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1 Intro: Outline and Tree Notation

Tentative plan for phylogenetics part

• Maximum Likelihood v. Maximum Parsimony vs. Distance-based Phylogeny Inferrence

• Sequence Evolution Models (JC, F81, HKY, F84, GTR, PAM and Γ-distributed rates)

• Bootstrap

• MCMC and Bayesian Inferrence

• Calculations with sequence evolution models (and other stochastic processes)

• How to select a model

• Relaxed Molecular Clock and Time Calibration

• Independent Contrasts for Quantitative Traits
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• Tests for trees and branches

• Statistical Alignment (TKF91, TKF92, pairHMMs, multiple HMMs)

Aims

• Understand princples and rationales underlying the methods

• Explore available software

• What is efficiently doable, what is difficult?

• What are the strengths and weaknesses of the methods?

• Which method is appropriate for which dataset?

• Learn what is necessary to read papers about new computational methods

• Future directions of phylogenetics

Recommended Books

References

[Fel04] J. Felsenstein (2004) Inferring Phylogenies

[Yang06] Z. Yang (2006) Computational Molecular Evolution

[Niel05] R. Nielsen, [Ed.] (2005) Statistical Methods in Molecular Evolution

[DEKM98] R. Durbin, S. Eddy, A. Krogh, G. Mitchison (1998) Biological Sequence Analysis

[EG05] W. Ewens, G. ¸Grant (2005) Statistical Methods in Bioinformatics

ECTS and work load per week
For Computational Methods in Evolutionary Biology, 9 ECTS ≈ 0.6 per week, 18 hours per week:

• 4 hours lecture (each 45 min + break)

• 3 hours exercise sessions

• 6 hours homework (exercises)

• 5 hours study lecture contents

For Phylogentics, 6 ECTS = 0.8 per week, 24 hours per week:

• all as above plus

• 2 hours of practicals and additional exercise session

• 2 hours learn software, apply to data, prepare presentation

• 2 more hours to learn algorithms and maths
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How to study the content of the lecture
For the case that you are overwhelmed by the contents of this course, and if you don’t have a good

strategy to study, here is my recommendation:

1. Try to explain the items under “Some of the things you should be able to explain”

2. Discuss these explanations with your fellow students

3. Do this before the next lecture, such that you can ask questions if things don’t become clear

4. Do the exercises (at least some of them) in time

5. Study all the rest from the handout, your notes during the lecture, and in books

Terminology for trees

root

branch, edge

internal node

leaf, terminal node, tip, taxon

degree of a node = number of edges adjacent to the node

binary tree = fully resolved tree: root has degree two, all other nodes have degree 3

star−shaped tree partially resolved fully resolved

polytomy

?

A B EDC

A A AB B BC C CD D DE E E

or or

could be 

"soft polytomy" = uncertainty:

cladogram: branch lengths not meaningful
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=

C DBA D C B A

=

U V W X
U V

W X

as cladograms

=

1.5 1.5

0.5 0.5

3
2

C D

A

B

C D

3

1

1 1

2 2

=

1.5 1.5

0.5

3

C

0.5

2

D

BA B A

as additive trees

dendrogam = chronogram = ultrametric tree = additive trees that are compatible with molecular-
clock assumption, i.e. all tips have the same distance to the root

DCBA

A B C D

A

B

C

D

A C

B D

rooted additive tree

unrooted additive tree
(lengths have no meaning)

unrooted tree topology

Newick notation (simple examples)

A C D E

(((A,B),C),(D,E));

B

B

1 1 1 1

A C D E

3

1.1
2.1

2.2

(((A:1,B:1):1.1,C:2.1):2.2,(D:1,E:1):3);
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Some of the things you should be able to explain

• Basic terminology of rooted and unrooted trees

• basics of Newick notation

2 Distance-Based Phylogeny Reconstruction

2.1 What is a distance?

Given a set of taxa S = {s1, s2, . . . , sn} and matrix of distances (dij)ij≤n, where dij is the (estimated)
distance between si and sj we search for a tree whose tips are labeled with S and whose edges are labeled
with lengths, such that the distances between tips labeled with si and sj should be (approximately) dij
for all i, j.

s

l

l

l

l

l

l

s

s
2

1

1

2
4

s
4

5

s

5

l 6 7

3

3

For example, l2 + l6 + l7 + l3 should be (as close
as possible to) d1,3

Dis-

tances should be additive. E.g. the Hamming distance (number of observed differences) between DNA
sequences is in general not be additive if back-mutations or double-hits happened. A more useful distance
is the (expected) number of mutations according to a sequence evolution model; more about this later.

To be a proper distance matrix, (dij)ij≤n must fulfill the following requirements for all i, j, k:

• dij = dji

• dij = 0⇔ i = j

• dij + djk ≥ dik (triangle inequality)

2.2 UPGMA

UPGMA (Unweighted Pairwise Grouping Method with Arithmetic mean, Sokal & Michener, 1985) is
hierarchical cluster method using means:

for i ≤ n set Ci := {si}
C := {C1, . . . , Cn} is the current set of clusters
m := n
repeat . . .

• m := m+ 1

• find Ci, Cj ∈ C with minimum dij > 0

• Cm := Ci ∪ Cj

• C := C ∪ {Cm} \ {Ci, Cj}

• For all Ck ∈ C set

dkm := dmk :=
1

|Ck| · |Cm|
∑

sx∈Ck,sy∈Cm

dxy
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. . . until Cm = {s1, . . . , sn} and C = {Cm}.

s3

s2
s5

s1

s4

s2 s4s5 s1 s3

s3

s2
s5

s1

s4

s2 s4s5 s1 s3

C9

C6

C7
C8

common ways to define the distance between clusters C and C ′ cluster algorithms:

single linkage: d(C,C ′) = minsi∈C,sj∈C′ dij

complete linkage: d(C,C ′) = maxsi∈C,sj∈C′ dij

means (like in UPGMA): d(C,C ′) = 1
|C|·|C′|

∑
i∈C,j∈C′ dij

UPGMA works under ideal conditions
Assume the the there is an ultrametric tree (i.e. molecular-clock) in which the tips have exactly

the given distances dij . Then, UPGMA will find this tree.

Reason: in the first step UPGMA will correctly join the closest relatives.
As a consequence of the molecular clock assumption, UPGMA will define reasonable distances between

the clusters.
Example:

s1 s2 s3 s4 s5

C6
C7

From
d13 = d14 = d23 = d24

follows

d67 =
1

2 · 2
· (d13 + d14 + d23 + d24) = d13

s5C6 C7

This means that we are in the same situation as in the
first step: The clusters are tips of an ultrametric tree, and
the distances for the clusters are just like the distances of
any taxa in the clusters.

Thus, UPGMA will not only get the first step right but
also any other step.
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When UPGMA fails
If the tree is not compatible with molecular-clock assumptions, UPGMA may fail even if the precise

distances are known.

4

1

4

1

1

s1 s2

s3 s4

In this example, UPGMA will first join s1 and s2 and will
not have a chance to correct this in any later step.

Ultrametric distances

Theorem 1 Let D = (dij)ij be a distance matrix for (s1, . . . , sn). The following two properties are
equivalent:

(a) A binary tree exists that fulfills the molecular-clock assumption and the tips of this tree have the
distances given in D. (The distance between two tips is the sum of the lengths of the edges between
them.)

(b) D is ultrametric, i.e.

∀sets of three indices {i,j,k}∃i∈{i,j,k} : djk < dij = dik

2.3 Neighbor Joining

Idea: use modified distances that take into account how far a taxon is to all other taxa

Dij := dij − (ri + rj), where ri =
1

n− 2

∑
k

dik =
n− 1

n− 2
· di.

s1

s2

s4

s5

s3

Neighbor Joining algorithm (Saitou, Nei, 1987)
Input T = {s1, . . . , sn} with distance matrix (dij)i,j ≤n

NeighborJoining(T ):

• done if n ≤ 2

• compute all Dij

• find taxa si and sj in T with minimum Dij

• define internal node k with distances ∀m : dkm := 1
2 (dim +

djm − dij)

• NeighbourJoining({k} ∪ T \ {si, sj}) sj

sm

k

si
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Theorem 2 (Neighbor-Joining theorem, Studier & Keppler, 1988) If a tree exists whose tips
have precisely the distances given by (dij)ij, then Neighbor-Joining will find this tree.

Sketch of proof: assume that i and j are not neighbors and show that Dij can then not be minimal.
Let set of tips L1 and L2 be defined as below and assume w.l.o.g. |L1| ≤ |L2|. By definition,

Dij −Dmn = dij − dmn −
1

n− 2

(∑
u

diu + dju − dmu − dnu

)
.

Using additivity, we can show that

diy + djy − dmy − dny = dij + 2dky − 2dpy − dmn

and diz + djz − dmz − dnz = dij − dmn − 2dpk − 2d`zk

hold for all tips y ∈ L1 \ {n,m} and z ∈ L2.

And: dii + dji − dmi − dni + dij + djj − dmj − dnj = −4dkp − 2dmn
Further, we obtain din + djn − dmn − dnn = dij + 2dkp + 2dpn − dmn and dim + djm − dmm − dmn =

dij + 2dkp + 2dpm − dmn
With the equations above follows that

Dij −Dmn =

(∑
y∈L1\{m,n} 2dpy − 2dky

)
+
(∑

z∈L2
2dpk + 2d`zk

)
n− 2

> 2dpk(|L2| − |L1|)/(n− 2) (because of dpy − dky > −dpk)

≥ 0

and thus Dij > Dmn, q.e.d.

Some of the things you should be able to explain

• basic properties of distance measures

• how does UPGMA work

• what is different in the approach of neighbor joining (NJ)?

• under what conditions will UPGMA and/or NJ find the right tree?

• example when UPGMA and NJ lead to a different result

• when is a distance ultrametric and what does this mean for the tree?

3 Parsimony in phylogeny reconstruction

3.1 Parsimony of a tree

Given n homologous DNA or protein sequences

x1 = x1
1, x

1
2, . . . , x

1
m

x2 = x2
1, x

2
2, . . . , x

2
m

...
...

. . .
...

xn = xn1 , x
n
2 , . . . , x

n
m

e.g. n = 4:
Seq1 GCAGGGTAC

Seq2 GCAGGGAAC

Seq3 GCTGGCAAC

Seq4 GCAGGCAAC
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Which tree is most parsimonious, i.e. explains the data with the least number of mutations?

For this question we can neglect all non-polymorphic sites.
Which tree is most parsimonious?

A G

C

AG T

CA A A

A G A A G T

AG A A CA

ACT

AG

ACA CAT

Seq1

Seq3

Seq2

Seq4

Seq1

Seq2

Seq3

Seq4

Seq2

Seq3Seq4

Seq1

TA

T

2 1

1

2 1

1

1 1

1

ACA ACA

AG A ACAACA ACA

This one!

Given a tree whose tips are labeled with sequences, how can we efficiently compute the minimal
number of mutations?

ideas:

1. Do separately for each alignment col-
umn

2. label each inner node with the optimal
states for the tips above it and with
the least number of mutations

3. go from tips to root by dynamic pro-
gramming

A G A T

A G A T

1

{A,G}

1

{A,T}

2

{A}

Fitch algorithm
C is a counter of mutations, and Mk is the set of optimal states in node k.
Do for all sites s:

1. Cs := 0 will be the counter of mutations at that site

2. for all tips b with label x set Mb = {x}.

3. Moving from tips to root do for all nodes k with daughter nodes i and j:

if Mi ∩Mj = ∅: set Mk = Mi ∪Mj and Cs := Cs + 1

else: set Mk = Mi ∩Mj

output
∑
s Cs
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weighted parsimony
It is possible to take into account that different types of mutations (e.g. transitions and transversions)

differ in the frequency by defining a cost S(a, b) for a mutation a→ b.

A variant of the Fitch algorithm calculates the minimal cost of a given tree to generate given sequences
at the tips. ( exercise)

3.2 Finding parsimonious trees for given data

Given a large number n taxa, it is not feasible to consider all trees, because the number of unrooted
bifurcating trees with n taxa is

3× 5× 7× · · · × (2n− 5)

n 3× 5× 7× · · · × (2n− 5)
5 15
7 945

10 2,027,025
12 654,729,075
20 2.2 · 1020

50 2.8 · 1074

100 1.7 · 10182

for comparison:
(estimated number of atoms in the observable universe) × (number of second since big bang) ≈

5 · 1097

problem of perfect parsimony
Given n sequences of length m with up to 2 different states per position (alignment column). Is there

a perfectly parsimonious tree, i.e. one that never has more than one mutation at the same position?

Idea: each polymorphism defines a split of the set of taxa L =
A ∪B, A ∩B = ∅.
A branch of a tree also defines a split of L

Go through the alignment from left to right and further subdivide L until there is a contradiction or
you reach the end of the alignment.

Theorem 3 (Four-gamete condition) A contradiction will occur if and only if there are two polymor-
phisms that lead to two splits L = A∪B = C∪D such that the four intersections A∩C,A∩D,B∩C,B∩D
are all non-empty.

This gives us an efficient solution for the problem of perfect parsimony. How about a slight general-
ization?

Given n homologous sequences of length m with up to r different states in each column.
Is there a perfectly parsimonious tree, i.e. one without back-mutations and without more than one

mutation into the same state in the same position?

complexity: NP-complete for unbounded r and polynomial for any fixed r ∈ N.

The problem of maximum parsimony
Given n homologous sequences of length m with up to 2 different states in each column, find the tree

that needs the minimum number of mutations to explain the tree.

complexity: NP-complete

There is a method that can guarantee to find a tree that needs at most twice as many mutations
as needed by the most parsimonious tree. However, in practice heuristic search algorithms are more
relevant.
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enumerating all tree topologies
The sequence of numbers [i3][i5][i7] . . . [i2n−5] with ik ∈ {1, . . . , k} represents a tree topology with n

labeled leaves. It can be decoded as follows.

• Start with a 3-leaved tree whose leaves are labeled with x1, x2, x3 and whose edges are labeled
accordingly with 1,2,3.

• repeat for j = 4, . . . , n:

1. k := 2j − 5

2. Add an edge to the new leaf xj to edge ik

3. Call the new edge k + 2.

4. In the subdivided edge ik, give the part that is closer to x1 the label k + 1. The other part
keeps the label ik.

enumerating all tree topologies
Example:

1

2 3

x1

x2 x3

x4

5

4

x5

7

69

x6

8

This tree can be represented by [3][2][7]

enumerating all labeled tree topologies
Enumerate leaves-labeled topologies by iterating [a][b][c]....[x] like a mileage counter for all allowed

values (a ≤ 3, b ≤ 5, c ≤ 7, . . . ):

[1] [1] [1] ... [1] [1] [1]
[1] [1] [1] ... [1] [1] [2]
[1] [1] [1] ... [1] [1] [3]

...
[1] [1] [1] ... [1] [1] [2n− 5]
[1] [1] [1] ... [1] [2] [1]
[1] [1] [1] ... [1] [2] [2]
[1] [1] [1] ... [1] [2] [3]

...

Branch and Bound
Let

[3][4][2]....[19][0][0][0]

denote the tree in which the last three taxa are not yet inserted. (zeros are only allowed at the end of a
series).
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Now we also iterate over these trees. If, e.g. u,v,w,x,y are the maxima of the last five positions:

[a][b][c]...[m− 1][u][v][w][x][y]
[a][b][c] . . . [ m ][0][0][0][0][0]
[a][b][c] . . . [ m ][1][0][0][0][0]
[a][b][c] . . . [ m ][1][1][0][0][0]
[a][b][c] . . . [ m ][1][1][1][0][0]

If the tree corresponding to [a][b][c]...[m][1][1][1][0][0] already needs more mutations than the best tree
found so far, go directly to

[a][b][c]...[m][1][1][2][0][0] (“Bound”)

“Branch and Bound” saves time and can be used in practice for up to about 11 taxa.

For larger numbers of taxa we need to move around in tree space and try to optimize the tree topology.
Possible steps are

NNI: nearest neighbor interchange

SPR: subtree pruning and regrafting

TBR: tree bisection and reconnection

Nearest Neighbor Interchange

A

B

E

F

G

D

C
H

I
J

K

A

B

E

F

G

D

C
H

I
J

K

A

B

E

F

G

D

C
H

I
J

K

Subtree Pruning and Regrafting

A

B

D E

F

G

C

C D E

F

G

A

B

Tree Bisection and Reconnection
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Note that each NNI move is special type of SPR move where the pruned subtree is regrafted in an
edge neighboring the original edge.

