by Matthew Stephens using PAC: Hotspotter, PHASE

References

[YS16] Yun S. Song (2016) Na Li and Matthew Stephens on Modeling Linkage Disequilibrium Genetics
203(3): 1005–1006 https://doi.org/10.1534/genetics.116.191817

11.1.2 Population splitting and recombination

References

[DPC09] D. Davison, J.K. Pritchard, G. Coop (2009) An approximate likelihood for genetic data under a
model with recombination and population splitting.Theoretical Population Biology 75:331-345

• two populations split G generations ago, F = G/(2N).

• no ongoing geneflow

• for simplicity: assume that both populations and the ancestral population have size N

• Copying occurs in daughter population (S = d) and in ancestral population (S = a)

Again, the PAC approach is used and we have to approximate the probability of a haplotype hk1+k2+1

given already sampled haplotype h1, . . . , hk1+k2
, of which k1 were sampled on island 1 and k2 on island

2.
Let zi ∈ {1, 2} indicate the island where hi was sampled, z∗ := zk1+k2+1, and X` indicates the hi

that is the closest relative to hk1+k2+1 at site `.

What we need to specify as model assumptions:

1. Probability of hidden copying states (S`, X`) at a single site `.

2. Probability of new allelic state conditioned on the state of the copied allele and the level S`.

3. Transition probabilities between the hidden copying state at adjacent states (in case of linked loci).

Point 1: Pr(X` = i|S` = d), unlinked case
In the case of unlinked sites, we obtain

Pr(X` = i|S` = d) =

{ 1
kz∗

if z∗ = zi
0 else

Pr(X` = i|S` = a) = E
(

Jzi
J1 + J2

)
· 1

kzi
,

Where kz∗ is the no. of lineages sampled from pop. z∗ so far and Ji is the number of ancestral lineages
that enter the ancestral pop. from pop. i. To compute the expectation first compute for all ji < ki the
probabilities that ki lineages coalesce down to ji lineages in G generations. These values are also needed
to compute Pr(S` = d).
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Point 2: Mutation probability; unlinked case
Simplification: For time Tcoal of coalescence use expectation

ts = E(Tcoal|S, k1, k2, F )

Then:

u(hk1+k2+1|hi, s) = Pr(hk1+k2+1|S` = s,X` = i, k1, k2, F )

=

{
1− e−θts if hk1+k2+1 6= hi
e−θts if hk1+k2+1 = hi

,

where θ is corrected for using only polymorphic sites as in Li&Stephens.

Thus, we approximate Pr(hk1+k2+1|h1, . . . , hk1+k2
) by∑

s∈{a,d}

p(S = s) ·
k1+k2∑
i=1

u(hk1+k2+1|hi, s) · p(X = i|S = s)

Point 3: now for the case of (loosly) linked loci

• Now (S1, X1), . . . , (SL, XL) are not independent.

• Simplify applying Markov model, such that HMM algorithms are applicable

• Computing transition probabilities

p(S`+1 = s′, X`+1 = i′|S` = s,X` = i)

= p(S`+1 = s′|S` = s) · p(X`+1 = i′|S`+1 = s′) + δii′δss′ · p(NR|S`),
where NR stands for “no recombination” is tricky, several simplifying approximation are applied,
e.g.:

• if A is the event that a recombination happens on the new lineage in the daughter population, then

p(S`+1 = d|S` = a) = p(A) · p(S = d|A) (1)

≈
(
1− e−ρ`F

)
· p(S = d) (2)

• Simulation study

– works well in case of unlinked loci

– estimates of F biased for version with linked loci

– not well understood where this bias comes from, but suggest a bias correction

• Discuss how method could be extended to models with gene flow

11.1.3 Diversifying selection and recombination

References

[WM06] D.J. Wilson, G. McVean (2006) Estimating diversifying selection and functional constraints in
the presence of recombination Genetics 172:1411–1425

Apply Bayesian variant of PAC to infer from population genetic data which regions are under diver-
sifying selection and which are under purifying selection.

ω = dN/dS fraction of rates of nonsynonymous vs. synonymous mutations

diversifying selection corrsponds to large ω and

purifying selection to small ω.

Software: omegaMap http://www.danielwilson.me.uk/omegaMap.html
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NY98 Codon mutation model
Nielsen and Yang (1998)
Mutation rate qij = πj · µij , where i and j are codons, i 6= j or one of then is an insertion/deletion

(indel), πj is the frequency of j and

µij =



1 for synonymous transversion
κ for synonymous transition
ω for nonsynonymous transversion
ωκ for nonsynonymous transition
ωφ if exactly one of i and j is an indel
0 otherwise

(original NY98 is without indels)
Model for ω along the gene:
There are B transition points s1, . . . , sB , such that ∀j : ω is constantly ωj between sj and sj+1.

pω Probabilty of transition point between two codons.

ωj are independent of each other and have prior exp(λ)

Similar model for change of recombination rate ρ; independent of ω configuration.

H haplotypes sampled from population

Θ model parameters, including all ωj and ρj and change points.

MCMC sample parameter values according to

P (Θ|H) ∝ P (H|Θ) · P (Θ)

PAC with HMM forward algorithm is applied to approximate P (H|Θ) via PAC approximations of

p(Hk+1|H1, H2, . . . ,Hk,Θ)

MCMC moves
To propose e.g. µ′ as a replacement of current µ, choose U ∼unif(−1, 1), und set µ′ = µ exp(U).
Accept or reject with MH step.

Same for κ, ωj , ρj .

MCMC step to shift block change point.

Reversible Jump steps to update blocks:

• split block

• merge block

λ, φ, pω, pρ are specified by user to specify prior.

Application example
79 alleles of porB locus of Neisseria meningitidis

permutation test shows significant correlation of LD and distance between sites. ⇒ Phylogenetic
methods not appropriate.