Each SPR move is a special TBR where one of the nodes of the new edge is the old node.

3.3 Limitations of the parsimony principle

limitations of parsimony
Parsimonious phylogeny reconstruction methods do not take back mutations and double-hits into

account in a proper way. This can lead to problems when there are long branches with many mutations.

C D C D

A B
BA

“long-branch attraction”

Comparison of phylogeny estimation methods

Durbin et al. (1998) simulated for several sequence lengths 1000 quartets
of sequences along this tree to compare the accuracy of phylogeny recon-
struction methods. Branch lengths are mean frequencies of transitions
per position. (no transversions)

0.1 0.09 0.1

0.30.3

Proportion of correctly estimated trees
Seq.length Max.Pars. Neigh.Join. ML

20 39.6% 47.7% 41.9%
100 40.5% 63.5% 63.8%
500 40.4% 89.6% 90.4%
2000 35.3% 99.5% 99.7%

Some of the things you should be able to explain

• What is the Fitch algorithm and how does it work?

• the four-gamete condition and how it helps to solve the perfect-parsimony problem

• NP-complete problems in parsimonious phylogeny reconstruction

14



• how to enumerate all trees and how to branch and bound

• how NNI, SPR and TBR are related to each other

• when will parsimony fail even if for very long sequences?

4 Measures for how different two trees are

The symmetric difference (aka “partition metric”)
Bourque (1978), Robinson and Foulds (1981)

A

B

C

D

E

F

A

B

C
D

E

F

Each edge in the tree is a partition of the set of taxa. The symmetric difference is the number of
edges that exist in one tree but not in the other.

quartet distance
for fully resolved trees of n taxa.

A

B

C

D

E

F

A

B

C
D

E

F
(AC|DE)              (AE|CD)
(AC|DF)              (AF|CD)
(BC|DE)              (BE|CD)
(BC|DF)              (BF|CD)

(AB|CD), (AB|CE), (AB|CF), (AB|DE), (AB|DF), (AB|EF),
(AC|EF), (AD|EF), (BC|EF), (BD|EF), (CD|EF) 

Each of the
(
n
4

)
quartets of taxa have a tree topology in each tree. The quartet distance is the relative

frequency of quartets for which the topologies do not coincide.

NNI distance
Waterman, Smith (1978)

The NNI distance is the number of NNI moves needed to change the one tree topology into the other.

Problem: It has been shown that the computation of the NNI distance is NP-hard.

Allen and Steel (2001) showed that the TBR distance is easier to compute.

Path-length difference metric
Penny, Watson, Steel 1993

Let nTab be the number of edges that separate taxa a and b in tree T . Then, the path-length difference
metric between the trees T and T ′ is defined as√∑

a,b

(
nTab − nT

′
ab

)2
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taking branch lengths into account
For each partition P of the taxa set let fT (P ) be the length of the corresponding edge in tree T if

such an edge exists. Otherwise set fT (P ) = 0

A

B

C

D

E

F

A

B

C
D

E

F

branch score distance (Kuhner, Felsenstein, 1994)∑
P

(fT (P )− fT ′(P ))
2

Robinson-Foulds distance ∑
P

|fT (P )− fT ′(P )|

Some of the things you should be able to explain

• symmetric difference

• branch score distance

• Robinson-Foulds distance

• Why some other distances are hard to compute

5 Maximum-Likelihood (ML) in phylogeny estimation

5.1 What is a likelihood?

Frequentistic parameter estimation

• Assume that we observe some data D.

• D is influenced by random effects but a parameter p plays a role.

• We are interested in the value of p

• D is random but observed

• p is unknown but not random

• A model describes how the probability of D depends on p

Maximum-Likelihood principle: estimate p by

p̂ = arg max
p

Prp(D)

To describe how Prp(D) depends on p we define the likelihood function:

LD(p) := Prp(D)

The ML estimator p̂ is the parameter value that maximizes the probability of the observed data.
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simple example
If you toss a thumbtack, what is the probability p that the sting touches the ground?
Assume you made and experiment. In 1000 tosses, the sting touched the ground 567 times.

p̂ = arg max
p

Prp(567) = arg max
p

(
1000

567

)
p567 · (1− p)1000−567

We calculate the derivative with the product rule and set it to 0 to look for the maximum:

∂

∂p

(
p567 · (1− p)433

)
= 567 · p566 · (1− p)433 − p567 · 433 · (1− p)432

0 = 567 · p̂566 · (1− p̂)433 − p̂567 · 433 · (1− p̂)432

As it is clear that 0 < p̂ < 1, we can divide both sides of the equation by p̂566 · (1− p̂)432
and obtain

0 = 567 · (1− p̂)− p̂ · 433 ⇒ p̂ = 0.567.

Another approach to solve this uses the (natural) logarithm:

p̂ = arg max
p

Prp(567) = arg max
p

(
1000

567

)
p567 · (1− p)1000−567

= arg max
p

log
(
p567 · (1− p)433

)
= arg max

p
567 · log(p) + 433 · log(1− p)

= arg max
p

log
(
p567 · (1− p)433

)
= arg max

p
567 · log(p) + 433 · log(1− p)

∂

∂p
(567 log(p) + 433 log(1− p)) =

567

p
− 433

1− p

⇒ 0 =
567

p̂
− 433

1− p̂
⇒ p̂ = 0.567

Important: the parameter p is not a random object. Thus it does not make sense to ask for the
probability that it takes some particular value p0. However, the likelihood of p0 is defined. It is the
probability of the observed data if p = p0.

5.2 How to compute the likelihood of a tree

ML estimation of phylogenetic trees: Given an alignment D, find the tree T that maximizes

Pr(D|T ) =: LD(T ), T̂ := arg max
T

LD(T )

What is Pr(D|T ) and how can we compute it?

We assume that all alignment columns evolve independently of
each other. Then

Pr(D|T ) =
∏
i

Pr(di|T ),

where di is the sequence data in the i-th alignment column.

3

51 2
l

l

l

l

l l

4

6

ACG CCG AGG TCG

But how can we compute Pr(di|T )?
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How to compute Pr(di|T ) = Ldi(T )?
Let’s first assume that di also contains labels of the inner nodes.
Assume that for all nucleotide x, y and all ` ∈ R>0 we can com-
pute the frequency px of x and the probability Px→y(`) that an
x is replaced by a y along a branch of length `.

C A TA

3

51 2
l

l

l

l

l l

4

6

C A TA

3

51 2
l

l

l

l

l l

4

6
A

T

G

Then, we get for the example tree

Pr(di|T ) = pG · PG→A(`3) · PG→T (`4) ·
·PA→A(`1) · PA→C(`2) ·
·PT→A(`5) · PT→T (`6).

But usually, inner nodes are not labeled. What to do then?

Felsenstein’s pruning algorithm

For each node k let Dk be the part of the data di that are labeled
to tips that stem from k and define

wk(x) = Pr(Dk|k has an x at this site )

for every nucleotide x.

D
A C C A TG G C T

k

k

Idea: compute wk(x) for all k and all x. Then you know it also for the root r and can compute

L(T ) = Pr(D|T ) = Pr(Dr|T ) =
∑

x∈{A,C,G,T}

px · wr(x).

Compute all wk(x) from the tips to the root by dynamic programming.
For any leave b with nucleotide y we have

wb(x) =

{
0 if x 6= y
1 if x = y

ll

i j

k
ji

If k is a node with child nodes i and j and corresponding
branch lengths `i and `j , then

wk(x) =

 ∑
y∈{A,C,G,T}

Px→y(`i) · wi(y)

 ·
 ∑
z∈{A,C,G,T}

Px→z(`j) · wj(z)



5.3 Jukes-Cantor model of sequence evolution

How to compute Px→y(`)?

You need a model for sequence evolution.The simples one is the Jukes-Cantor model:
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• all sites independent of each other (given the tree)

• all px equal

• “mutations” appear at rate λ

• a “mutation” lets the site forget its state and sample the new one uniformly from {A,C,G, T}.
(i.e. A can be replaced by another A)

• (in original paper for protein sequences)

What is a rate?
Let Ma,b be the number of “mutations” in time interval [a, b].

• Rate λ means that the expected number of “mutations” in a time interval of length t is λt:

EM0,t = λt

• If ε > 0 is extremly small, then the we may neglect the probability of more than one “mutation”
in a time interval of length ε.

• Then, λε is not only the expected number of mutations but also the probability that there ist one
in that time interval:

Pr(M0,ε > 0) ≈ Pr(M0,ε = 1) ≈ EM0,ε = λε

• numbers of “mutations” on disjoint intervals are stochastically independent

For longer time intervals [0, t] we choose a large n ∈ N and argue:

Pr(M0,t = 0) = Pr(M0,t/n = 0,Mt/n, 2t/n = 0, . . . ,M(n−1)t/n, t = 0)

= Pr(M0,t/n = 0) · Pr(Mt/n,2t/n = 0) · · ·Pr(M(n−1)t/n,t = 0)

≈
(

1− λ t
n

)n
n→∞−→ e−λt

This means: the waiting time τ for the first mutation is exponentially distributed with rate λ. This
means it has

Pr(τ > t) = e−λt

expectation value Eτ = 1/λ

standard deviation στ = 1/λ

density f(t) = λ · e−λt
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

t

la
m

bd
a*

ex
p(

−
la

m
bd

a*
t)

lamda=2
lambda=1
lambda=0.5

This means Pr(τ ∈ [t, t+ ε]) ≈ f(t) · ε for small ε > 0.
After this preparation we can finally compute Px→y(t), first for y 6= x:

Px→y(t) = Pr(M0,t > 0) · Pr(last “mutation” leads to y)

=
(
1− e−λt

)
· 1

4

and

Px→x(t) = Pr(M0,t = 0) + Pr(M0,t > 0) · Pr(last “mutation” leads to x)

= e−λt +
(
1− e−λt

)
· 1

4

=
1

4
+

3

4
e−λt
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Overview of DNA substitution models

Jukes-Cantor-Modell (JC): nucleotide type not considered.
from\ to A C G T

A — α α α
C α — α α
G α α — α
T α α α —

Kimura’s 2 Parameter Model (K2) transitions more frequent than transversions.

from\ to A C G T
A — α β α
C α — α β
G β α — α
T α β α —

Felsenstein (1981) (F81) takes nucleotide frequencies (πA, πC , πG, πT ) into account.

from\ to A C G T
A — απC απG απT
C απA — απG απT
G απA απC — απT
T απA απC απG —

Hasegawa, Kishino und Yano (HKY) regards nucleotide frequencies as well as differences between
transitions and transversions.

from \ to A C G T
A — απC βπG απT
C απA — απG βπT
G βπA απC — απT
T απA βπC απG —

Felsenstein (1984) (F84) also regards nucleotide frequencies and differences between transitions and
transversions. No matrix algebra is needed to compute transition probabilities,

from\ to A C G T
A — λπC λπG + µπG

πA+πG
λπT

C λπA — λπG λπT + µπT
πC+πT

G λπA + µπA
πA+πG

λπC — λπT
T λπA λπC + µπC

πC+πT
λπG —

The General Time-Reversible Model (GTR) considers differences between pairs of nucleotide
types.

von\ nach A C G T
A — απC βπG γπT
C απA — δπG επT
G βπA δπC — ηπT
T γπA επC ηπG —

In the models F81, F84, HKY and GTR, (πA, πC , πG, πT ) is the stationary distribution, in JC and K2
( 1

4 ,
1
4 ,

1
4 ,

1
4 ). All these models are reversible. We will discuss later how to calculate transition probabilities

Px→y(t) for all these models.

Some of the things you should be able to explain

• What is a likelihood and why don’t we just say “probability”?

• How to calculate the likelihood of a tree with Felsenstein’s pruning algorithm
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• What exactly is the meaning of wk(A) in Felsentein’s pruning algorithm?

• How does the runtime of Felsenstein’s pruning algorithm scale with the size of the tree?

• What is a mutation rate and what is the probability distribution is the time until a mutation
occurs?

5.4 Reversibility and convergence into equilibrium

Markov chain
A (discrete-time) Markov chain is a sequence of random variables X1, X2, X3, . . . on a state space

Z such that for every “time point” n the next state Xn+1 depends only on the present Xn but not
additionally on the previous states.As formula:

∀n∈N,a,b,c,d,···∈Z Pr(Xn+1 = a | Xn = b) = Pr(Xn+1 = a | Xn = b,Xn−1 = c,Xn−2 = d, . . . )

Example: Xn is the nucleotide at some position in generation
n.
(The Markov assumption is a simplification.)

A C

G T

Markov jump process
For each time point t > 0 there is a random variable Xt on the state space Z such that if Xt = z

then a “jump” to a different state y ∈ Z occurrs a rate λ that only depends on Xt but in addition to
this not on any Xs with s < t.

Examples: Jukes-Cantor, K2, HKY, F84, GTR,. . .
Let X = (X1, X2, . . . ) or (Xt)t∈R≤0

be a Markov chain with finite state space Z and transition
probabilities Px→y(t) for t ∈ N or t ∈ R≥0.

The transition dynamics P is irreducible, if

∀x,y∈Z∃t : Px→y(t) > 0.

In the discrete-time case, P is periodic, if

∃z∈Z,k>1∀n∈N\{k,2k,3k,... }Pz→z(n) = 0

Otherwise, P is called aperiodic.
Note that the models JC, K2, F81, F84, HKY and GTR are

irreducible because mutations from each state to each other state have positive probability and

aperiodic because the possibility to stay in a state for arbitrary time already destroys all periodicities.
(That is, continuous-time Markovian jump processes are always aperiodic.)

Theorem 4 Each aperiodic irreducible transition dynamic (or rate matrix) P on a finite state space Z
has one and only one stationary distribution (πz)z∈Z , i.e.

∀z∈Z πz =
∑
x∈Z

πx · Px→z,

and converges against this distribution in the sense that

∀x,z lim
t→∞

Px→z(t) = πz,

where Px→z(t) is the transition probability from x to z for time span t.
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An equivalent expression for stationary distribution is equilibrium distribution.
Sketch of proof of convergence: Start two Markov chains X and Y with transition matrix P , one

with X1 in x and one with Y1 taken from the stationary distribution. When they meet in some step k,
i.e. if Xk = Yk, couple them: Xj = Yj for all j > k. If P is irreducible and aperiodic, and the probability
qk that X and Y do not meet before step k converges to 0, and

|Pr(Xj = z)− πz| = |Pr(Yj = z)− Pr(Xj = z)|
= |Pr(Yj = z,Xj = Yj) + Pr(Yj = z,Xj 6= Yj)

−Pr(Xj = z,Xj = Yj)− Pr(Xj = z,Xj 6= Yj)|
= |Pr(Yj = z,Xj 6= Yj)− Pr(Xj = z,Xj 6= Yj)|
≤ max{Pr(Yj = z,Xj 6= Yj) , Pr(Xj = z,Xj 6= Yj)}
≤ qj −→ 0.

A Markov chain with transition matrix P (or rate matrix P in the continuous-time case) and sta-
tionary distribution (πz)z∈Z is reversible if

∀z,y∈Z : πz · Pz→y = πy · Py→z.

(“detailed-balance condition”)

Note: the detailed-balance condition already implies that (πz)z∈Z is a stationary distribution of P .
The evolutionary dynamics described by Jukes-Cantor, F81, F84, HKY, GTR or PAM matrices are

reversible. If we assume reversibility and no molecular clock, the likelihood does not depend on the
position of the root in the tree topology.

x yz

s t

If the root divides a branch of length s + t into sections of length s and t, reversibility implies that
the probability stays the same if we move the root into one of the nodes:∑

z

πz · Pz→x(s) · Pz→y(t) =
∑
z

πx · Px→z(s) · Pz→y(t)

= πx · Px→y(s+ t)

= πy · Py→x(s+ t)

Some of the things you should be able to explain

• JC, K2, F81, HKY, GTR

• What is a Markov chain and what is convergence of a Markov chain?

• What is a stationary distribution and under what conditions will a Markov chain on a finite state
space converge against it?