Found four sections in the gene where high ω values are probable, indicating diversifying selection,
whereas almost everywhere else, ω < 1, indicating purifying selection.

Indeed, regions with large ω are loops exposed to immune system of host, such that diversifying
selection is plausible, and other regions form beta sheet barrel, which explains functional constraints.
(nice picture in paper!)
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Model without recombination leads to different results, but

Model Criticism via posterior predictive P -value shows that model without recombination fits the
data poorly. This means, if D is some statistic of the data and DH′ is the statistic for a dataset
H ′ simulated under the PAC model used for inference, then the

posterior predictive P -value is:

p =

∫
P (DH′ ≥ DH |Θ, H)P (Θ|H)dΘ ≈ 1

M

M∑
i=1

I(DH′i
≥ DH)

Wilson and McVean perform simulation studies for several conditions to assess how well their method
works.

This is very important for heuristic approaches like PAC because it is otherwise not clear how accurate
these methods are even if sampling from some approximate posterior approximate confidence intervals
are computed.

Some of what you should be able to explain

• Basic approach of Li&Stephen’s PAC

• Simplifying assumptions in PAC

• How PAC fits into HMM methodology

• How PAC can be applied to infer

– local recombination rates

– population demography

– sections in genes under different kinds of selection

11.1.4 Excursus: Stephens and Donnelly’s Importance Sampling

References

[SD00] M. Stephens, P. Donnelly (2000) Inference in molecular population genetics J. R. Statist. Soc. B
62(4):605–655

improved Griffiths und Tavaré’s Importance sampling scheme for the case of the classical (unstruc-
tured) coalescent.

A history H is a sequence (H−m, H−(m−1), . . . ,H0), where

H−i is the unordered list of types of the uncestral lineages, i events (mutations and coalescent events)
before present. Thus,

H0 is the sampled data.

Hi−1 = Hi − α+ β stands for a mutation from α to β (back into past; note that i < 0), and

Hi−1 = Hi − α for a coalescence of two lineages of type α.

Pαβ probability that an α that is hit by a mutation becomes a β.

nα number of lineages in Hi−1 of type α,

n =
∑
α nα,
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Pr
θ

(Hi | Hi−1) =


nα
n ·

θ
n−1+θPαβ if Hi = Hi−1 − α+ β

nα
n ·

n−1
n−1+θ if Hi = Hi−1 + α

0 otherwise

πθ(.): distribution of genotype vector An in a sample of size n. Note that An is an ordered list.
nα: number of α in H0

πθ(An | H) = πθ(An | H0) =

{
(
∏
α nα!) /n! if H0 compatible withAn

0 otherwise

If histories H(1),H(2), . . . ,H(M) are generated independently according to the proposal distribution
Qθ0(.), the importance sampling formula implies:

L(θ) ≈ 1

M

M∑
i=1

πθ(An | H(i)) · Pθ(H
(i))

Qθ0(H(i))

E.g. with the proposal distribution QGTθ of Griffiths and Tavaré, for given H0 the histories H−1, H−2, . . .
are generated by a Markov chain with qθ(Hi−1 | Hi) ∝ pθ(Hi | Hi−1).

Let M be the class of proposal distributions, for which H−1, H−2, . . . is Markovian with start in H0

and

supp{qθ(. | Hi)} := {Hi−1 : qθ(Hi−1 | Hi) > 0}
= {Hi−1 : pθ(Hi | Hi−1) > 0}.

Optimal would be Q∗θ(H) = Pθ(H | An), because

πθ(An | H)
Pθ(H)

Q∗θ(H)
=
Pθ(H ∩An)

Pθ(H | An)
= πθ(An) = L(θ)

Theorem 3 Let πθ(α | An) = πθ((An,α))
πθ(An) be the conditioned probability that the n + 1-st allele sampled

from the population is of type α, given that the first n types are given by An. The optimal proposal
distribution Q∗θ belongs to M and is defined by

q∗θ(Hi−1 | Hi) =


θ·nα

n·(n−1+θ)
π(β | Hi−α)
π(α | Hi−α)Pβα for Hi−1 = Hi − α+ β

nα·(nα−1)
n·(n−1+θ)

1
π(α | Hi−α) for Hi−1 = Hi − α

Proof
Consider the case Hi−1 = Hi − α+ β
Let ak(t) be the type of lineage k at time t. Assume δ > 0 and let Ym be the event that in the last δ

time units a mutation from ak(t− δ) = β to ak(t) = α occurred.
We obtain:

Pr{Ym ∩Ak(t− δ) = (α1, . . . , αk−1, β) | Ak(t) = (α1, . . . , αk−1, α)}

=
π(α1, . . . , αk−1, β) · δ · θ · Pβα/2

π(α1, . . . , αk−1, α)
+ o(δ)

= δ · θ · π(β | Ak − α)

2π(α | Ak − α)
· Pβα + o(δ)

This implies the result if we let δ go to 0, multiply by nα (as instead of αk any other α could be affected,
and Hi is unordered) and divide by the total rate.

The proof for Hi−1 = Hi − α is analogous. �
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But:
In general, π(α | An) are hard to compute and we cannot use Q∗θ.

Ansatz: If π(α | An) cannot be calculated, approximate it and use the approximations in the
formulas in the theorem.

Definition 1

π̂(β | An) :=
∑
α∈E

∞∑
m=0

nα
n

(
θ

n+ θ

)m
· n

n+ θ
(Pm)αβ .

This probability distribution can be approximated as follows: Choose a purely randomly individual
from An and mutate it according to P geometrically often with parameter θ

n+θ .

properties of π̂:

(a) For parent-independent mutation: π̂(. | An) = π(. | An).