• What do “equilibrium”, “stationary distribution”, “reversibility” and “detailed balance” have to
do with each other?

• consequences of reversibility of substitution models for the placement of the root in ML trees

• examples in which reversibility does not hold for in sequence evolution and why it is still common
as a model assumption
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5.5 How to search for the ML tree

Given a large number n of taxa (i.e. sequences), it is difficult to find the ML phylogeny. Two partial
problems have to be solved:

1. Given the tree topology, find the optimal branch lengths

2. Find the tree topology for which your solution of problem 1 leads to the highest likelihood value.

We first turn to problem 1.

Tree length optimization in the very first version of PHYLIP dnaml
Expectation-Maximization (EM) algorithm: Iterate the following steps:

E step given the current branch lengths and rates, compute the expected number of mutations for each
branch

M step optimize branch lengths for the expected numbers of mutations computed in the E step

More common: use the derivative of the likelihood with respect to the branch length

To optimize the length b of some branch, first rotate
it, such that one of its adjacent nodes is the root.

k
i

j

r

h

D
D D

l

i j
k

b

First we assume that the alignment D has only one column. Then, LD(T ) is
∑
x px ·

∑
y Px→y(b) ·wk(y) ·

(
∑
z Px→zwi(z)) · (

∑
z′ Px→z′wj(z

′)).

⇒
∂LD(T )
∂b =

∑
x px ·

∑
y
∂Px→y(b)

∂b · wk(y) · (
∑
z Px→zwi(z)) · (

∑
z′ Px→z′wj(z

′))

and ∂2LD(T )
∂b2 =

∑
x px ·

∑
y
∂2Px→y(b)

∂b2 · wk(y) · (
∑
z Px→zwi(z)) · (

∑
z′ Px→z′wj(z

′))
In the Jukes-Cantor model we can compute for example for x 6= y:

∂

∂b
Px→y(b) =

∂

∂b

(
1− e−λb

)
· 1

4
=

1

4
λe−λb

∂2

∂b2
Px→y(b) = −1

4
λ2e−λb

For alignments D with columns D1 . . . Dm we can compute all L′h := ∂
∂bLDh(T ) and L′′h := ∂2

∂b2LDh(T )
as explained above, and then compute the first two derivatives of LD(T ) =

∏
h LDh(T ) by applying the

product rule for derivatives:

∂

∂b
LD(T ) = LD(T ) ·

∑
h

L′h
LDh(T )

and

∂2

∂b2
LD(T ) = LD(T ) ·

∑
h

 L′′h
LDh(T )

+
∑
` 6=h

L′h · L′`
LDh(T ) · LD`(T )


To optimize b, solve

f(b) :=
∂LD(T )

∂b
= 0.

This is done numerically with a Newton-Raphson scheme using f ′(b) = ∂2LD(T )
∂b2 .
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Newton-Raphson scheme to solve f(b) = 0

1. Start with some initial value b0

2. as long as f(b0) is not close enough to 0, replace b0 by b0 − f(b0)/f ′(b0) and try again.

f(b )0

b
0

0
b=b − f(b )/f’(b )

0 0

Optimizing the topology
Now that we know how to search for the optimal tree, given the topology, how do we search for the

best topology?

stepwise addition (default of DNAML):

• start with the only possible tree of the first three taxa

• stepwise add one taxon

• to do this when k taxa are already added, try all 2k − 5 possible branches to add the next taxon,
optimize branch lengths

• when all are added, optimize with NNI steps

• repeat whole procedure with different input orders

branch and bound if only few taxa
Start with NeighborJoining and continue with SPR is nowadays most common
Supertree methods like TREE-PUZZLE: ML for all quartets, then build tree that respects most of

them.

Some of the things you should be able to explain

• What is the Newton-Raphson scheme and how is it used in ML phylogeny methods

• How to modify the Felsenstein pruning algorithm to calculate derivatives of the likelihood

• strategies of DNAML and more recent ML programs to optimize the topology

5.6 Maximum Parsimony from a probabilistic perspective

If we assume a probabilistic substitution model, we can set s(a, b) = − logPa→b(1) and use the values
s(a, b) as costs in weighted parsimony. Thus, maximum parsimony can be considered as an approximation
for the case that

1. all edges in the tree have the same length

2. double-hits and back-mutations are negligible
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5.7 Maximum likelihood for pairwise distances

Jukes-Cantor model
Let the rate of “mutations” in which nucleotides “forget” their type be α.
Probability of segregating site with branch length t:

3

4
·
(
1− e−α·t

)

0 1 2 3 4

0.
0

0.
4

0.
8

alpha * t

0.
75

*(
1−

ex
p(

−
al

ph
a*

t)
)

This is also the expectation value for the fraction of sites that are segregating.
Given a substitution model with known parameters we can compute the ML distance dML

xy between
sequence x = (x1, x2, . . . , xn) and sequence y = (y1, . . . , yn) by

dML
xy = arg max

t

{∏
i

πxi · Pxi→yi(t)

}

= arg max
t

{∏
i

Pxi→yi(t)

}

E.g. for the Jukes-Cantor Model with rate α we get in the case of k mismatches:

∏
i

Pxi→yi(t) =

(
1

4
(1− e−tα)

)k (
1

4
(1 + 3e−tα)

)n−k
Optimizing this with the usual procedure we get:

dML
xy = − 1

α
· ln
(

1− 4k

3n

)
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L(
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This ML estimator is consistent, i.e. will give us the true distances in the limit of long sequences.
This implies that applying NeighborJoining to the ML distances is also consistent.

If the sequecens are not extremely long, direct ML methods may tend to give more reliable results
(as long as they are computationally tractable.)

5.8 Consistency of the Maximum-Likelihood method

Theorem 5 The ML estimator for phylogenetic trees is consistent. This means, if the model assump-
tions are fulfilled and you add more and more data (i.e. make the sequences longer) for a fixed set of
taxa, the probability that the ML tree will converge against the true tree is 1.

Note:

1. the ML tree is the tree with the highest likelihood. ML tree estimation programs do not always
find the ML tree
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2. the model assumptions include a model for the substitution process and that all sequence positions
are independent and correctly aligned

Sketch of proof for the consistency of the ML tree:

Let a1, . . . , am be the different alignment columns and let n1, . . . , nm be their numbers of occurrences
in the data D. The likelihood of a tree T is then

L(T ) = Pr(D | T ) =

m∏
i=1

Pr(ai | T )ni

Idea of the proof: the probabilities Pr(ai | T ) are characteristic for T , and those of the true tree will be
reflected in the relative frequencies Ri = ni/n with n = n1 + · · ·+ nm.

The log likelihood is

lnL(T ) =

m∑
i=1

ni ln Pr(ai | T ) = n ·
m∑
i=1

Ri ln Pr(ai | T )

For long sequences we get Ri → pi, where p1, . . . , pm are the (unknown) probabilities of a1, . . . , am for
the true tree T ∗. Let q1, . . . , qm be those probabilities for some other tree T .Then we obtain

1

n
lnL(T )

n→∞−→
m∑
i=1

pi ln qi and
1

n
lnL(T ∗)

n→∞−→
m∑
i=1

pi ln pi.

For p 6= q we get
m∑
i=1

pi ln qi <

m∑
i=1

pi ln pi,

because
m∑
i=1

pi ln pi −
m∑
i=1

pi ln qi =

m∑
i=1

pi ln
pi
qi
> 0,

and the last inequation follows since
∑m
i=1 pi ln pi

qi
is the relative entropy, also called Kullback-Leibler-

Information, which is positive for p 6= q.
∑m
i=1 pi ln pi

qi
= −

∑m
i=1 pi ln qi

pi
> −

∑m
i=1 pi

(
qi
pi
− 1
)

=

−
∑m
i=1 qi +

∑m
i=1 pi = −1 + 1 = 0

Some of the things you should be able to explain

• What does consistency of ML tree reconstruction mean?

• implicit model assumptions in parsimony (from a frequentist perspective)

• How to estimate evolutionary distances of sequences accounting for back-mutations and double hits

6 Bootstrapping

6.1 The concept of bootstrapping

Assume a panmictic Hardy-Weinberg population and a locus in equilibrium with genotypes MM , MN ,
and NN .This means, the frequencies of these genotypes are (1 − θ)2, 2θ(1 − θ), and θ2, where θ is the
frequency of allele N .

Assume the following observations:
MM MN NN total
342 500 187 1029
X Y Z

(Example taken from Rice (1995) Mathematical Statistics
and Data Analysis. Duxbury press.)

We estimate θ by θ̂ = 2Z+Y
2(X+Y+Z) = 0.4247. How accurate is this estimation?
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Simulate 1000 datasets, each consisting of 1029 individuals drawn from a Hardy-Weinberg population
with frequency 0.4247 of allele N .

Let θ∗1 , θ
∗
2 , . . . , θ

∗
1000 be the estimates of θ from the 1000 datasets. We can then estimate the standard

deviation of our estimator θ̂ by

σθ̂ ≈

√√√√∑i

(
θ∗i − θ̂

)2

1000

Bootstrapping is a general approach in statistics that is often used to assess the accuracy of an
estimator.

It is based on the following idea: If we estimate a parameter θ by θ̂, we can check the accuracy of
the estimation method with simulated data.

Problem: We do not know the true value of θ but need a value for the simulations.

idea: We pull ourselves up by our own bootstraps by using θ̂ for the simulations and assume that the
difference θ̂− θ∗, where θ∗ is the estimation from the simulated data, has a similar distribution as θ− θ̂:

L(θ − θ̂) ≈ L(θ̂ − θ∗)

Since wie use the parameter and assumptions about its distribution, this is called paramteric bootstrap.
In the next example we use non-parametric bootstrapping, which means that we just the original data to
simulate new data.
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We have caught 20 fishes
from a lake and want to esti-
mate the distribution of size
and weight in the popula-
tion by the sample means.
How accurate is this estima-
tion? Idea: simulate sam-
pling from a population by
putting the 20 fishes into a
pond and take a sample of
size 20. To avoid getting pre-
cisely the same sample, sam-
ple with replacement. Com-
pute the mean length and
weight from the “bootstrap
sample”. Repeat this proce-
dure 1000 times. The 1000
pairs of means can be used
for bias correction and to es-
timate the variance of the es-
timator.

Bias correction: θ̂ − (θ∗ − θ̂) = 2θ̂ − θ∗

6.2 Bootstrap for phylogenetic trees

non-parametric bootstrap of an alignment
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A bootstrap alignment has the same length as the original alignment. It consists of columns that
were randomly drawn from the original alignment with replacement. To the bootstrap alignment we
apply the same phylogeny reconstruction method as for the original alignment.

We repeat this many times and thus get many bootstrap trees. We label each branch of our originally
reconstruted tree by the percentages of bootstrap trees that have this branch. These bootstrap values
are supposed to give an impression of how reliable the branches are.

Alternatives to non-parametric bootstrap:

Jackknife: Create shorter alignments, e.g. 90%, by sampling without replacement. Like in non-parametric
bootstrapping, the bootstrap dataset is slightly less informative than the original data.

Parametric Bootstrap: Use the estimated tree and substitution rates estimated along with the tree
to simulate new data. (Disadvantage: does not take uncertainty about the substitution model into
account.)

6.3 How can we interprete the bootstrap values?

There are at least three different interpretations of the bootstrap values of tree branches:

1. posterior probability of the branch

2. measures of repeatability

3. confidence levels for the existence of the branch

None of these interpretations is perfect.
Are bootstrap values posterior probabilities?

Rather not, because posterior probabilities depend on the prior, and the bootstrap values do not (at
least if a non-Bayesian method was used for tree reconstruction).

Do bootstrap values measure repeatability?

This is the original interpretation of Felsenstein, who first proposed bootstrapping for phylogenetic
trees. However, the bootstrap value can only be an approximative measure because the bootstrap
sample is slightly less informative than the original sample. The question is also what repeatability
would actually mean? If the analysis is repeated with different data, varitions between loci may play a
role, which is not incorporated in bootstrapping.

Are bootstrap values confidence levels?

If a branch has a bootstrap value 97% and this is interpreted as confidence level, then this means the
following: Under the null hypothesis that the branch is actually not there or has length 0, the probability
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of getting a bootstrap support of 97% is 100%-97%=3%. This means: Among all branches that appear
in the estimated trees but are actually wrong, only 3% get such a high bootstrap level.

It has been conjecured that bootstrap values underestimate confidence because bootstrap datasets
are less informative than the original dataset. However, this argument disregards that the bootstrap
result θ∗ does not need to be an approximation for θ, but θ∗ − θ̂ should be an approximation for θ̂− θ.

References

[EHH96] B. Efron, E. Halloran, S. Holmes (1996) Bootstrap confidence levels for phylogenetic trees.
Proc. Nat. Acad. Sci. U.S.A. 93(13):429–434

show that bootstrap values can either over- or underestimate confidence, but are at least first-order
approximations of confidence values. They propose a meta-bootstrap procedure to correct the over- or
underestimation for each branch.

Some of the things you should be able to explain

• difference between parameteric and non-parameteric bootstrap

• how is bootstrap applied in phylogenetics

• Basic assumption of bootstrapping and what it means, e.g. for bias correction

• possible interpretations of bootstrap values on branches and why none of these interpretations is
perfect

7 Bayesian phylogeny reconstruction and MCMC

7.1 Principles of Bayesian statistics

In Bayesian statistics, also model parameters are random variables and thus have probability distribu-
tions.

E.g. for a phylogenetic tree T :

prior probability distribution: P (T ) is the probability density of the tree T disregarding the data,
e.g. we could a priori assume a uniform probability density for all trees up to a certain total branch
length.

posterior probability distribution: P (T |D) is the conditional probability density of the tree T , given
the data D.

Bayes-Formula:

P (T |D) =
P (T,D)

Pr(D)
=

Pr(D|T ) · P (T )∫
T ′

Pr(D|T ′) · P (T ′) dT ′

Computing

P (T |D) =
Pr(D|T ) · P (T )∫

T ′
Pr(D|T ′) · P (T ′) dT ′

is not trivial. We can compute Pr(D|T ) = PrT (D) = LD(T ) by Felsenstein pruning and P (T ) is defined
by our prior distribution, but integrating over all trees is difficult.

What we can compute is the ratio of the probabilities of two candidate trees TA and TB :

P (TA|D)

P (TB |D)
=

Pr(D|TA)·P (TA)∫
T ′ Pr(D|T ′)·P (T ′) dT ′

Pr(D|TB)·P (TB)∫
T ′ Pr(D|T ′)·P (T ′) dT ′

=
Pr(D|TA) · P (TA)

Pr(D|TB) · P (TB)
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7.2 MCMC sampling

We are not just interested in finding the maximum a-posteriori (MAP) tree

arg maxTP (T |D),

but, very much in the spirit of Bayesian statistics, to sample trees from the posterior distribution, that is,
to generate a set of (approximately) independent random trees T1, T2, . . . , Tn according to the probability
distribution given by P (T |D). This will allow us not only to infer the phylogeny but also to assess the
uncertainty of this inferrence.

Idea: Simulate a Markov chain on the space of trees with stationary distribution P (T |D) and let it
converge.

How can we do that if we can only compute ratios P (TA|D)
P (TB |D) for given trees TA and TB?

Given the probability distribution Pr(.|D), how can we construct a Markov chain that converges
against it?

One possibility: Metropolis-Hastings
Given current state Xi = x propose y with Prob. Q(x→ y)
Accept proposal Xi+1 := y with probability

min

{
1,
Q(y → x) · Pr(y | D)

Q(x→ y) · Pr(x | D)

}
otherwise Xi+1 := Xi

(All this also works with continuous state space, with some probabilities replaced by densities.)

Why Metropolis-Hastings works

Let’s assume that Q(y→x)·Pr(y | D)
Q(x→y)·Pr(x | D) ≤ 1. (Otherwise swap x and y in the following argument).Then,

if we start in x, the probability Pr(x→ y) to move to y (i.e. first propose and then accept this) is

Q(x→ y) · Q(y → x) · Pr(y | D)

Q(x→ y) · Pr(x | D)
= Q(y → x)

Pr(y | D)

Pr(x | D)

If we start in y, the probability Pr(y → x) to move to x is

Q(y → x) · 1,

since our assumption implies Q(x→y)·Pr(x | D)
Q(y→x)·Pr(y | D) ≥ 1.