(b) For reversible P with n = 1: π̂(. | An) = π(. | An).

(c) The distribution π̂(. | An) fulfills

π̂(β | An) =
∑
α

nα
n
M

(n)
αβ (∗)

for suitable M (n). Thus, it can be simulated by drawing a random lineage and draw the type
according to a distribution that depends only on n and on the type of the drawn lineage. (In the
case of π̂ holds M (n) = (1− λn)(I − λnP )−1 with λn = θ

n+θ .)

more properties of π̂:

(d) π̂ is the only distribution that fulfills (∗) and (b) and

π̂(β | An) =
∑
α

π̂(α | An) · π̂(β | (An, α)) (∗∗)

This means: Given the first n sampled alleles, the n+ 1st has the same distribution as the n+ 2nd.

(e) π̂(. | An) is the stationary distribution of a Markov chain with transition matrix

Tαβ = θ
n+θPαβ + nα

n+θ

Proofs

(a) For parent-independent mutation Pαβ = Pβ holds P = Pm and thus:

π(β | An) =
nβ + θPβ
n+ θ

= π̂(β | An)

(b) Let X and Y be the types of the leaves, R the type of the root, m1 the number of mutations between
R und X and m2 that of the mutation between R and Y . Then:

Pr(Y = β | R = γ) = (Pm2)γβ

Pr(R = β | X = α) = (Pm1)αβ

Pr(Y = β | X = α) = (Pm1+m2)αβ

The total number of mutations between X and Y is geometrically distributed with parameter θ
1+θ
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(c)

π̂(β | An) =
∑
α

∞∑
m=0

nα
n

(
θ

n+ θ

)m
n

n+ θ
(Pm)αβ

=
∑
α

∞∑
m=0

nα
n

(1− λn) [(λnP )m]αβ

=
∑
α

nα
n

(1− λn)
[
(I − λnP )−1

]
αβ

The last equation follows from the geometric sum formula of matrices.∑∞
m=0M

m = (I −M)−1.

proof of (d)

Let π̃(β | An) =
∑
α
nα
n M

(n)
αβ for some M (.)

.. fulfilling (∗∗):
(
nα

n
,
nβ

n
, . . . ,

nγ

n

)
·M(n)

αβ = π̃(β | An)

=
∑
α

π̃(α | An)π̃(β | (An, α))

=
∑
α

∑
γ

nγ

n
M

(n)
γα ·

∑
ξ

nξ + δαξ

n+ 1
M

(n+1)
ξβ

=
∑
γ

∑
ξ

(
nγ

n

nξ

(n+ 1)
M

(n+1)
ξβ +

nγ

n · (n+ 1)
M

(n)
γξ M

(n+1)
ξβ

)
(because ∀γ :

∑
α

M
(n)
γα = 1)

=
1

n+ 1

[(
nα

n
, . . . ,

nγ

n

)
·
(
nM

(n+1)
+M

(n)
M

(n+1)
)]
β

proof of (d) continued
As this holds for all vectors nα

n , . . . ,
nγ
n , we conclude:

(n+ 1)M (n) = n ·M (n+1) +M (n) ·M (n+1)

From this recursion and the initial value M (1) = (1 − λ1)(I − λ1P )−1 set by (b), follows M (n) =
(1− λn)(I − λnP )−1. This implies π̃ = π̂.

�

For the more complicated proof of (e), see Stephens und Donnelly (2000).
We define the proposal distribution QSDθ with q̂ like Q∗θ with q by replacing π by the approximation

π̂.

Theorem 4 ∑
H

q̂θ(H | Hi) = 1

and q̂θ(. | Hi) can be simulated as follows:

1. Choose a purely random α ∈ Hi.

2. For all β compute π̂(β | Hi − α)

3.

Hi−1 :=

{
Hi − α+ β with probability ∝ θπ̂(β | Hi − α) · Pβα
Hi − α with probability ∝ nα − 1

Thus, π̂(β | Hi − α) must be computed only for a few pairs (α, β). First sample α and then decide
whether it mutated to beta β or coalesces with another α. It is efficient to compute π̂(β | Hi − α) and
to simulte QSDθ .
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Proof:
The probability that a mutation of a type α is involved, is

pm(α) =
1

n(n− 1 + θ)

∑
β

θ

2
nα
π̂(β | Hi − α)

π̂(α | Hi − α)
Pβα.

The probability that two lineages of type α coalesce, is:

pc(α) =
nα(nα − 1)

n(n− 1 + θ)
· 1

π̂(α | Hi − α)

This implies pm(α) + pc(α) = 1. �

What to do with sequence data???
For nucleotide (or protein) sequences of length ` there are 4` (or 20`) different possible genotypes

α = (α1, . . . , α`), and the transition matrix (Pαβ)αβ could be very large.

θ/2: mutation rate per site.

For π̂(. | An) draw a geometrically distributed number m of mutations with parameter `θ
n+`θ and

spread them randomly on the sites.
Equivalent: draw exp(1)-distributed time t and then for each site i a Poisson(tθ/n) distributed number

mi of mutations. This implies

π̂(β | An) =
∑
α∈An)

nα
n

∫
exp(−t)F (θ,t,n)

α1β1
· · ·F (θ,t,n)

α`β`
dt

with

F
(θ,t,n)
αiβi

=

∞∑
m=0

(θt/n)
m

m!
exp(−θt/n)(Pm)αiβi .

Stephens and Donnelly suggest to approximate the integral with Gauß quadrature (siehe Press et al.
(1992)) to obtain

π̂(β | An) =
∑
α∈An)

s∑
i=1

nα
n
wiF

(θ,ti,n)
α1β1

· · ·F (θ,ti,n)
α`β`

for certain s, wi and ti. The F
(θ,t,n)
αiβi

=
∑∞
m=0 . . . can be approximated by finite sums.