This implies that the reversibility condition

Pr(x | D) · Pr(x→ y) = Pr(y | D) · Pr(y → x)

is fulfilled.This implies that Pr(. | D) is an equilibrium of the Markov chain that we have just constructed,
and the latter will converge against it.(let’s watch a simulation in R)

Applying Metropolis-Hastings

• You are never in equilibrium (your target distribution), but you can get close if you run enough
steps.

• You can take more than one sample from the same chain, but you should run enough steps between
the sampling steps to make the sampled objects only weakly dependent.

• Your initial state may be “far from equilibrium” (i.e. very improbable). So you should run the
chain long enough before you start sampling (“burn-in”).

• Launch many independent MCMC runs with different starting points and check whether they lead
to the same results.
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Mau, Newton, Larget 1996
Seminal paper on MCMC for phylogenies; propose a propsal chain for ultrametric trees.

1. Draw the tree in the plane.

2. In each internal node rotate subtrees with probability 1/2.

3. Remove edges from drawing.

4. Shift each internal node in time by a random amount.

5. Reconstruct edges from modified time points of nodes.
51 2 3 4 6 562134

562134

562134 562134

Most programs for Bayesian phylogeny inferrence can also estimate parameters of the substitution
model. Combine the estimation of trees with the estimation of divergence times or even alignments.

Gibbs sampling is applied to combine Bayesian estimations for different kinds of parameters.

Gibbs samping
Assume we want to sample from a joint distribution Pr(A = a,B = b) of two random variables,

and for each pair of possible values (a, b) for (A,B) we have Markov chains with transition probabilities

P
(A=a)
b→b′ and P

(B=b)
a→a′ that converge against Pr(B = b|A = a) and Pr(A = a|B = b).

Then, any Markov chain with transition law

P(a,b)→(a′,b′) =



1
2P

(B=b)
a→a + 1

2P
(A=a)
b→b if a = a′ and b = b′

1
2P

(B=b)
a→a′ if a 6= a′ and b = b′

1
2P

(A=a)
b→b′ if a = a′ and b 6= b′

0 else

Most software packages use more common tree modifications like NNI, SPR and TBR.

Examples of software for Bayesian sampling:

MrBayes http://mrbayes.csit.fsu.edu/

RevBayes https://revbayes.github.io/

BEAST http://beast.bio.ed.ac.uk/Main Page

BEAST2 http://www.beast2.org/

PhyloBayes http://www.atgc-montpellier.fr/phylobayes/binaries.php

BAli-Phy http://www.bali-phy.org/

TreeTime http://evol.bio.lmu.de/ statgen/software/treetime/
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(MC)3=MCMCMC
=Metropolis-Coupled MCMC= MCMC with “heated chains”.
If βi ∈ (0, 1], where Ti = 1/βi can be considered as “temperature” for chain i, then chain i samples

from distribution pi with pi(x) = pβi(x)·const. (For the unheated chain we have β1 = 1 and thus p1 = p.)
The usual MH acceptance prob. for chain i is

min

{
1,
pi(y)

pi(x)
· Qy→x
Qx→y

}
= min

{
1,
p(y)βi

p(x)βi
· Qy→x
Qx→y

}
.

Sometimes a swap between the current state xi of chain i and the current state xj of chain j is proposed.
The acceptance with probability

min

{
1,
p(xj)

βi

p(xi)βi
· p(xi)

βj

p(xj)βj

}
fulfills the requirements of both chaines (check this!).

7.3 Checking convergence of MCMC
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Effective Sampling Size (ESS)
Assume that we want to estimate the expectation value µ of a distribution by taking the mean X of

n independent draws X1, X2, . . . , Xn from the distribution with variance σ2. Then,

EX =
1

n

n∑
i=1

EXi = µ

var(X) = var

(
1

n

n∑
i=1

Xi

)
=

1

n2
var

(
n∑
i=1

Xi

)
=

1

n2

n∑
i=1

var (Xi) =
1

n
σ2.

If we instead use m correlated draws Y1, Y2, . . . , Ym from the same distribution, then

EY =
1

m

m∑
i=1

EYi = µ

var(Y ) = var

(
1

m

m∑
i=1

Yi

)
=

1

m
σ2 +

2

m2

m∑
i=1

m∑
j=i+1

cov(Yi, Yj).
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Effective Sampling Size (ESS)

1

n
σ2 =

1

m
σ2 +

2

m2

m∑
i=1

m∑
j=i+1

cov(Yi, Yj)

With the autocorrelation ρk = cor(Yi, Yi−k) = cov(Yi, Yi−k)/σ2, Y has (approximately) the same variance
as X, if

n =
m

1 + 2 ·
∑∞
k=1 ρk

.

Therefore, we estimate the Effective Sample Size by

ESS =
m

1 + 2 ·
∑∞
k=1 ρ̂k

,

where ρ̂k is an estimation of the autocorrelation ρk := cor(Yi, Yi−k).

Problem: ESS may be too optimistic because correlation may be underestimated.

●●
●
●
●
●●●

●
●●

●

●●●
●
●●●

●

●●
●●

●

●●●

●●

●●

●
●●

●●

●

●
●

●●

●●
●●●

●●
●●●

●●●
●●

●
●
●
●
●●●

●
●
●

●
●
●●

●

●●
●

●

●

●●
●●

●
●●●●●

●●
●

●
●
●
●
●
●●●●

●●●
●●

●●
●
●
●●●●

●●●●
●
●
●
●
●
●
●

●
●

●●●
●
●●

●
●
●
●

●
●●●

●●
●●

●

●
●
●
●●

●

●

●
●
●
●
●●●

●
●●●●

●
●●

●
●●

●
●
●
●

●
●●●●●●

●●
●●

●

●●●●●
●●

●●●●
●●

●
●

0 50 100 150 200

0
10

20
30

40

Index

v

estimated effective sample sizes:
range : ess

1-90 : 7.88
110-140 : 31.00
160-200 : 28.77

1-200 : 1.53
Ways to check convergence of MCMC

• ESS

• visually inspect paths of log likelihood and parameter estimates

• start many MCMC runs with different start values and check whether they appear to converge
against the same distribution

7.4 Interpretation of posterior probabilities and robustness

If the prior is correctly chosen and the model assumptions are fulfilled, the posterior probability of a tree
topology should be the probability that the topology is correct.This is confirmed for trees with six taxa
in a simulation study in:

References

[HR04] J.P. Huelsenbeck, B. Rannala (2004) Frequentist Properties of Bayesian Posterior Probabilities of
Phylogenetic Trees Under Simple and Complex Substitution Models.Syst. Biol. 53(6):904–913.

However, when a the model chosen for the substitution process is too simple (e.g. neglecting rate hetero-
geneity), the estimated posterior probabilities can be over-optimistic.Using a model that is more complex
than necessary, may lead to just slightly conservative estimates of posterior probabilities. Recommenda-
tion: If you are not sure, rather use the more complex substitution model.
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References

[YR05] Z. Yang, B. Rannala (2005)
Branch-Length Prior Influences
Bayesian Posterior Probability
of Phylogeny Syst. Biol.
54(3):455–470

A B C C CB BA A

A B C
simulate rooted ultrametric trees with three tips and different priors for lengths of
inner and outer branches. Compute posterior probabilities for the three possible
topologies with various priors for tree lengths.

• MAP estimates are robust against misspecification of prior.

• High posteriors are underestimated and low posteriors are overestimated if prior favors very short
internal edges.

• High posteriors are overestimated and low posteriors are underestimated if priors for internal edge
lengths are flat.

Note: flat priors are sometimes called “uninformative”, but this is misleading, and in Yang and Rannala’s
study these priors were most problematic!

To decrease the risk of too optimistic posteriors for tree topologies when the substitution process is
inappropriate,

References

[Y08] Z. Yang (2008) Empirical evaluation of a prior for Bayesian phylogenetic inference
Phil. Trans. R. Soc. B 363: 4031–4039

recommends using priors favoring shorter internal branch lengths if the input alignment is long.

Star-tree paradox
A B C

If the inner branch of a rooted 3-taxa tree is extremely short, or even non-existing,
and the Bayesian method takes only binary trees into account with “liberal” priors
for the branch lenghts, it will often assign a high posterior probability to one of
the three tree topologies, and with probability ≈ 2/3 it will be a wrong one.

A B C C CB BA A

This is related to the fair-coin paradox and Lindley’s paradox, which we will discuss in the context
of Bayesian model selection.

Some of the things you should be able to explain

• differences between Bayesian and frequentistic stats

• role of priors in Bayesian stats

• idea of MCMC

• Metropolis-Hastings:
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– how it works

– why it does not need the integral in the denominator of the posterior

– why it converges to the target distribution (in our case the posterior)

• MCMCMC

• main idea of Gibbs sampling

• idea of effective sample size (ESS)

• why high ESS do not guarantee that MCMC ran long enough

• good practice of applying MCMC

• possible problems with inappropriate priors

8 Common problems in phylogenetics and consequences for phy-
logenomics

8.1 Long-branch attraction (LBA)

C
D

A

B

True tree: Inferred tree:

C
D

A

B

• appears as systematic error in parsimony based methods (“Felsenstein zone”)

• can also occur in NJ, ML and Bayesian methods if

– sequence evolution model is to simple (mixing models may help)

– overoptimized alignment

8.2 Alignment

Alignment

• For distantly related species only genes or even only gene domains may be alignable

• Thorough, model-bases alignment methods like BAli-Phy and StatAlign might be to slow for large
datasets

• still somewhat model-based but faster: PRANK (Löytynoja, Goldman, 2008)

• Vialle, Tamuri and Goldmann (2018, Mol. Biol. Evol. 35(7):1783–1797):

– variants of MAFFT also show good accuracy in reconstructing ancestral states

– Systematic bias of over-alignment or under-alignment in most methods

– essentially unbiased: PRANK (but not PRANK+F), PAGAN (Löytynoja, Vilella, Goldman,
2012)

8.3 Gene trees and gene families

Major systematic error:

to assume that all gene trees are equal
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8.3.1 Why gene trees differ from each other

Recombination and Gene flow

Population 1 Population 2

Joint ancestral population

Present

Past

When alleles of a gene are sampled from populations, their genealogies

can vary along the gene due to recombination. 

Population genetic data contain information about the genealogies, which 

allows us to draw conclusions about gene flow and population growth. 

Incomplete Lineage Sorting (ILS)

Humans Chimps Gorillas

Present

5 MYBP

8 MYBP

References

[MV05] E. Mossel, E. Vigoda (2005) Phylogenetic MCMC Algorithms Are Misleading on Mixtures of
Trees. Science 309: 2207–2209

point out that, when the data is a mixture of data from two different trees, MCMC convergence can be
slow and assign a high posterior probability to a tree that is different from both. See also

References

[RLH+06] F. Ronquist, B. Larget, J.P. Huelsenbeck, J.B. Kadane, D. Simon, P. van der Mark (2006)
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312:367a

[MV06] E. Mossel, E. Vigoda (2006) Response to Comment on “Phylogenetic MCMC Algorithms Are
Misleading on Mixtures of Trees” Science 312:367b

The problem is not restricted to Bayesian approaches:
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?
Neglecting recombination leads to more star-shaped phylogenies with short internal and too long

external branches (perhaps falsely suggesting fast radiation or, in the case of population genetics, popu-
lation growth).

The problem is even worse:
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Mixtures of data from the same topology but different branch lengths can lead to the same site pattern
frequency spectrum (that is, distribution of alignment columns when neglecting where they appear) as
a tree of a different topology.
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B

C

D

A

B

C

D

A

B

C

D

e.g. a certain
mixture of

and looks
like

Possible solution: multi-species coalecent
For example:
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(open problem: gene flow)

incomplete
lineage 
sorting (ILS)

{coalescence
time

(depends on effective population sizes)

Furthermore:
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• substitution models can differ between genes

• for some genes, selection can change evolution process on certain branches

8.3.2 Avoiding paralogues

gene
duplications

orthologsparalogs
orthologs

gene
duplications

1-to-1 orthologs
paralogs

gene
duplications

horizontal    
gene   

transfer  
(HGT)

xenologs
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Methods for gene tree reconstruction for given species tree:
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1073/pnas.0806251106

[MKSS20] B. Morel, A.M. Kozlov, A. Stamatakis, G.J. Szöllősi (2020) GeneRax: A Tool for Species-Tree-
Aware Maximum Likelihood-Based Gene Family Tree Inference under Gene Duplication, Transfer,
and Loss Molecular Biology and Evolution 37(9): 2763–2774 https://doi.org/10.1093/molbev/
msaa141

References in Kapli et al. (2020) for methods for the joint inference of gene trees and species trees:
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and gene treesGenome Res. https://doi.org/10.1101/gr.141978.112

[WBB+08] Wehe, A., Bansal, M. S., Burleigh, J. G., Eulenstein, O. (2008) DupTree: a program for large-scale phylogenetic
analyses using gene tree parsimonyBioinformatics 24: 1540–1541

[BBE10] Bansal, M.S., Burleigh, J. G., Eulenstein, O. (2010) Efficient genome-scale phylogenetic analysis under the duplication-
loss and deep coalescence cost models.BMC Bioinformatics 11(Suppl. 1): S42.

[CBF13] Chaudhary, R., Burleigh, J.G., Fernández-Baca, D. (2013) Inferring species trees from incongruent multi-copy gene
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[CBBF15] Chaudhary, R., Boussau, B., Burleigh, J. G., Fernández-Baca, D. (2015) Assessing approaches for inferring species trees
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8.4 Consequences for phylogenomics

General remarks and application examples

• large datasets should in principle allow for accurate inference, even with fast neighbor joining

• many data pre-processing steps (alignment, finding orthologues, . . . ) take time for each locus and
thus do not fit well in high-thoughput data analysis pipelines

• for large data sets model bias (e.g. due to long-branch attraction, pooling data from different
trees,. . . ) can make support values way too optimistic

Over-optimistic support values
Two sources of estimation error:

• random variation due to limited data

• systematic bias due to simplifying model assumptions

Statistical tools like

• testing (p values)

• posterior probabilities

• bootstrap values

estimate random variation but rely on model assumptions.

For very large data sets all error comes from model bias and support values typically indicate 100
% support and statistical tests reject all null hypotheses. This may however be an artifact of model
assumptions combined with big data.
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8.5 Possible approaches

• Multi-Species Coalescent (MSC):

– account for coalescence, ILS, introgression and differences between gene trees

– Software: e.g. in *BEAST, BPP, IMa2

– more about coalescence in lectures on computational population genetics

• Full-Bayesian Gibbs sampling of

– gene-duplication and gene loss

– HGT

– coalescence and ILS

– alignment

– sequence evolution models

– and species trees

seems computationally too demanding for large genomic data sets, but maybe iterative optimization
of prelimnary reconstruction?

• massive parallelization of software, also using GPUs

• to assess reliability of tree reconstruction account check robustness against model assumptions,
alignment errors, errors with paralogous genes etc. . .

Some of what you should be able to explain

• long-branch attraction and under what conditions it may happen

• how recombination an gene flow leads to different trees at different loci

• incomplete lineage sorting

• effects of pooling data from different tree topologies in a phylogenetic analysis

• gene duplications, paralogs, ortholog, 1-to-1-orthologs and xenologs

• misleading support values with large data sets and consequences for phylogenomics

• possible solutions
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9 Modelling the substitution process on sequences

The methods of stochastic modelling that we discuss here in the context of substitution models apply
for many other stochastic models, in biology e.g. for

• biochemical reactions

• ecological or behavioral interactions,

• speciation processes

• population genetics

• . . .

9.1 Transition matrix and rate matrix

Let Pa→b(t) be the probability that a nucleotide a is a nucleotide b after time (i.e. branch length) t.

S(t) :=


PA→A(t) PA→C(t) PA→G(t) PA→T (t)
PC→A(t) PC→C(t) PC→G(t) PC→T (t)
PG→A(t) PG→C(t) PG→G(t) PG→T (t)
PT→A(t) PT→C(t) PT→G(t) PT→T (t)


Each row has sum 1.

How can we compute S(2) from S(1)?
For example: PC→A(2)

A

C

G

T

A

C
PC→A(2) = PC→A(1) · PA→A(1) +

PC→C(1) · PC→A(1) +

PC→G(1) · PG→A(1) +

PC→T (1) · PT→A(1)

With matrix multiplication we can write this as

S(2) = S(1) · S(1).