11.2 Inferring the Ancestral Recombination Graph

11.2.1 ARGweaver

ARGweaver

References

[1] M.D. Rasmussen, M.J. Hubisz, I. Gronau, A. Siepel (2014) Genome-Wide Inference of Ancestral
Recombination Graphs PLOS Genetics 10.5, e1004342

• based on time-discretized SMC (DSMC)

• Re-sampling of internal branches of with Metropolis–Hastings (similar to LAMARC)

• novel: HMM dynamic programming (“threading”) makes proposals of good continuity and already
from approximate posterior
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• Dynamic programming to count for each node label the number of ingoing paths

• Use for uniform backward sampling

11.2.2 SINGER

One of the differences between ARGweaver and SINGER

References

[1] Y. Deng, R. Nielsen, Y.S. Song (2025) Robust and accurate Bayesian inference of genome-wide
genealogies for hundreds of genomes Nature Genetics 57: 2124–2135

Some of the further ideas in SINGER

Threading has 2 purposes (like in ARGweaver)

• build initial ARG adding sequence by sequence

• make MCMC proposals from approximate posterior

more efficient threading by reducing number of hidden states by separation into

branch sampling: HMM with branches as hidden states;

Similar to Li&Stephen’s PAC, but with branch-specific recombination and re-coalescing
probabilities

Genome split into bins of size “4 · 10−3/(4Ner)” (correct? or 4 · 10−3 · 4Ner ??)

• recombination only between bins

• only one recombination event at a position (simplifies HMM transitions)

Emission probabilities involve imputing most probable states for inner nodes

time sampling: joining-times as hidden states (similar to PSMC)
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11.2.3 tsinfer and tsdate

References

[1] J. Kelleher, Y. Wong, A.W. Wohns, C. Fadil, P.K. Albers, G. McVean (2019) Inferring whole-genome
histories in large population datasets Nature Genetics 51, 1330–1338

[2] A.W. Wohns, Y. Wong, B. Jeffery, A. Akbari, S. Mallick, R. Pinhasi, N. Patterson, D. Reich,
J. Kelleher, G. McVean (2022) A unified genealogy of modern and ancient genomes Science 375,
eabi8264

tsinfer strategy

1. estimate ancestral haplotypes for time points when mutation happened, assuming infinite-sites

2. variant of Li & Stephens’ PAC but

(a) applied to present and ancestral haplotypes

(b) haplotypes can only copy from older ones

(c) Viterbi algorithm / path

tsinfer heuristic to estimate ancestral genotypes

ancestral
derived

present

past

1

2

3

order hypothetical haplotypes in which mutation happened
be number of derived alles in sample

younger mutations

ancestral
derived

present

past

go from young to old in in both directions for mutated site

ancestral
derived

present

past

(problem: two equal haplotypes; not clear to me how this case is handled in tsinfer) What ranges of
ancestral haplotypes are estimated
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two consecutive
sites disagree:
evidence of
recombination

ignore
two consecutive
sites disagree:
evidence of
recombination

ignore
stop here
as half of
sequences
are ignored

tsdate

• descritized time steps based on quantiles of coalescent-based priors πu(t)

• posterior for time t of node u is approx. ∝ Iu(t) ·Ou(t)

• compute by dynamic programming:

inside probabilities from tips to roots

outside probabilities from roots to tips

tsdate
Only one Iu(t) for each (u, t), not for each local tree!

When inside prob. is needed for a certain genomic span, ap-
proximate by Iu(t)wuv , where wuv is the fraction of the span
of d that applies to the branch u–d.

C(u), P (u): sets of children/parents of u.

Iu(t) = πu(t)
∏

c∈C(u)

∑
t′≤t

Ldu(t− t′ + ε;Ddu, θ) · Ic(t′)wdu ,

where Ldu(∆t;Ddu, θ) is the Poisson prob. of the mutation data Ddu on the branch for length ∆t.

Ou(t) =
∏

p∈P (u)

∑
t′≥t

Op(t)
wup · L(t′ − t+ ε;Dpu, θ) ·

(
Ip(t

′)∑
t′′≤t′ Lup(t

′′ − t′ + ε;Dup, θ) · Iu(t′′)wup

)wup

11.2.4 Similar methods/programs

Relate L. Speidel, M. Forest, S. Shi, S.R. Myers (2019) A method for genome-wide genealogy estimation
for thousands of samples. Nature Genetics

ARGweaver-D M.J. Hubisz, A.L. Williams, A. Siepel (2020) Mapping gene flow between ancient ho-
minins through demography-aware inference of the ancestral recombination graph. PLOS Genetics

ARG-Needle B. C. Zhang, A. Biddanda, ’A. F. Gunnarsson, F. Cooper, P. F. Palamara (2023)
Biobank-scale inference of ancestral recombination graphs enables genealogical analysis of com-
plex traits. Nature Genetics

ARGinfer (but limited to “tens of DNA sequences of several hundreds of kilobases”, at least initial
version) A. Mahmoudi, J. Koskela, J. Kelleher, Y.-b. Chan, D. Balding (2022) Bayesian inference
of ancestral recombination graphs. PLOS Comput. Biol.
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. . . and more, see also R. Nielsen, A.H. Vauhn, Y. Deng (2025) Inference and applications of ancestral
recombination graphs, Nature Review Genetics

In contrast to LAMARC, the current programs for genome-scale inference of ARG do not simul-
tanaeously infer population demography (at least as far as I know). It is to be explored to what extent
the inferred ARGs are biased by assuming a fixed demography or and how this affects the conclusions
population structure and demography that are drawn from these inferred ARGs.

Some of the things you should be able to explain

• How are HMMs and other forms of dynamic programming used in ARGweaver, SINGER, tsin-
fer and tsdate and what are the hidden states and partial probabilities or likelihoods that are
calculated?

• What are the main differences between the approaches of ARGweaver, SINGER and tsinfer/tsdate?

• How are ideas from Li & Stephen’s PAC and from PSMC used or modified in ARGwaever, SINGER
and/or tsinfer/tsdate?

• What are the differences between the MCMC moves in LAMARC, ARGweaver and SINGER for
resampling branches?

12 Phasing genotypes

Why phasing?
Many sequence datasets from diploid (polyploid) organisms are unphased. For example, it is known

that some individual has an A and a T at one locus, and a G and a C at another locus on the same
chromosome, but not wheter the A is on the same haplotype (chromosome copy) as the C or as the G.

—[A,T]——[C,G]—– ⇒ —A——C—–
—T——G—–

or
—A——G—–
—T——C—–

?

Estimating this (“phasing the data”) can be important, e.g. because Linkage Disequilibrium (LD) is
informative about

• population structure

• epistatis

• selective sweeps

• whether a gene locus is associated with a trait of interest or just phsically linked to a relevant locus

Clark’s Algorithm

• parsimonious approach to minimize the total number of haplotype classes observed in the sample

• greedy algorithm

• starting with individuals that are homozygous at all loci or at all up to one

[0, 0], [0, 1], [0, 0], [1, 1]⇒ –0—1—0—1–
–0—0—0—1–

• successively searches individuals that can be phased such that one or both haplotypes is identical
to already inferred one.

[0, 1], [0, 1], [0, 1], [1, 1]⇒ –0—1—0—1–
–1—0—1—1–

• final result depends on input order
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12.0.1 Excoffier and Slatkin’s EM algorithm

References

[ES95] L. Excoffier, M. Slatkin (1995) Maximum-Likelihood estimation of molecular hyplotype frequen-
cies in a diploid population. Mol. Biol. Evol. 12(5): 921–927

“phenotype”: multilocus genotype with unknown phase, e.g.

genotype=
–0—1—0—1–
–0—0—1—1–

⇒ phenotype=[0, 0], [0, 1], [0, 1], [1, 1]

(unordered pair) (unordered pairs)

Pi: phenotype probability
ni: absolute frequency of phenotype i in sample, n =

∑
i ni

Pr(sample|P1, P2, . . . , Pm) =
n!

n1! · n2! · · ·nm!
· Pn1

1 · P
n2
2 · · ·Pnmm

one aim:
estimate population frequencies p1, p2, . . . of haplotype classes h1, h2, . . . .

Expectation Maximization (EM) algorithm
Iterate E step and M step:

E step Use current estimates of p1, p2, . . . to compute expected frequencies fk` of all genotypes (k, `)
(with k ≤ `) in the sample, given the sampled phenotypes. For this, let Ik`,j be the indicator
function that [k, `] leads to phenotype j (i.e. Ikl,j = 1 in this case and 0 otherwise), and δk` be the
indicator function of k = `. Then

Pj =
∑
k

∑
`

pkpl · Ik`,j

and

fk` =
∑
j

Ik`,j ·
nj
n
· pkp`
Pj
· 2 ·

(
1

2

)δk`
.

M step Use expected genotype frequencies in sample to estimate haplotype class probabilities pi (=fre-
quencies in population).

pi = fii +
1

2
·

(
i−1∑
k=1

fki +

...∑
k=i+1

fik

)

Excoffier and Slatkin use Fisher Information to estimate variance of the estimators, and use estimated
pi to infer haplotypes.

12.0.2 Excursus: EM algorithm

EM algorithm in general

References

[DLR77] Dempster, A.P., Laird. N.M., Rubin, D.B. (1977) Maximum-Likelihood from incomplete data
via the EM algorithm.Journal of the Royal Statistical Society Series B 39 (1): 1–38

X observed data
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U unobserved data

θ parameter to be estimated

` log likelihood
`(θ;x, u) = logPθ(X = x, U = u)

P Probability or probability density

`(θ;u | x) := logPθ(U = u | X = x)

⇒ `(θ;x, u) = `(θ;u | x) + `(θ;x)

U unobserved ⇒ `(θ;x, U) is a random variable

Qθ′(θ) := Eθ′ (`(θ;x, U)|x)

=
∑
u

Pθ′(u|x) · `(θ;x, u)(
or

∫
Pθ′(u|x) · `(θ;x, u) du

)
Cθ′(θ) = Eθ′ (`(θ;U |x)|x)

`(θ) := `(θ;x) = Qθ′(θ)− Cθ′(θ)

To estimate θ iterate the following steps:

E step with current estimate θ′ compute the function Qθ′ : θ 7→ Qθ′(θ)

M step
θnew := arg max

θ
Qθ′(θ)

Iterate E step with θ′ replaced by θnew.

Note that from
`(θ) = Qθ′(θ)− Cθ′(θ)

follows that
Qθ′(θ

new) ≥ Qθ′(θ′)

implies

`(θnew)− `(θ′) ≥ Cθ′(θ
′)− Cθ′(θnew)

=

∫
Pθ′(U = u|x) · log

Pθ′(U = u|x)

Pθnew(U = u|x)
du ≥ 0

Note that the integral is a Kullback–Leibler Divergence, which is according to Gibbs’ inequality
always ≥ 0, and = 0 only if the two distributions are equal.∑

i

pi · log
pi
qi

= −
∑
i

pi · log
qi
pi
≥ −

∑
i

pi ·
(
qi
pi
− 1

)
= −

∑
i

qi +
∑
i

pi = −1 + 1 = 0

Therefore, an EM step will never decrease the likelihood (which is not true, e.g., for Newton opti-
mization steps).