More generally:
S(t+ s) = S(t) · S(s)

Matrix multiplication A ·B = C

a11 a12 · · · a1m

a21 a22 · · · a2m

...
. . .

...
ai1 ai2 · · · aim
...

...
. . .

...
an1 an2 · · · anm


·


b11 b12 · · · b1j · · · b1k
b21 b22 · · · b2j · · · b2k
...

. . .
...

. . .
...

bm1 bm2 · · · bmj · · · bmk



=


c11 c12 · · · · · · c1k
c21 c22 · · · · · · c2k

cij
...

. . .
...

. . .
...

cn1 cn2 · · · · · · cnk

 , cij =

m∑
h=1

aih · bhj
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Matrix times column vector A · v is column vector
a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

 ·


v1

v2

...
vm

 =


a11 · v1 + a12 · v2 + · · ·+ a1m · vm
a21 · v1 + a22 · v2 + · · ·+ a2m · vm

...
an1 · v1 + an2 · v2 + · · ·+ anm · vm



Row vector times matrix v ·A is row vector

(
v1, v2, · · · , vm

)
·


a11 a12 · · · a1k

a21 a22 · · · a2k

...
. . .

...
am1 am2 · · · amk


=
(
v1a11 + · · ·+ vmam1, v1a12 + · · ·+ vmam2, · · · , v1a1k + · · ·+ vkamk

)

Matrix addition A+B = C
a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

+


b11 b12 · · · b1m
b21 b22 · · · b2m
...

. . .
...

bn1 bn2 · · · bnm



=


a11 + b11 a12 + b12 · · · a1m + b1m
a21 + b21 a22 + b22 · · · a2m + b2m

...
. . .

...
an1 + bn1 an2 + bn2 · · · anm + bnm


Rules:

A+B = B +A, (A+B) + C = A+ (B + C), (A ·B) · C = A · (B · C)

A · (B + C) = (A ·B) + (A · C), but in general A ·B 6= B ·A

Matrix multiplied by number r

r ·


a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

 =


r · a11 r · a12 · · · r · a1m

r · a21 r · a22 · · · r · a2m

...
...

. . .
...

r · an1 r · an2 · · · r · anm


Rules:

r · (A+B) = r ·B + r ·A, r ·A = A · r, (A · r) ·B = A · (r ·B)
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Entrywise product A ◦B (also known as Hadamard product)
a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

 ◦


b11 b12 · · · b1m
b21 b22 · · · b2m
...

. . .
...

bn1 bn2 · · · bnm



=


a11 · b11 a12 · b12 · · · a1m · b1m
a21 · b21 a22 · b22 · · · a2m · b2m

...
. . .

...
an1 · bn1 an2 · bn2 · · · anm · bnm


In more compact notation:

(aij)i≤n,j≤m ◦ (bij)i≤n,j≤m = (aij · bij)i≤n,j≤m

Felsenstein’s pruning recursion in matrix notation

wk,p(x) =

 ∑
y∈{A,C,G,T}

Px→y(`i) · wi,p(y)

 ·
 ∑
z∈{A,C,G,T}

Px→z(`j) · wj,p(z)


wk,p(x) partial likelihood for node k, sequence position p and nucleotide x.

Wk = (P (`i) ·Wi) ◦ (P (`j) ·Wj)

P (`i) = (Px→y(`i))x,y∈{A,C,G,T} , Wk =


wk,1(A) wk,2(A) . . . wk,n(A)
wk,1(C) wk,2(C) . . . wk,n(C)
wk,1(G) wk,2(G) . . . wk,n(G)
wk,1(T ) wk,2(T ) . . . wk,n(T )


Exercise: Check whether this is really true!

Advantages of matrix notation

• Compact mathematical notation of equation systems

• Matrix algebra

• In programs shorter source code

• In R and python/numpy: Matrix operations more efficient than loops

Example in R with w[x, p, k] being the partial likelihood for nucleotide x, position p and node k.
With loops:

for(p in 1:n) {

for(x in c("A", "C", "G", "T")) {

L <- 0

for(y in c("A", "C", "G", "T")) {

L <- L + P[x, y, "i"] * w[y, p, "i"]

}

R <- 0

for(z in c("A", "C", "G", "T")) {

R <- R + P[x, z, "j"] * w[z, p, "j"]

}

w[x, p, "k"] <- L*R

}

}

With matrix operation:

w[,,"k"] <- (P[,,"i"] %*% w[,,"i"]) * (P[,,"j"] %*% w[,,"j"])

In a test run with n=100,000 the code with the matrix operations
was more than 500 times faster than the code with loops.

We can use matrix notations for mutation rates. To see how, let ε > 0 be a very short time span,
such that we get for the Jukes-Cantor model:

Px→x(ε) =
1

4
+

3

4
· e−λε ≈ 1

4
+

3

4
(1− λε) = 1− 3

4
λε

and for y 6= x:

Px→y(ε) =
1

4
·
(
1− e−λε

)
≈ 1

4
(1− (1− λε))) =

1

4
λε
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The same in matrix notation

S(ε) ≈


1− 3

4λε
1
4λε

1
4λε

1
4λε

1
4λε 1− 3

4λε
1
4λε

1
4λε

1
4λε

1
4λε 1− 3

4λε
1
4λε

1
4λε

1
4λε

1
4λε 1− 3

4λε



=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

I

+ε ·


− 3

4λ
1
4λ

1
4λ

1
4λ

1
4λ − 3

4λ
1
4λ

1
4λ

1
4λ

1
4λ − 3

4λ
1
4λ

1
4λ

1
4λ

1
4λ − 3

4λ


︸ ︷︷ ︸

R

S(ε) ≈ I + ε ·R or, more precisely, R = limε→0
S(ε)−I

ε

Interpretation of rate matrix

R =


− 3

4λ
1
4λ

1
4λ

1
4λ

1
4λ − 3

4λ
1
4λ

1
4λ

1
4λ

1
4λ − 3

4λ
1
4λ

1
4λ

1
4λ

1
4λ − 3

4λ

 =


RAA RAC RAG RAT
RCA RCC RCG RCT
RGA RGC RGG RGT
RTA RTC RTG RTT


Assume be start in x. Then Rxy is the increase (per time unit) in probability of being in y. (Where

for x = y the negative increase means a decrease).
For very small ε > 0, Px→x(ε) is close to 1 and there is a matrix R, the so-called rate matrix (or

Q-matrix), such that S(ε) ≈ (I +R · ε), where I is the identity matrix (or unit matrix)

I =


1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


with the property that A · I = A and I ·B = B for all matrices A and B of suitable dimensions.

Thus, we obtain S(t+ ε) = S(t) · S(ε) ≈ S(t)(I +Rε) = S(t) + S(t)Rε and

lim
ε→0

S(t+ ε)− S(t)

ε
= S(t)R and as S(0) = I: lim

ε→0

S(ε)− I
ε

= R

S(t)R is like the derivative of the process, and R the derivative at t = 0. Note that the row sums
in R are 0. The diagonal entries are negative. All other entries are the rates of the corresponding
substitutions.

Rate matrix of the Jukes-Cantor-Model for DNA
− 3

4λ
1
4λ

1
4λ

1
4λ

1
4λ − 3

4λ
1
4λ

1
4λ

1
4λ

1
4λ − 3

4λ
1
4λ

1
4λ

1
4λ

1
4λ − 3

4λ

 .

The model F81 (Felsenstein, 1981) allows for unequal nucleotide frequencies (πA, πC , πG, πT ) and has
the rate matrix 

−α+ απA απC απG απT
απA −α+ απC απG απT
απA απC −α+ απG απT
απA απC απG −α+ απT

 .

In addition, the HKY model (Hasegawa, Kishino, Yano, 1985) allows that transitions are more probable
than transversions by using an additional parameter β. Its rate matrix is
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R :=


−απG − β(πC + πT ) βπC απG βπT

βπA −απT − β(πA + πG) βπG απT
απA βπC −απA − β(πC + πT ) βπT
βπA απC βπG −απC − β(πA + πG)

 .
(πA, πC , πG, πT ) is the stationary Distribution (or equilibrium distribution) for any of these

rate matrices. This means ∀x∈{A,C,G,T} :
∑
y∈{A,C,G,T} πy · Py→x(t) = πx, or in matrix notation:

(πA, πC , πG, πT ) · S(t) = (πA, πC , πG, πT )

Equivalently, we can write this with the rate matrix R as

(πA, πC , πG, πT ) ·R = (0, 0, 0, 0),

because

(πA, πC , πG, πT ) ·R = (πA, πC , πG, πT ) · lim
ε→0

S(ε)− I
ε

= lim
ε→0

(
(πA, πC , πG, πT ) · S(ε)− I

ε

)
= lim

ε→0

(πA, πC , πG, πT ) · S(ε)− (πA, πC , πG, πT ) · I
ε

= lim
ε→0

(πA, πC , πG, πT )− (πA, πC , πG, πT )

ε

= lim
ε→0

(0, 0, 0, 0)

ε
= (0, 0, 0, 0).

Some of the things you should be able to explain

• how matrix multiplication accounts for double-hits and back-mutation

• structure and properties of rate matrices

• how the equilibrium property of a distribution can be expressed with a rate matrix or a substitution
matrix

9.2 Residence time

If we think of discrete generations and a per generation mutation probability of p, the probability of
seeing the first mutation in generation k is (1− p)k−1 · p.

A random variable X with values in {1, 2, . . . } is geometrically distributed if Pr(X = k) =
(1− p)k−1 · p.

Then,

EX =

∞∑
k=1

k · (1− p)k−1 · p =
1

p

It is easy to check that this is the only possible value:

EX =

∞∑
k=0

(k + 1) · (1− p)k · p

=

∞∑
k=1

k · (1− p)k · p+

∞∑
k=0

·(1− p)k · p = (1− p) · EX + p · 1

p

⇒ EX =
1

p

The geometric distribution is characterized by the no-memory condition:

Pr(X = k + n | X > k) = Pr(X = n)
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The continuous analogon is the exponential distribution: A random variable Y with values in R≥0 is
exponentially distributed with rate λ if

Pr(Y > z) = e−λz.

In this case

EY =

∫ ∞
0

zλe−λzdz =
1

λ
.

The exponential distribution approximates the geometric distriburion if p is small and k is large:

(1− p)k ≈ e−pk.

In a continuous-time substitution model, the residence time in a state is exponential. For example,
if a site has nucleotide A, and the HKY model applies, it stays an A for a exponentially distributed time
with expectation value 1/(απG + β(πC + πT )). When it then mutates, it becomes a

C with prob. βπC
απG+β(πC+πT )

G with prob. απG
απG+β(πC+πT )

T with prob. βπT
απG+β(πC+πT ) .

Using this approach to simulate stochastic processes is sometimes called Gillepie’s algorithm. (It was
presented by D. Gillespie in 1976 for simulations of chemical reactions, but in fact this approach was
already used long before that.)

Some of the things you should be able to explain:

• In many models the time until the next event (e.g. mutation) is exponentially distributed (or
geometrically distributed if time is discrete)

• no-memory condition of exponential and geometrical distribution

• other basic properties of these distributions

• how to simulate processes with exponential waiting times

9.3 Computing S(t) from the rate matrix R

Any linear map F : Rn → Rm can be represented by a matrix
First some basics from linear algebra:

Linear means ∀v,w ∈ Rn, a ∈ R:

F (v + w) = F (v) + F (w) and F (a · v) = a · F (v)

Note that f(x) = 3 · x+ b is only linear if b = 0, e.g. (3 · 1 + 9) + (3 · 2 + 9) 6= 3 · (1 + 2) + 9 If for row
vectors v, w and column vectors x, y, real numbers a and a matrix M of suitable dimensions, we have
the linearity on both sides:

v ·M + w ·M = (v + w) ·M and (a · v) ·M = a · (v ·M)

M · x +M · y = M · (y + x) and M · (a · x) = a · (M · x)
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A linear map F : Rn → Rm is fully determined by F (e1), F (e2), . . . , F (en), where e1, . . . , en are the
unit basis vectors of Rn, e.g. as column vectors:

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1


If

v =


v1

v2

...
vn

 = v1 · e1 + v2 · e2 + · · ·+ vn · en,

then F (v) = F (v1 · e1 + v2 · e2 + · · ·+ vn · en) = v1 · F (e1) + v2 · F (e2) + · · ·+ vn · F (en).
In the matrix presentation of F : Rn → Rm as F (v) = M · v, the columns of the matrix are

F (e1), F (e2), . . . , F (en).
The analogous statement applies for the rows of the matrix if the row vector notation is used.
Now back to transition matrices of substitution models:

If S(1) is known, you can compute S(n) by

S(n) = S(1)n.

To do this efficiently, diagonalize S(1). This means, find a matrix U and a diagonal matrix D (this
means Dij = 0 if i 6= j), such that

S(1) = U ·D · U−1.

For

D =


µ1 0 . . . 0

0 µ2
. . .

...
...

. . .
. . . 0

0 . . . 0 µm


we can use

Dn =


µn1 0 . . . 0

0 µn2
. . .

...
...

. . .
. . . 0

0 . . . 0 µnm


and

S(1)n =
(
U ·D · U−1

)n
= U ·D · U−1 · U ·D · U−1 · · ·U ·D · U−1 · U ·D · U−1

= UD · I ·D · I · · ·D · U−1 = UDnU−1

But how to find a matrix U , such that

S(1) = U ·D · U−1 holds?

The inverse U−1 of the matrix U is defined by U−1 · U = I = U · U−1.
In this case, the diagonal entries Dii = λi of D are the eigenvalues of S(1), the columns of U are

corresponding right eigenvectors and the rows of U−1 (with entries u′ij) are left eigenvectors, that
is:

S(1) ·


u1i

u2i

u3i

u4i

 =


u1i

u2i

u3i

u4i

 · λi, (u′i1, . . . , u
′
i4) · S(1) = λi · (u′i1, . . . , u′i4)
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Note that the eigenvectors in U and U−1 have to be scaled appropriately, to make sure that u′.i ·ui. = 1.
Further, if λk 6= λj , then u′.k · uj. = 0, but if λk = λj for some k 6= j, we have some choice in the
eigenspace and must make sure that u′.k · uj. = 0.

(General explanations of eigenvectors and eigenvalues on whitebord and with R file.)

Why λk 6= λj implies u′.k · uj. = 0:

λk · u′.k · uj. = u′.k · S(1) · uj. = u′.k · λj · uj. = λj · u′.k · uj.

Note: u′.k and utj. (or (u′.k)t and uj.) are orthogonal, as u′.k · uj. is their scalar product.
If u′.j · uj. = a 6= 1, divide one of the two vectors by a or, alternatively, each by

√
a:

u′.j√
a
· uj.√

a
=

1√
a ·
√
a
· u′.j · uj. =

1

a
· a = 1

Note that the scaled eigenvectors
u′.j√
a

and
u.j√
a

are still eigenvectors with eigenvalue λj , e.g. for
u′.j√
a

:

u′.j√
a
· S(1) =

1√
a
· u′.j · S(1) =

1√
a
· λj · u′.j = λj ·

u′.j√
a

Calculating right eigenvectors in R

> (M <- matrix(c(0.8,-0.8,-0.5,1.2),ncol=2))

[,1] [,2]

[1,] 0.8 -0.5

[2,] -0.8 1.2

> eigen(M)

$values

[1] 1.663325 0.336675

$vectors

[,1] [,2]

[1,] 0.5011716 -0.7334959

[2,] -0.8653479 -0.6796939(
0.501
−0.865

)
is the right eigenvector of M with eigenvalue 1.663 and

(
−0.733
−0.679

)
is the right eigen-

vector of M with eigenvalue 0.336.

E.g.: (
0.8 −0.5
−0.8 1.2

)
·
(

0.501
−0.865

)
= 1.663 ·

(
0.501
−0.865

)
=

(
0.834
−1.439

)

To calculate left eigenvectors with R, transepose the matrix with t(M) and calculate the right eigen-
vectors of the transposed matrix (and transpose them). Exercise: calculate the left eigenvectors for
Matrix M , first without R, then with R.

Equilibrium distribution as eigenvector
Note that the equilibrium condition

(πA, πC , πG, πT ) · S(t) = (πA, πC , πG, πT )

means that the equilibrium distribution forms a left eigenvector with eigenvalue 1 for the transition
matrix S(t).

Thus, the equilibrium distribution can be found by calculating a left eigenvector for eigenvalue 1 and
by scaling the eigenvector such that its entries sum up to 1.
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Stochastic matrices, that is, matrices with non-negative entries and rows that add up to 1 always
have 1 as their largest eigenvalue.

The situation is similar in the continuous case. For t ∈ [0,∞) we get S(t) = U · T t · U−1 with

T t =


eλ1t 0 . . . 0

0 eλ2t
. . .

...
...

. . .
. . . 0

0 . . . 0 eλmt

 ,

where λ1, λ2, . . . , λm are the eigenvalues of R (with m = 4 for nucleotides and m = 20 for amino acids).
Explanation: For very small ε > 0 we have

S(t) = S(ε)t/ε ≈ (I +R · ε)t/ε = Uε ·Dt/ε
ε · U−1

ε ,

where Dε is a diagonal matrix of the eigenvalues µi of I + ε ·R.

It is common to write this as S(t) = etR and call it “Matrix exponential”.
For the right eigenvectors vi we have

(I + ε ·R) · vi = µi · vi

and thus

R · vi =
µi − 1

ε
· vi.

Therefore,

λi :=
µi − 1

ε

is an eigenvalue of R (if µi 6= 1) and we can write the diagonal entries of D
t/ε
ε as

(1 + ελi)
t/ε,

which converges to eλit for ε→ 0.
Calculation above also shows that columns of U are not only eigenvectors of I + εR but also of

R. Note that transition matrices always have µ1 = 1 as greatest eigenvalue, which corresponds to the
eigenvalue λ1 = µ1−1

ε = 0 of the rate matrix, for which the diagonal entry in T t is eλ1t = e0 = 1).

Further, note that the equilibrium distribution, e.g. (πA, πC , πG, πT ) is a left eigenvector of the rate
matrix R for this eigenvalue 0, that is

(πA, πC , πG, πT ) ·R = 0 · (πA, πC , πG, πT ) = (0, 0, 0, 0)

Efficient implementations functions for computing eigenvalues and eigenvectors are available for most
programming languages and we can use them to calculate matrix exponentials. However, this is some-
times numerically unstable.

One alternative is to use the following alternative definition of the matrix exponential:

etR =

∞∑
n=0

(tR)
n

n!

which can be made more stable by chosing β > max{λ1, . . . , λm} and then using the variant

etR = e−βt ·
∞∑
n=0

(βt)
n · (I +R/β)

n

n!
.
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Another approach is to use the limit

etR = lim
n→∞

(
I +

t

n
R

)n
or its variant

etR = lim
n→∞

((
I − t

n
R

)−1
)n

for the approximation

etR ≈
(
I +

t

n
R

)n
or

etR ≈

((
I − t

n
R

)−1
)n

with a large value of n.

Some of the things you should now be able to explain:

• how powers of matrices can be used to calculate transition probabilities

• how to calculate the powers of a diagonal matrices

• what are eigenvectors and eigenvalues and how do they help to

– transform a matrix into a diagonal matrix and calculate a matrix power

– find an equilibrium distribution for a transition matrix

• how matrix exponentials can be used to express transition matrices for a rate matrix

• one or two ways of calculating matrix exponentials

9.4 A model for transition probabilities in closed form

The F84 model (Felsenstein, 1984) is similar to the HKY model but allows the computation of
transition probabilities without numerics by using similar ideas as in the Jukes-Cantor model.

F84 model: Pepper crosses and bullets into the ancestral lineages of the all positions that make them
(partly) forget their former type.

crosses come rate λ. The new type is drawn according to (πA, πC , πG, πT ).

bullets come at rate µ. The lineage only remembers if it was a purine or a pyrimidine. If it was a
purine, the new type is A or G with probability πA

πA+πG
or πG

πA+πG
.If it was a pyrimidine, the new

type is C or T with probability πC
πC+πT

or πT
πC+πT

.

A transversion needs at least one cross. If we condition on having at least one cross but not on the
nucleotide that was selected at the cross, then the last bullet or cross before time t draws a nucleotide
according to the distribution (πA, πC , πG, πT ). Thus, we get, for example:

PA→C(t) =
(
1− e−λt

)
· πC

A transition needs either at least one cross or no cross and at least one bullet. We get, for example:

PA→G(t) =
(
1− e−λt

)
· πG + e−λt

(
1− e−µt

)
· πG/(πA + πG)

Even if we do not need it for computing the transition probabilities, we can write down the F84 rate
matrix: 

−λ(1 − πA) − µπG
πA+πG

λπC λπG +
µπG

πA+πG
λπT

λπA −λ(1 − πC ) − µπT
πC+πT

λπG λπT +
µπT

πC+πT
λπA +

µπA
πA+πG

λπC −λ(1 − πG) − µπA
πA+πG

λπT

λπA λπC +
µπC

πC+πT
λπG −λ(1 − πT ) − µπC

πC+πT


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9.5 Position-dependent mutation rates

Model for site-dependent rates
There is one rate matrix Q and for each site i there is a coefficient ri, such that

Ri = ri ·Q

is the substitution rate matrix for site i.

Estimating n additional parameters r1, . . . , rn is not feasible.

Instead estimate one meta-parameter α and assume Γ-prior with shape parameter α for all ri.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

densities of Gamma−distributions

shape=0.5
shape=1
shape=5

The Γ distribution has another parameter, the scale parameter β. The expectation value of the Γ
distribution is α · β.

We always assume β = 1/α, such that

Eri = 1 and EQ = ERi

Density of the Γ-distribution:

gα,β(x) :=
xα−1 · e−x/β

βα · Γ(α)
,

with Γ(a) =
∫∞

0
xa−1 · e−xdx

We use
gα(x) := gα,1/α

To contribution of data column Di to the Likelihood of a tree T is then

LDi(T ) = Pr
T

(Di) =

∫ ∞
0

Pr(Di | ri = x) · gα(x) dx.

For each fixed ri = x we can efficiently compute Pr(Di | ri = x) with the Felsenstein pruning algorithm.
But not for all x from 0 to ∞.

Idea: compute Pr(Di | ri = xj) for some xj and approximate

Pr(Di) =

∫ ∞
0

Pr(Di | ri = x) · gα(x) dx ≈
k∑
j=1

wj · Pr(Di | ri = xj).

What are good choices for w1, . . . , wk and x1, . . . , xk?
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Method of Yang (1994)
Divide [0,∞] into k sections [a, b] of equal probability∫ b

a

gα(x)dx = 1/k,

e.g. for k = 5:

0.
0

0.
1

0.
2

0.
3

Then, xj is the expectation value of the Γ distribution conditioned of being in the jth section, i.e.
the center of gravity of the area under the density.

All wj are 1/k.

0.
0

0.
1

0.
2

0.
3

x1 x2 x3 x4 x5

1/
k

Alternatitve to or (extension of) the Γ-model: A proprotion p of the sites in invariate (“+I”).

Alexis Stamatakis’ CAT approximation
The “CAT model” provided by RAxML can be seen as an approximation to the discretized Γ-model.

• sites belong to a few different categories

• each category has its own rate acceleration factor that must be estimated

• ML estimate for each site to which category it belongs

• instead of marginalizing over all categories only use ML categories for likelihood computation

• Assignments of positions to categories are part of the parameter space and must be updated during
ML optimization

• recommended if more than 50 taxa

Note: There is a completely different substitution model also called CAT in Lartillot and Philippe’s
program PhyloBayes.

52



9.6 Time-calibration with fossils and relaxed molecular clocks

Drawing conclusions from fossils
Assume a 10 Mio year old fossil has features that both genera A and B have, but no feature that

only A or only B has.
Further assume: such features would not evolve twice and not get lost.

Genus A Genus B Genus C

X

Y

Z
V

W
10 Mio years

old Fossil:

Genus A Genus B Genus C

X

Y

Z
V

W

10 MYBP ? 

evolved

10 MYBP ? 

evolved

10 MYBP ? 

Which conclusion can we draw?

• Must node V be 10 Mio years old? No!

• Must node W be older than 10 Mio years?
Yes!

• Must node V be younger than 10 Mio years?
No!

• Must node X (and Y) be younger than 10 Mio
years? No!

We can only conlude that the parent node of the
MRCA of A and B is older than the fossil.

Can we use fossil record to limit the age of a node?
Not clear (to me)!

Maybe from the absence of fossils?
But what if species lived where conditions did not
lead to fossilation?

uncorrelated log-normal (ULN), uncorrelated exponential (UEX)
In ULN, UEX and DM each edge in the tree gets a rate randomly drawn from the distribution and

uncorrelated to the neighboring branches.[2ex]
e.g. in the case of ULN, the logarithm of the rate on the current branch follows a normal distribution

with mean log(r) + σ2/2 and variance σ2, which leads to an expectation value of r for the rate.

Compund Poisson Process (CPP)

• Rate change points are peppered randomly into the tree at rate λ.

• At each change point, the current rate is multiplied with r, which is drawn from a Γ-distribution.

• Problem: If Er = 1 or E[log r] < 0, rates converge to 0, and if E[log r] > 0, rates converge to ∞ for
long branches.

• Solution: Γ-parameters must lead to E[log r] = 0, and a prior on λ must limit the number of
change-points.

Some of the things you should be able to explain:

• why we do not estimate mutation rates for each site

• how we can avoid this by estimating a meta-parameter

• properties of the Γ (Gamma) distribution and why it is appropriate to model rate heterogeneity
(and many other things)

• why and how we need to discretize the Γ distribution

• how the runtime of your analysis depends on the number of “Gamma categories” and why
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• What is the difference between the Gamma model and the CAT model in RAxML and when should
you use which

• how to use fossil information in phylogenetic analyses

• some relaxed molecular-clock models, like ULN and UEX

10 Quantitative Characters and Independent Contrasts

10.1 Brownian motions along the branches of the tree

Type of questions to be answered
Quantitative traits like number of genes, mutation rates, or morphological traits like weight or body

length differ for different species.

• Do two traits evolve in a correlated way or are their values just correlated because they evolved
independently along the same tree?

• Is a trait significantly different for a certain group of species such that adaptation must have played
a role?

• Can we use morphological traits for phylogeny reconstruction?

Model for the neutral evolution of a quantitative trait along the branches of a phylogenetic tree.

• Independent on different branches

• After an appropriate rescaling it changes randomly like a Brownian motion.

0 2 4 6 8 10 12

6
7

8
9

t

x

This is a Markov process with
Xs+t −Xs ∼ N (0, t),

where N (0, t) means normal distribution with mean 0 and variance σ2 = t.

Example: Brownian motion starts in node 0 of this tree with a non-random value x0:

l

l

l

l

l

0

3

4
4

3

2

2

1
1

5
5

Then, EXi = x0 for all i, and the variance of any node is its distance to the root, e.g. var(X5) =
l1 + l3 + l5.

cov(X5, X4) = cov(X5 −X3 +X3, X4 −X3 +X3)

= cov(X5 −X3, X4 −X3) + cov(X5 −X3, X3) + cov(X3, X4 −X3) + cov(X3, X3)

= var(X3) = `1 + `3
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In general: The covariance of the values Xk and X` at the nodes k and ` is the variance var(Xh) of
the value at their most recent common ancestor h.

Let vi be the parent node of node i, then the values
(
Xi−Xvi√

`i

)
i=1,...,n

are stochastically independent

and standard-normally distributed. Together they are a standard-normally distributed random vector.
Moreover, the map

Y :=


X1−Xv1√

`1
...

Xn−Xvn√
`n

 7→
 X1

...
Xn

 = X

is an affine transformation, i.e. can be represented as Y 7→ w+MY = X with appropriate vector w and
matrix M . This implies that X is also normally distributed, and its distribution is determined by its
expected value and its covariance matrix.

10.2 Excursus: Multidimensional Normal Distribution

• An d-dimensional random vector is a vector of d random elements

• The expectation of a random vector X = (X1, X2, . . . , Xd)T is the vector of the expectations:

EX = E

X1

...
Xd

 =

EX1

...
EXd


• The expectation of a random matrix M = (Mij)i=1..n,j=1..d is the matrix of the expectations:

E

M11 M12 · · · M1d

...
. . .

...
Mn1 Mn2 · · · Mnd

 =

EM11 EM12 · · · EM1d

...
. . .

...
EMn1 EMn2 · · · EMnd


• reminder: The variance of a univariate random variable X is Var(X) = E

[
(X − EX)2

]
= E

[
X2
]
− (EX)2.

• The analog in the multivariate case is the so called covariance matrix (or dispersion matrix or variance-
covariance matrix). The covariance matrix Var(X) = Σ of X = (X1, . . . , Xd)T is

Σ =


Cov(X1, X1) Cov(X1, X2) · · · Cov(X1, Xd)
Cov(X2, X1) Cov(X2, X2) · · · Cov(X2, Xd)

...
. . .

...
Cov(Xd, X1) Cov(Xd, X2) · · · Cov(Xd, Xd)



= E


X1 − EX1

...
Xd − EXd

 · (X1 − EX1, · · · , Xd − EXd

)
= E

[
(X − EX) · (X − EX)T

]
= E

[
X ·XT

]
− EX · (EX)T

• Linearity of the expectation is analogous to the univarite case: Let X = (X1, . . . , Xd) be a random
vector and C = (Cij)i=1..n,j=1..d be a deterministic matrix. Then

E(C ·X) = C · E(X)

• If Y := X − E(X), then

Var(C ·X) = Var(C · Y )

= E
[
C · Y · (C · Y )T

]
= E

[
C · Y · Y T · CT

]
= C · E

[
Y · Y T

]
· CT

= C ·Var(Y ) · CT

= C ·Var(X) · CT
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• Reminder: Univariate normal distribution N (µ, σ2) with mean µ ∈ R and variance σ2 ∈ (0,∞) has the
density

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)

−4 −2 0 2 4
0.

0
0.

1
0.

2
0.

3
0.

4

st
an

da
rd

 n
or

m
al

 d
en

si
ty

Remember: Pr(µ− σ < X < µ+ σ) = 0.68 and Pr(µ− 1.96σ < X < µ+ 1.96σ) = 0.95

• The density of the d-dimensional normal distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d

is analogous:

f(x) =
1√

(2π)d det(Σ)
exp

(
− (x− µ)T Σ−1(x− µ)

2

)
for x ∈ Rd where det(Σ) is the determinant of Σ, and Σ−1 is the inverse matrix. We write Nd (µ,Σ) for
this distribution.

• The standard multivariate normal distribution has mean µ = 0 and the identity matrix Σ = I as covariance
matrix.

Plots for d = 2

Correlation 0.0: Σ =

(
1 0
0 1

)
, Var(X1) = 1 = Var(X2), Cov(X1, X2) = 0.0
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Plots for d = 2

Correlation 0.3: Σ =

(
1 0.3

0.3 1

)
, Var(X1) = 1 = Var(X2), Cov(X1, X2) = 0.3
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Plots for d = 2

Correlation 0.6: Σ =

(
1 0.6

0.6 1

)
, Var(X1) = 1 = Var(X2), Cov(X1, X2) = 0.6
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Plots for d = 2

Correlation 0.9: Σ =

(
1 0.9

0.9 1

)
, Var(X1) = 1 = Var(X2), Cov(X1, X2) = 0.9
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Properties of a Nd (µ,Σ)-distributed random vector X:

• Linear combinations are univariate normal distributed: 〈c,X〉 ∼ N
(
〈c, µ〉, cΣcT

)
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Where 〈., .〉 is the scalar product: 〈v, w〉 =
∑n

i=1 vi ·wi = (v1, v2, . . . , vn) ·


w1

w2

...
wn

 = ‖v‖ · ‖w‖ · cos(∠v,w)

• Xi and Xj are independent ⇐⇒ Cov(Xi, Xj) = 0

• The standardized normal distribution is standard normal distributed

Σ−
1
2 · (X − µ) ∼ Nd(0, I)

where M = Σ−
1
2 is a matrix such that MT ·M · Σ = I.

• The square of the standardized normal distribution is chi-squared distributed with d degrees of freedom:

(X − µ)T Σ−1 (X − µ) ∼ χ2
d.