Why is Excoffier and Slatkin’s EM algorithm a special case of this?

x “phenotypes”

U genotypes

θ haplotype frequencies p1, p2, . . .
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Eθ′(`(θ;x, U)|x) =?

If the phenotypes x are in accordance with the genotypes u, then

`(θ;x, u) = log(Pθ(u))

= log

(
n!

n1! · · ·nm!

)
+
∑
i

log

(
2pu(i,1)pu(i,2) ·

(
1

2

)δu(i,1),u(i,2)

)

Qθ′(θ) = Eθ′(`(θ;x, U)|x)

= log

(
n!

n1! · · ·nm!

)
+
∑
i

Eθ′
(

log

(
2pU(i,1)pU(i,2) ·

(
1

2

)δU(i,1),U(i,2)

)∣∣∣∣∣xi
)

The conditional expectation in the last line is, by definition,

∑
[k,`]∈Pi

Pθ′(U = [k, `]|xi) · log

(
2pkp` ·

(
1

2

)δk`)

Where the sum is taken over the set Pi of all (unordered) haplotype pairs [k, `] that are in accordance
with phenotype i.

With

Pθ′(U = [k, l]|xi) =
2p′kp

′
` · 0.5δk,`∑

[k′,`′]∈Pi 2p′k′p
′
`′ · 0.5

δk′,`′
,

where θ′ = (p′1, p
′
2, ...).

Putting it all together and rearranging the sums, we obtain

Qθ′(θ) =
∑
k

n∑
i=1

p′k
∑
` Ik`,ip

′
`∑

k′
∑
`′ Ik′`′,ip

′
k′p
′
`′

log pk + const.

where const is a term that does not depend on any pk. Thus, Qθ′(θ) is optimized by setting

pk ∝
n∑
i=1

∑
` Ik`,ip

′
kp
′
l∑

k′
∑
`′ Ik′`′,ip

′
k′p
′
`′

because, in general, the distribution p1, p2, . . . that maximizes
∑
i ni log pi is pi = ni/

∑
nj . This follows

from the information inequality ∑
pi log pi >

∑
pi log qi,

which is equivalent to ∑
pi log

pi
qi
> 0

(always assuming that distributions p and q are not equal).
Note that, indeed,

pk ∝
n∑
i=1

∑
` Ikl,ip

′
kp
′
l∑

k′
∑
`′ Ik′l′,ip

′
k′p
′
l′

is the same as the M step in Excoffier and Slatkin’s EM algorithm.
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12.0.3 Basic algorithms in PHASE

References

[SSD01] M. Stephens, Smith, P. Donnelly (2001) A New Statistical Method for Haplotype Reconstruction
from Population Data The American Journal of Human Genetics 68(4)

G = (G1, . . . , Gn) observed genotypes of n individuals

Hi = (hi1, hi2) unknown (unordered) haplotypes of individual i

Gibbs samping with target distribution Pr(H|G): Start with initial guess for H and iterate the following
steps.

• choose individual i purely randomly from all ambiguous individuals

• sample updated Hi from Pr(Hi|G,H−i), where H−i is H without Hi.

Problem: Pr(Hi|G,H−i) depends on genetic and demographic models, e.g. on priors of haplotype
frequencies

Pr(Hi|G,H−i) ∝ Pr(Hi|H−i) ∝ Pr(hi1|H−i) · Pr(hi2|H−i, hi1)

Pr(hi1|H−i) is only easy in parent-independent mutation model, which is usually unrealistic.

Stephens, Smith and Donnelly (2001) discuss two possible approximations, a “naive” one and their
preferred one.

The naive Gibbs sampler
assumes parent-independent mutation

Pr(h|H) =
rh + θvh
r + θ

rh number of haplotypes of type h in H

r total number of haplotypes in H

vh in case of mutation this is the probability that it leads to h

θ population-scaled mutation rate

If individual i has k heterozygous loci, 2k−1 different haplotypes h are possible. If this may be too
many, just set vh = 1/M , where M is the number of possible haplotypes.

The naive algorithm

1. pick individual i uniformly, let k be its number of heterogeneous loci; let {h1, . . . , hm} be the other
individuals’ haplotypes.

2. for j = 1, . . . ,m do
if Hi could be (hj , h

′) then
if h′ is some hk ∈ {h1, . . . , hm} then

pj =
(
rj +

θ
M

) (
rk +

θ
M

)
−

(
θ
M

)2
else

pj = rj
θ
M

end if
else

pj = 0
end if

end for

3. With prob
2k( θ

M )
2∑

j pj+2k( θ
M )

2 reconstruct Hi completely at random.

Else: Choose Hi = (hj , h
′) with probability pj/

∑
k pk.
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The basic standard algorithm in PHASE
The basic standard algorithm in PHASE uses an approximation proposed by Stephens and Donnelly

(2000):

Pr(h|H) ≈
∑
α

∞∑
s=0

rα
r

(
θ

r + θ

)s
r

r + θ
(P s)αh

rα number of haplotypes of type α in H

r total number of haplotypes in H

θ population-scaled mutation rate (see next slide)

P transition matrix between types, given a mutation happens

s number of mutations

The basic standard algorithm in PHASE

• For polymorphic sites, assume only one mutation happened and set

θ =
1

log 2n

• Problem: For sequence data, P will be huge. In this case use Gaussian quadrature (see also next
section).

• For microsatellite data assume a stepwise mutation model with 50 alleles and set

θj =
1

2

(
1

1 +H
− 1

)
,

where H is the observed heterozygousity at that locus.

The basic standard algorithm in PHASE
Start with initial phasing and iterate the following steps

1. Choose individual i uniformly

2. Select subset S of (e.g. 5) ambiguous loci i

3. Phase the loci in S in individual i conditioned on the current phase of all other loci and of all loci
in the other individuals.