• If Y1, Y2, . . . , Yd are independent and standard normal distributed, then (Y1, . . . , Yd) ∼ N (0, I).
• If M ∈ Rp×d is a non-random matrix, then M ·X ∼ Np

(
M · µ,MΣMT

)
10.3 Why to use REML

Assume now that the values of Xi in the tips of the tree are given and that the topology of the tree is
known. How can we estimate the branch lengths? Let’s apply ML!

Example: For a rooted tree with two tips, we measure the values x1i and x2i for i = 1, . . . , p of p
different traits in the tips 1 and 2. The values x0i in the root of the tree are unknown. For known values
σi we assume that the value of trait xji for j ∈ {1, 2} is normally distributed with mean x0i and variance
`jσ

2
i , where `j is the unknown length of the branch to tip j.We have to maximize the likelihood

L(x0, `1, `2) =

p∏
i=1

1√
2πσ2

i `1
· e
− (xi1−xi0)2

2`1σ
2
i · 1√

2πσ2
i `2
· e
− (xi2−xi0)2

2`2σ
2
i

=

p∏
i=1

1

2πσ2
i

√
`1`2

· e
− 1

2σ2
i

(
(x1i−x0i)

2

2`1
+

(x2i−x0i)
2

2`2

)

=
1∏p

i=1 σ
2
i

·
(

1

2π
√
`1`2

)p
· e
− 1

2 ·
(∑p

i=1
1

σ2
i

·
(

(x1i−x0i)
2

`1
+

(x2i−x0i)
2

`2

))

To find values x01, . . . , x0p and `1 and `2 that maximize L(x0, `1, `2), we first note that for any `1
and `2, the x0i that minimizes

(x1i − x0i)
2

`1
+

(x2i − x0i)
2

`2

is

x̂0i =
x1i · `2 + x2i · `1

`1 + `2

Then we search for `1 and `2 that minimize
√
`1`2 and

(x1i − x̂0i)
2

`1
+

(x2i − x̂0i)
2

`2
=

`21 · (x1i − x2i)
2

`2 · (`1 + `2)2
+
`22 · (x2i − x1i)

2

`1 · (`1 + `2)2
=

(x1i − x2i)
2

`1 + `2
.

This means that `1`2 should be small and `1 + `2 should be large, and we get that by setting `1 = 0 and
`2 →∞ or vice versa.

This is perhaps not what we expected. What is the reason for this absurd result?
Heuristic explanation: We have one parameter per i too much in the model. This parameter vanishes

for `1 = 0 because this forces x0i to be x1i.
There are several ways to circumvent this problem, which also appears when for trees with more than

two tips, e.g.:
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• Assume a strict molecular clock such that all tips must have the same distance to the root (Thomp-
son, 1975)

• Felsenstein’s REML (REduced Maximum-Likelihood) approach is to avoid the root and consider
only unrooted trees. For the example above this means that we only estimate `1 + `2 by the ML
estimator

`̂1 + `2 =
1

p

p∑
i=1

(
x1i − x2i

σi

)2

.

10.4 Computing Independent Contrasts by Pruning the Tree

Let Z = (Z1, . . . , Zm)T be the vector of values for a quantitative character in the tips b1, . . . , bm of the
tree. To compute the likelihood of the tree or correct correlations for phylogenetic relationship or to
decide whether there is significant evidence for adaptation, we apply REML and transform the values in
the tips back into a standard-normally distributed vector.

One way of doing this is a variant of Felsenstein’s pruning algorithm. It leads to independent trans-
formations – so-called contrasts – between the values in the tips that can be associated with the branches
of the tree, which helps to interprete them.

K

Z 3

ts

Z
Z

1
2 We start with the contrast Z2−Z1. Then we assign a value

W to node k (the MRCA of nodes b1 and b2) that is a
weighted average of Z1 and Z2 but independent of the con-
trast Z2 − Z1: Set

W := x · Z1 + (1− x) · Z2

and search for x such that

0 = cov(x · Z1 + (1− x) · Z2, Z1 − Z2)

= x · var(Z1)− x · cov(Z1, Z2) + (1− x) · cov(Z2, Z1)− (1− x) · var(Z2)

= x · var(Z1)− x · var(K) + (1− x) · var(K)− (1− x) · var(Z2)

= x · var(Z1 −K)− (1− x) · var(Z2 −K)

= x · s− (1− x) · t

⇒ x =
t

s+ t

K

Z 3

ts

Z
Z

1
2

Hence, we set

W :=
t

s+ t
· Z1 +

s

s+ t
· Z2.

If the distance between k and some tip with value Z3 is r, then

var(K − Z3) = r,

where K is the value in node k.

We should not consider W as an estimate for K because var(W − Z3)

= var

(
s

t+ s
· Z1 +

t

t+ s
· Z2 − Z3

)
= var

(
s

t+ s
· (Z1 −K) +

t

t+ s
· (Z2 −K) +K − Z3

)
=

(
s

s+ t

)2

· var(Z1 −K) +

(
t

s+ t

)2

· var(Z2 −K) + var(K − Z3)

=
s2

(s+ t)2
· t+

t2

(s+ t)2
· s+ r =

st

s+ t
+ r > var(K − Z3).
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Thus, we can imagine that we prune the subtree of b1 and b2 from the tree and extending the branch
to k by length st

s+t . To the new tip at the end of this extended branch we assign a value of W . The
contrast Z1−Z2 is uncorrelated to all values at tips of this new tree and thus also to any contrasts that
we can compute from them.

This means, we continue with this tree:

For the next contrast we can use W − Z4.

We repeat this pruning step until we have m − 1
independent contrasts.

K

Z 3
W

st/(s+t)

Z4

x

y

Dividing all contrasts by their standard deviations leads to a standard-normally distributed vector
of contrasts:

Z2 − Z1√
s+ t

,
W − Z4√
x+ y + st

s+t

, . . .

All this is only true under the null hypothesis of neutral evolution. We can reject this null hypothesis
if the vector of standard-normalized contrast deviates signifcantly from the normal distribution. Since
the contrasts are associated with branchs of the tree, we can then identify which branch of the tree shows
evidence for process of adaptation. (Here we assume that the phylogeny is known.)

In principle, we can also use quantitative characters to estimate the tree, but usually the amount
of available data is insufficient to infer the tree, adaptation processes and correlation between different
quantitative traits. It ususally makes more sense to estimate the tree from molecular data and then use
the independent contrasts method to analyse the evolution of the quantitative traits along the tree.

10.5 Software

Phylip: contrast
http://evolution.genetics.washington.edu/phylip/doc/contrast.html
Can deal with variation of traits within species (Above we have always assumed only one value for per

trait for each species. This should be the average value, which, however, can ususally not be estimated
with high precision.)

Note that correlation of different traits within species is usually different from correlation between
species.

References

[F08] J. Felsenstein (2008) Comparative Methods with Sampling Error and Within-Species Variation:
Contrasts Revisited and Revised.American Naturalist 171(6): 713–725

Note: when calculating correlations of contrasts x and y of two traits (that is, phylogeny-corrected correlations of the traits),

phylip contrast assumes that the expected values of the changes are 0 and therefore estimates the correlation by
∑
i xi·yi√∑

i x
2
i
·
√∑

j y
2
j

instead of
∑
i(xi−x)·(yi−y)√∑

i(xi−x)2·
√∑

j(yj−y)2
.

BayesTraits
The software package BayesTraits from Mark Pagel’s group provides several Bayesian and Likelihood-

based methods for inferring the evolution of continuous and discrete traits along phylogenetic trees.
http://www.evolution.reading.ac.uk/BayesTraits.html

Coevol
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Some of the things you should be able to explain:

• why and how to correct for phylogenetic correlation when comparing quantitative traits among
species

• what is the Brownian motion model for the evolution of quantitative traits

• how are quantitative traits correlated when they evolved neutrally along a given phylogeny

• properties of multidimensional normal distribution

• what is the REML approach and in which cases do we need to use it instead of ML?

• how to calculate the (reduced) likelihood of a tree for such data with a pruning algorithm

• What are potential problems if we want to estimate a tree from quantitative traits without any
molecular data?

10.6 Extra topic, so far not covered in the lecture: Pruning algorithm for
the Ornstein–Uhlenbeck model

In this section we write

f(x | µ, v) :=
e−

(x−µ)2
2v

√
2πv

for the Gaussian density function of a normal distribution with mean µ and variance v.
The Ornstein-Uhlenbeck process is a generalization of the Brownian motion. It combines the random

fluctuations of the Brownian motion with the tendency to move toward some value θ. Thus, it can
be applied in biology to model the evolution of a quantitative trait with a fitness optimum of θ. If
the process is in a value x at some time point, its state at an infinitesimally time dt later is normally
distribted with expected value α · (θ − x) · dt and variance σ2 · dt. This has the consequence that after
a longer time span t (or, in the context of phylogeny, after a branch of length t) the state of the process

is normally distributed with mean θ + (x− θ) · e−αt and variance σ2

2α

(
1− e−2αt

)
, in other words, has a

Gaussian distribution density

y 7→ f

(
y

∣∣∣∣ θ + (x− θ) · e−αt, σ
2

2α

(
1− e−2αt

))
,

see e.g. Karlin, Taylor “An Introduction To Stochastic Modeling” (1998, 3rd Ed.).
The pruning algorithm of e.g. FitzJohn (2012) and Freckleton (2012) to compute the likelihood in

this model uses the fact that partial likelihoods in this model are again Gaussian functions of the trait
value of the focal node. (A Gaussian function is a product of a Gaussian probability density an a scaling
factor.) Extenstions of the Ornstein–Uhlenbeck model allow for example that the optimal trait values
vary in the tree. The RevBayes packages provides functions to analyse data based on this model. Here,
we cover only the basic phylogenetic Ornstein–Uhlenbeck model.

To derive the pruning algorithm, we need the following three properties of Gaussian functions:

f(y | a+ bx, w) =
1

b
· f
(
x

∣∣∣∣ y − ab ,
w

b2

)
(1)

f(x | λ,w) · f(x | µ, v) = f(λ | µ, v + w) · f
(
x

∣∣∣∣ λv + µw

v + w
,
vw

v + w

)
(2)∫ ∞

−∞
f(x | λ,w) · f(x | µ, v)dx = f(λ | µ, v + w) = f(µ | λ, v + w) (3)
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Note that equation 1 implies for a tree consiting of a single branch of length t and a value of y at the
tip that the likelihood is Gaussian function of the initial value x:

f

(
y

∣∣∣∣ θ + (x− θ) · e−αt, σ
2

2α

(
1− e−2αt

))
= f

(
y

∣∣∣∣ θ · (1− e−αt) + x · e−αt, σ
2

2α

(
1− e−2αt

))
= eαt · f

(
x

∣∣∣∣ (y − θ · (1− e−αt)) · eαt, σ2

2α
·
(
e2αt − 1

))
(4)

We can derive equation 1 as follows:

f(y | a+ bx, w) =
1√
2πw

exp

(
− (y − a− bx)

2

2w

)

=
1√
2πw

exp

(
−
(
y−a
b − x

)2
2w/b2

)

=
1/b√

2πw/b2
exp

(
−
(
x− y−a

b

)2
2w/b2

)

=
1

b
· f
(
x

∣∣∣∣ y − ab ,
w

b2

)
To proof equation 2, we first expand

f(x | λ,w) · f(x | µ, v) =
1√
2πw

1√
2πv

exp

(
− (x− λ)2

2w
− (x− µ)2

2v

)
(5)

and then rewrite the exponent with the aim to obtain a single x in a term as it appears in the exponent
in a Gaussian:

− (x− λ)2

2w
− (x− µ)2

2v

= −v · (x− λ)2 + w · (x− µ)2

2vw

= −v · (x
2 − 2xλ+ λ2) + w · (x2 − 2xµ+ µ2)

2vw

= −x
2 · (v + w)− 2x · (λv + µw) + vλ2 + wµ2

2vw

= −
x2 − 2x · λv+µw

v+w + vλ2+wµ2

v+w

2 vw
v+w

= −
x2 − 2x · λv+µw

v+w +
(
λv+µw
v+w

)2

−
(
λv+µw
v+w

)2

+ vλ2+wµ2

v+w

2 vw
v+w

= −

(
x− λv+µw

v+w

)2

2 vw
v+w

+

(
λv+µw
v+w

)2

− vλ2+wµ2

v+w

2 vw
v+w

= −

(
x− λv+µw

v+w

)2

2 vw
v+w

+
(λv + µw)

2 − (vλ2 + wµ2) · (v + w)

2vw · (v + w)

= −

(
x− λv+µw

v+w

)2

2 vw
v+w

+
λ2v2 + 2λvµw + µ2w2 − v2λ2 − w2µ2 − vwλ2 − vwµ2

2vw · (v + w)
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= −

(
x− λv+µw

v+w

)2

2 vw
v+w

+
2λvµw − vwλ2 − vwµ2

2vw · (v + w)

= −

(
x− λv+µw

v+w

)2

2 vw
v+w

− −2λµ+ λ2 + µ2

2(v + w)

= −

(
x− λv+µw

v+w

)2

2 vw
v+w

− (λ− µ)
2

2(v + w)
(6)

Inserting this into equation 5 we obtain

f(x | λ,w) · f(x | µ, v)

=
1√
2πw

1√
2πv

exp

−
(
x− λv+µw

v+w

)2

2 vw
v+w

− (λ− µ)
2

2(v + w)


=

1√
2π(v + w)

1√
2π vw

v+w

· exp

(
− (λ− µ)

2

2(v + w)

)
· exp

−
(
x− λv+µw

v+w

)2

2 vw
v+w


= f(λ | µ, v + w) · f

(
x

∣∣∣∣ λv + µw

v + w
,
vw

v + w

)
Equation 3 has to do with the fact that sum of two normally distributed random variables is normally
distributed, but also follows easisly from the above and the fact that the area under a probability density
is 1: ∫ ∞

−∞
f(x | λ,w) · f(x | µ, v)dx

=

∫ ∞
−∞

f(λ | µ, v + w) · f
(
x

∣∣∣∣ λv + µw

v + w
,
vw

v + w

)
dx

= f(λ | µ, v + w) ·
∫ ∞
−∞

f

(
x

∣∣∣∣ λv + µw

v + w
,
vw

v + w

)
dx

= f(λ | µ, v + w)

To move on to the pruning recursion, let R be a node with two daughter nodes N and M with branches
of legths tN and tM , and let dN , dM and dR be the vectors of trait values at all leaves that stem from the
nodes N , M , or R, respectively. Let kN · f(x | µN , vN ) and kM · f(x | µM , vM ) be the partial likelihoods
at nodes N and M . That is, e.g. kN · f(x | µN , vN ) is the multi-dimensional probability density of
dN , assuming that the trait value in N is x and assuming given values for the parameters θ, α, σ of
the Ornstein–Uhlenbeck process. We already assume here that the partial likelihoods are Gaussian –
including the possibility of a fixed value at µN with vN = 0 if N is a tip – and show that the partial
likelihood at R is then also Gaussian, which then justifies the assumption as it shows that we stay in the
family of Gaussian functions.

The Likelihood in R starting in x is the product of the probability densities of dN and dM , both
starting in x in R. If N is a leaf with value y, the density is given by equation 4, which is a Gaussian
function of x. Otherwise, the density of dN is calculated taking all possible values y in N into account

63



and apply first equation 3 and then equation 1 as follows:∫ ∞
−∞

f

(
y

∣∣∣∣ θ + (x− θ) · e−αt, σ
2

2α

(
1− e−2αt

))
· kN · f(y | µN , vN )dy

= kN · f
(
µN

∣∣∣∣ θ · (1− e−αt)+ x · e−αt, vN +
σ2

2α

(
1− e−2αt

))
= kNe

αtf

(
x

∣∣∣∣ eαt · (µN − θ · (1− e−αt)) , vN · e2αt +
σ2

2α

(
e2αt − 1

))
= kNe

αtf

(
x

∣∣∣∣ eαt · (µN − θ) + θ, vN · e2αt +
σ2

2α

(
e2αt − 1

))
Note that this is a Gaussian function of x, and analogously we get the density of the data dM , which is
again a Gaussian function that has the same structure as above, with each N replaced by M . As Gaussian
functions are determined by tree parameters (mean and variance of the density part and scaling factor),
we only need to calculate these three parameters when we implement the algorithm. To obtain the
partial likelihood function in R, which assigns to each x the denstity of dR, assuming the value x in R,
we multiply the two Gaussians and obtain again a Gaussian function of x according to equation 2. This
leads to

kR = kNkMe
2αt · f

(
eαt · (µN − θ) + θ

∣∣∣ eαt · (µM − θ) + θ, (vN + vM ) · e2αt +
σ2

α

(
e2αt − 1

))
= kNkMe

2αt · f
(
eαt · µN

∣∣∣ eαt · µM , (vN + vM ) · e2αt +
σ2

α

(
e2αt − 1

))
= kNkMe

αt · f
(
µN

∣∣∣ µM , vN + vM +
σ2

α

(
1− e−2αt

))

µR =
(eαt (µN − θ) + θ) ·

(
vM + σ2

2α ·
(
1− e−2αt

))
+ (eαt (µM − θ) + θ) ·

(
vN + σ2

2α ·
(
1− e−2αt

))
vN + vM + σ2

α (1− e−2αt)

vR =
e2αt ·

(
vN + σ2

2α

(
1− e−2αt

))
·
(
vM + σ2

2α

(
1− e−2αt

))
vN + vM + σ2

α (1− e−2αt)
.