References

[SD03] M. Stephens, P. Donnelly (2003) A comparison of Bayesian Methods for Haplotype Reconstruc-
tion from Population Genotype Data Am. J. Hum. Genet. 73: 1162–1169

introduce a few improvements:

• in each step the genomes of all individuals are subdivided into blocks of the same number of loci
(6,7, or 8, with probs. 0.3, 0.3, 0.4). Then, a block is chosen for all individuals in random order
and the loci of this block are updated (conditioned on all other individual and on all other loci in
the focal individual).

• in a certain fraction of individuals, it is allowed that only one haplotype is a copy of another
haplotype in the data. This fraction is reduced down to 0 during the MCMC procedure.

• After the blockwise MCMC, haplotype frequencies are estimated for each block and blocks are
iteratively ligated with adjacent blocks into larger blocks.
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12.0.4 PAC in PHASE

References

[SS05] Matthew Stephens, Paul Scheet (2005) Accounting for Decay in Linkage Disequilibrium and
Missing-Data ImputationAm. J. Hum. Genet. 76:449–462

• Use information about order and distance between marker positions

• recombination rates may vary and are estimated

• applicable also when LD is “blocklike”

• imputation of missing data

n number of individuals

L number of loci

G = (G1, . . . , Gn) genotypes; observed up to missing loci

H = (H1, . . . ,Hn) haplotypes; to be reconstructed

H−i = (H1, . . . ,Hi−1, Hi+1, . . . ,Hn)

ρ = (ρ1, . . . , ρL−1) recombination rates between loci

ρ` =
4Nec`
d`

c` recombination probability per generation between loci ` and `+ 1; to be estimated

d` known distance between loci ` and `+ 1

strategy of PAC approach in PHASE
Start with initial H and ρ the following steps many times:

1. for each i update Hi by sampling from Pr(Hi|Gi, H−i, ρ)

2. propose change of ρ and accept or reject with Metropolis-Hastings (MH) step

3. update ordering ν of individuals with MH step for order-dependent PAC probabilities

Needed in these steps:

Pr(Hi = (h, h′)|H−i, ρ) ∝ (2− δhh′) · p(h′|H−i, ρ) · p(h|H−i, h′, ρ)

(where p(h|H−i, h′, ρ) will be approximated by p(h|H−i, ρ); note that 2− δhh′ = 2 ·
(

1
2

)δhh′ )
Simplifying assumption in the computation of p(h|h1, . . . , hk, ρ):

• when a locus in h is copied from some hi only two possible coalescence times are allowed (t1 =
0.586/k, t2 = 3.414/k) and taken with probabilities w1 = 0.854 and w2 = 0.146. This is a Gauß
quadrature approximation of the exponential distribution.

• if X` is the allele from which locus ` in h is copied and T` the corresponding coalescence time,
then (X1, T1), (X2, T2), . . . is a Markov chain with Pr(X1 = x, T1 = tr) = wr/k and transition
probabilities Pr(X`+1 = x′, T`+1 = tr′ |X` = x, T` = tr) =

(1− e−ρldl/k) · wr/k + δxx′δrr′e
−ρldl/k.

Thus, HMM algorithms can be applied again.
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•
Pr(hk+1,`+1 = a|X`+1 = x, T`+1 = t, h1, . . . , hk, ρ) =

∑
m

(θt)m

m!
e−θt(Pm)hx,`+1a

Proposals for step 1 are halplotypes that are composed by blocks as described in Stephens and
Donnelly (2003), leading to a list of promising haplotypes compatible with Gi.

For these haplotypes probabilities are computed with forward algorithm and one of them is chosen
randomly according to the computed probabilities.

For imputation of missing types, probabilities are computed with forward-backward algorithm and
types are sampled accordingly.

performance studies
haplotype inference:

dataset1 40 X chromosomes from unrelated males, paired into 20 pseudo-individuals, 8 regions of 87–
327 kb and 45–165 segregating sites

dataset2 autosomal data from 129 children with known phase (as parents were also genotyped),

result PHASE with recombination PAC model best overall and for most regions.

imputing missing data:

data 50 genes sequenced for 24 humans of African descent and 23 of European descent, 15–230 segre-
gating sites per gene.

simulation remove 5% of the data (in addition to 4.6% that was actually missing), either single alleles
or the genotypes.

result PHASE with recombination PAC model always best

References

[CB+04] Crawford, Bhagale, Li, Hellenthal, Rieder, Nickerson, Stephens (2004) Evidence for substantial
fine-scale variation in recombination rates across the human genomenature genetics

[CB+04] Myers, Freeman, Auton, Donnelly, McVean (2008) A common sequence motif associated with
recombination hot spots and genome instability in humansnature genetics

12.1 Phasing large genomic datasets

12.1.1 fastPHASE

References

[SS06] P. Scheet, M. Stephens (2006) A Fast and Flexible Statistical Model for Large-Scale Pop-
ulation Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase
Am. J. Hum. Genet. 78:629–644

If n haplotypes are to be reconstructed (that is, from n/2 sampled individual) at M marker positions,
than the complexity of HMM algorithms in PHASE is O(n2M).

fastPHASE reduces this to O(nM).

Instead of sampling sections of haplotypes from copies of other haplotypes, all section are sampled
from K clusters, similar to STRUCTURE.
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First consider clustering method of haplotypes, where cluster just is a set of closely related haplotypes.

Then extend for phasing with in Hardy–Weinberg Equilibrium (HWE) within clusters.
First: consider local clustering method for haplotypes.

Given h = (h1, . . . , hn) haplotypes with M biallelic {0, 1} (can be relaxed) marker positions.

zim ∈ {1, . . . ,K} origin of him, (marker position m in hi). zi = (zi1, . . . , ziM ) modeled as a Markov
chain with

p(zi1 = k) = αk1

and pm(k → k′) :=

p(zim = k′|zi(m−1) = k, α, r) =
(
1− e−rmdm

)
· αk′m + δkk′ · e−rmdm ,

where dm is the distance between markersm−1 andm, and the recombination parateters r = (r2, . . . , rM )
as well as α = (αkm) are to be estimated.

Now for the emission probabilities:

p(hi|zi, q) =

M∏
m=1

p(him|zim, q) =

M∏
m=1

qhimzimm · (1− qzimm)
1−him ,

where qkm is the frequency of allele 1 at marker m in cluster k.

Again, we obtain an HMM, parameter estimation can be done with EM, assigments of haplotype
sections to culsters e.g. with Viterbi-Algorithm or Bayesian sampling tracing back contributions in the
forward algorithm.

Now assume that unphased genotypes g = (g1, . . . , gn) are given, gim ∈ {0, 1, 2} is the genotype at
marker m in individual i. Now assume HWE in each cluster. Let z̃im be the unordered pair of clustes of

origin of gim:
p(z̃i1 = {k1, k2}) = (2− δk1k2

)αk1
αk2

and assume that z̃i = (z̃i1, . . . , z̃iM ) is a Markov chain with transition probabilities pm({k1, k2} →
{k′1, k′2}) =

pm(k1 → k′1) · pm(k2 → k′2) +
(
1− δk1k2

δk′1k′2
)
· pm(k1 → k′2) · pm(k2 → k′1).

Emission probabilities:

p(gim|z̃im = {k1, k2}, q) =

 (1− qk1m)(1− qk2m) if gim = 0
qk2m(1− qk1m) + qk1m(1− qk2m) if gim = 1

qk1mqk2m if gim = 2

Difference to approach of Falush et al. (2003) implemented in STRUCTURE: Here, α varies between

marker positions but not between individuals. In Falush et al. it is vice versa (for the parameter there
called q). That is, here, α controls the frequency of the common haplotypes, not the contribution of the

different clusters to an individual’s genome.
HWE assumption is violated if the population is substructured. Applications of fastPHASE for

data imputation or phasing may be robust against such violations. Moreover, extension of model is

possible, assuming that individuals are sampled from known subpopulations and the parameters r and
α vary between the subpopulations.

Parameter estimation with EM: Found that 20 independent starts with 25 iterations each is enough.

K =?: How many clusters to choose? Cross validation: Mask 15% of the genotypes, impute the
genotyes with fastPHASE with various K between 4 and 12. Choose the K for which the genotypes are
correct as often as possible (was K = 8 for data used in Scheet and Stephens, 2006). But also suggest
to run with various K and compare results rather than relying on a single value of K.
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12.1.2 Phasing with Beagle software package

References

[BB07] S.R. Browning and B.L. Browning (2007) Rapid and Accurate Haplotype Phasing and Missing-
Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering
Am. J. Hum. Genet. 81:1084–1097

For an initial guess of the haplotypes first construct a directed acyclic graph (DAG), in which

• each edge has a level m corresponding to marker position m

• and a label corresponding to an allele occuring at marker position m,

• and for each of the occuring haplotypes hi = (hi1, . . . , hiM ) there is path from the start node to
the end node such that the labels of the edges are hi1, . . . , hiM .

• (If a node has ingoing edges of level m than all its outgoin edges are of level m+ 1, and vice versa.)

Method of graph construction described in paper by S.R. Browning (2006)
Then construct an HMM whose possible states at step m are ordered pairs of DAG edges of the same

level m. Transition probabilities:

P ((e1, e2)→ (e3, e4)) = P (e1 → e3) · P (e2 → e4),

where

P (ei → ej) =
]{haplotypes whose path contains ei and ej}

]{haplotypes whose path contains ei}

Emission probability: 1 if genotype at marker position m is compatible with labels of edges belonging
to state, otherwise 0.

Now use “diploid HMM” to sample for each individual several haplotypes (in Beagle software 4
haplotype pairs per individual). Pool these haplotypes to construct DAG for next iteration. For

sampling use forward algorithm restricted on states corrsponding to states of the focal individual, and
random tracebacks, with probabilities always proportional to current state. In last iterations use Viterbi

paths instead of random paths.

12.1.3 IMPUTE version 2

References

[HDM09] B.N. Howie, P. Donnelly, J. Marchini (2009) A Flexible and Accurate Genotype Imputation
Method for the Next Generation of Genome-Wide Association StudiesPLoS Genetics 5(6)

Similar to PAC-approach in PHASE, but is made for situation when reference haplotype data is
available. Reference haplotypes and unphased genotypes are used together in phasing update step. For

runtime efficiency untyped SNPs are imputed in haplotype HMM framework rather than in diploid HMM.

For accelaration restrict set of possible haplotypes in each iteration to those that are similar to existing
ones.
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12.1.4 MaCH

References

[LW+10] Y. Li, C.J. Willer, J. Ding, P. Scheet, G.R. Abscasis (2010) MaCH: Using Sequence and
Genotype Data to Estimate Haplotypes and Unobserved GenotypesGenet. Epidemiol. 24(8):
816–834

Similar to fastPHASE, but uses a larger number of haplotype templates instead of few haplotype
groupings. In emission probabilities use error parameter εj that can depend on position j and covers

sequencing error, gene conversion,. . .

12.1.5 polyHAP

References

[SW+08] S.Y. Su, J. White, D.J. Balding, L. J. M. Coin (2008) Inference of haplotypic phase and
missing genotypes in polyploid organisms and variable copy number genomic regions BMC
Bioinformatics 9:513

Similar HMM approach like fastPHASE but for polyploid data. Computationally very demanding

because states are unordered lists stating how many alleles have been sampled from how many clusters.
Thus, many possible transitions between hidden states are considered.
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