11 Model selection

11.1 Concepts: AIC, hLRT, BIC, DT, Model averaging, and bootstrap again

AIC
The likelihood of a model M ,

LD(M) = max
“θ∈M ′′

LD(θ) = max
θ

PrM,θ(D)

tells us how well M fits the data D. The more parameter dimensions d (i.e. θ = (θ1, θ2, . . . , θd)) the
higher the likelihood and the higher the risk of overfitting !

Under certain assuptions (with normal distributions, not phylogenies), the error of future predictions
in terms of Kullback-Leibler-Information can be estimated by Akaike’s Information Criterion:

AIC = −2 · logLD(M) + 2 · d.

One approach: use the model of lowest AIC.

Model selection via LRT
If we have a model M1 with n− d parameters nested in a model M2 with n parameters, then under

the null-hypothesis that the data come from the more simple model M1, the double log likelihood ratio
is under certain conditions approximately chisquare-distributed with d degrees of freedom,

LM1

(
2 · log

LD(M2)

LD(M1)

)
= LM1 (2 · (logLD(M2)− logLD(M1))) ≈ χ2

d,
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where the likelihood of a model LD(Mi) is maximum likelihood obtained by optimization over all pa-
rameters of the model.

In cased where the χ2
d approximation is dubious (e.g. when the models are not nested) one can

simulate the likelihood ratio distribution under the null hypothesis.

One approach of model selection is to accept the more complex model only if the simpler model is
significantly violated.

Problems of this LRT approach

• Model selection is different from the original idea of testig. If a test does not show significance,
one cannot conclude anyzthing, and especially not that the null hypothesis (the simpler model) ist
favorable.

• One can inprinciple apply this to a hierarchy of nested models, but the result will depend on which

intermediate steps are allowed.

JC

HKY

F81

K2

F84

GTR

Bayesian model selection
Each model Mi has a prior probability Pr(Mi). Its posterior probability is then

Pr(Mi|D) =
Pr(D|Mi) · Pr(Mi)∑
j Pr(D|Mj) · Pr(Mj)

with

Pr(D|Mi) =

∫
θ

Pr(D|Mi, θ) · Pr(θ|Mi)dθ.

Note the difference between Pr(D|Mi), where we integrate over θ, and LD(Mi) where we maximize over
θ! The sum over all models in the denominator above cancels if we compare two models by taking the
ratios of their posteriors:

Pr(M1|D)

Pr(M2|D)
=

Pr(D|M1)

Pr(D|M2)
· Pr(M1)

Pr(M2)

The fraction Pr(D|M1)/Pr(D|M2) is called the Bayes factor of the models M1 and M2.
To avoid the priors of the models we use the Bayes factors rather than the posterior distributions to

decide between models. If the Bayes factor Pr(D|M1)/Pr(D|M2) is larger than 1 we may favor M1 over
M2. The rule of thumb says that a Bayesfactor between 1 and 3 is not worth mentioning, between 3 and
20 it indicates some evidence, between 20 and 150 strong evidence, and over 150 very strong evidence.

It is important to note that even if the priors Pr(Mi) of the models do not matter, the priors PrMi(θ)
within the model may have a strong influence. An important difference between Bayesian parameter
estimation and Bayesian model selection is that priors become less important for paramterestimation as
more data is added. This is not the case in model selection, where priors for the model parameters will
always have an important impact!

Some people find the following properties of posterior probabilities counter-intuitive:

Lindley’s paradox In the limit of uninformative priors, the simplest model is always preferred.

Star-tree paradox If all internal node have length (almost) 0, there will often be a fully resolved tree
with high posterior probability (deciding between topology can be considered as model selection).

Fair-coin paradox If a (almost) fair coin is tossed many times, but the models compared allow only
for one or the other side to have probability larger than 0.5, it will often be the case that one of
the two models have a high posterior probability.
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Computation of Bayes factors from MCMC runs
If θ(1), . . . , θ(m) are (approximately) independent samples Pr(θ|D,M) we can compute Pr(D|M) by

importance sampling approximation:

Pr(D|M) =
Pr(D|M)∫
θ

Pr(θ|M)dθ
=

1∫
θ

Pr(θ|M)
Pr(D|M)dθ

≈ 1
1
m

∑
θ(i)

Pr(θ(i)|M)
Pr(D|M)·Pr(θ(i)|D,M)

=
m∑

θ(i)
Pr(θ(i)|M)

Pr(D,θ(i)|M)

=
m∑

1
Pr(D|M,θ(i))

(note that this harmonic mean estimator may be numerically unstable.)

BIC
For a model M with a d-dimensional parameter θ and data D consisting of N independent samples,

we can under certain conditions approximate

log Pr(D|M) ≈ log Pr(D|M, θ̂)− d

2
· logN

We call BIC(M) = −2 · log Pr(D|M, θ̂) + d logN the Bayesian Information Criterion or Schwartz
Criterion, and favor models of low BIC. Moreover,

Pr(D|M1)

Pr(D|M2)
≈ e(BIC(M2)−BIC(M1))/2.

Minin, Abdo, Joyce, Sullivan (2003): “[..] rather than worry about the somewhat artificial criterion
whether or not a model is correct, we will focus on the accuracy of the branch lengths estimated under
various models”
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• Assume that the unrooted phylogeny with k tips is known or use some inital guess.

• Candidate modles: M1, . . . ,Mm with uniform prior Pr(Mi) = 1/m.

• Branch lengths estimated with model Mi:

Bi = (B̂i,1, . . . , B̂i,2k−3)

||Bi −Bj || :=

√√√√2k−3∑
`=1

(
B̂i,` − B̂j,`

)2

• Risk when choosing Model Mi:

Ri =

m∑
j=1

||Bi −Bj || · Pr(Mj |D) ≈
m∑
j=1

||Bi −Bj || ·
e−BIC(Mj)/2∑m
h=1 e

−BIC(Mh)/2

DT
The Decision-Theoretic (DT) criterion of Minin, Abdo, Joyce, Sullivan (2003) is to choose the model

with the minimal risk

Ri ≈
m∑
j=1

||Bi −Bj || ·
e−BIC(Mj)/2∑m
h=1 e

−BIC(Mh)/2

based on the initial tree.

In a follow-up paper they study the robustness of this approach against uncertainty about the initial
tree.

Model averaging
Let θ be the vector of parameters and s(θ) some interesting aspect of the parameters. s must have

the same meaning in all considered models M1, . . . ,Mm. We can then estimate:

Pr(s(θ)|D) ≈
m∑
i=1

Pr(s(θ)|D,Mi) · Pr(Mi|D)

One possible implementation of Model averaging is reversible-jump MCMC, see Huelsenbeck, Larget,
Alfaro (2004)

Reversible-Jump MCMC
If an MCMC procedure shall sample from a state space that has several continuous components of

different dimensions (e.g. for averaging over several models with different numbers of parameters), the
problem arises that a density of n dimensions cannot be directly compared to a density in e.g. n + 1
dimensions in a Metropolis-Hastings ratio.[1.5ex] Simple approach is to add an artificial parameter to
the state of n dimensions, which has a uniform distribution on [0, 1] and no influence on the probability
of the data. [1.5ex] Then you can apply Metropolis-Hasting to perform reversible jumps between the
components of dimension n and dimension n+ 1.

Parametric bootstrap approach
If different models lead to different results, and it is not clear which model fits best, one should ask

for all i and j:

If model Mi was right, how accurate would an analysis based on model Mj be?

do for each i:

1. θ̂i := estimate θ based on Mi

2. repeat for k = 1, . . . , 1000:

(a) Di,k: simulated data based on Mi and θ̂i

(b) For all j: let θ̃i,k,j the Mj-based estimation for dataset Di,k

3. Analyse for all j how close the average θ̃i,.,j is to θ̂i.
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11.2 Does model selection matter?

Substitution models for phylogeny reconstruction
Study with wide range of data sets for : Ripplinger and Sullivan (2008)

• Different model selection methods led to different models in 80% of the cases

• use of different best-fit models changes the optimal tree topology in 50% of the cases, but only for
poorly supported branches.

• BIC and DT selected simpler models than hLRT and AIC. The simpler models performed at least
as well as the more complicated.

• Use of models supported by model selection in ML gave better trees than MP or ML with K2P.

• Trees based on models favored by different model selection strategies gave similar results in hy-
pothesis tests.

• Recommend to use the simpler BIC- and DT-selected models.

From Lin Himmelmann’s PhD thesis
Simulation study to compare (relaxed) molecular-clock models

MC strict molecular clock model

CPP compound Poisson process

DM Dirichlet model (rate factors on branches add up to 1, no correlation of neighboring branches)

ULN uncorrelated log-normal

UEX uncorrelated exponential

Results of Lin’s model comparison
Data origin Performance of models in analysis

MC MC best
CPP, DM, ULN almost as good
UEX much worse

CPP, DM, ULN MC, CPP, DM, ULN give good results
UEX slightly worse

UEX DM, ULN best
UEX slightly worse
CPP worse
MC worst

Lin recommends: DM, ULN okay for most situations
More severe than substitution model selection may be:

• Alignment

• Confusion of paralogs

• Gene trees can differ due to recombination combined with

– Incomplete Lineage Sorting (ILS, details on white board)

– Horizontal gene transfer (HGT)

– Coalescence of lineages further back than speciation

– Introgression

• Phylogenetic methods can be confused by incompatible trees
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Some of the things you should be able to explain:

• criteria AIC, BIC, hLRT, Bayes factors, DT and model averaging to decide which model to use for
your data (e.g. substitution model for sequence data)

• Lindley’s paradox and other differences between Bayesian and frequentist approach

• how relevant is model selection, also compared to other potential problems in your data

12 Insertion-Deletion Models for Statistical Alignment

12.1 Alignment sampling with pairHMMs

To Do: estimate mutation rates from sequences

ACTCGCGCTT

ACGTCGATT

Classical Approach:

1. Take best Alignment:

AC_TCGCGCTT

ACGTCGA__TT

2. Count Mutations in best Alignment:

1 Mismatch : 7 Matches

2 Indels (3 Sites) : 8 homologous Sites

Problem: underestimation of mutation rates, since alignment fits too well!
What are typical Alignments and Mutation Rates for given sequences?
Idea: Generate many random alignments A with corresponding mutation rates M according to

Pr
(

(A,M) | sequences
)

Needed: A model of sequence evolution with insertions, deletions and substitutions. Otherwise
Pr(. . . ) has no meaning!

Model of Sequence Evolution
Thorne, Kishino, Felsenstein (1991):
Deletions with rate µ at each site.
Insertions with rate λ right of each site & at the very left.
Substitutions with Rate s at each site.

A C G T T C G C

A T CG CT C G

time

TKF alignment convention:

like this:

ACGT_TC_GC_

A_TTG_CC_CG

not like this:

ACGT_TCG_C_

A_TTG_C_CCG
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Reversibility?

reversed

time

time

Consequence of TKF convention

The bare alignment

BBBB_BB_BB_

B_BBB_BB_BB

is generated by a Markov chain:

Start EndeB
B

B

_

_
B

from \ to B
B

B
B

B
B (1 − λβ)λ

µ
e−µ (1 − λβ)λ

µ
(1 − e−µ) λβ

B λβ e−µ
1−e−µ

λβ
1−e−µ−µβ

1−e−µ

B (1 − λβ)λ
µ
e−µ (1 − λβ)λ

µ
(1 − e−µ) λβ

transition probabilies im (model: TKF’91), β = 1−eλ−µ

µ−λeλ−µ

The Markov chain (the alignment) is hidden, observable is the pair of sequences emitted by the
alignment.

A C G T T C G C

A T T G C C C G

B
B B
_
B
B
B
B
_
B
B
_
B
B
_
B
B
_
B
B
_
B

pair Hidden Markov Model (pair HMM)

70



Why Markov?

B B B B

B B B B B B B

X

X

X

B

BB

X

B

B

B_

__ _ _

_

__

_

Galton and Watson

Sir Francis Galton
1822–1911

Henry William Watson
1827–1903

Galton Watson Tree
Xk := number of offsprings at node k

X1, X2, X3, . . . i.i.d. random variables

EXk < 1 : “subcritical”
EXk = 1 : “critical”
EXk > 1 : “supercritical”

Galton-Watson Process in continuous time
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Time

Binary Branching GW Process in cont. time

Time

Theorem 6 If a Galton-Watson process with binary branching or geometric offspring distribution (on
{0, 1, 2, . . . }) is still alive at time t, then the number of survivors at time t is geometrically distributed
(on {1, 2, 3, . . . }).

on {0, 1, 2, . . . }: Pr(X = k) = (1− p)k · p , E(X) = (1− p)/p
on {1, 2, . . . }: Pr(X = k) = (1− p)k−1 · p , E(X) = 1/p

The geometric distribution is the only one on {(0, )1, 2, 3, . . . } without memory: Pr(X = n+k | X >
n) = Pr(X = k)

Why Geometric Distribution?
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B _

_ B

0

t

???

???

???

B _ _

B B_ ???

0

t

???

???

B ___

_ B B B

???

???

0

t

???

Computing transition probabilies
Simplification: λ = µ

B _

_ B

0

t

???

???

???

X := number of survivors at time t E(X) = 1
Pr(X = k | X > 0) = (1− p)k−1 · p
1
p = E(X | X > 0)= 1 + t · λ ⇒ p = 1/(1 + t · λ)

Pr
(
B
→

B

)
= 1− 1

1 + tλ
=

tλ

1 + tλ
= Pr

(
B

B
→

B

)
Pr

(
B
→ B

B

)
=

1

1 + tλ
· e−tλ = Pr

(
B

B
→ B

B

)

1 = E(X)

= Pr(X = 0) · E(X | X = 0)

+ Pr(X > 0) · E(X | X > 0)

= Pr(X > 0) · (1 + t · λ)

⇒ Pr

(
B

B

)
+ Pr

(
B

B

)
= Pr(X > 0) =

1

1 + t · λ

Pr

(
B

B

)
=

1

1 + t · λ
− e−tλ

Pr

(
B →

B

)
=

Pr
(
B
B

)
Pr
(
B
) =

1
1+t·λ − e

−tλ

1− e−tλ

=
1− e−tλ · (1 + tλ)

(1 + tλ) · (1− e−tλ)
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From the previous calculation we obtain that after B the probability that this site has no surviving
offspring is

1− 1− e−tλ · (1 + tλ)

(1 + tλ) · (1− e−tλ)
=

tλ

(1 + tλ) · (1− e−tλ)
.

As the probability that the next B survives is e−tλ, we obtain

Pr

(
B → B

B

)
=

tλe−tλ

(1 + tλ) · (1− e−tλ)

Pr

(
B → B

)
=

tλ ·
(
1− e−tλ

)
(1 + tλ) · (1− e−tλ)

=
tλ

(1 + tλ)

Aim: Sequences are given. Generate alignments A and mutation rates M = (λ, µ, s) according to

Pr
(

(A,M) | sequences
)

partial steps:

1. Assume that the mutation rates M are known. Generate alignments A according to

Pr
(
A | sequences,M

)
2. Assume that the alignment A is known. Generate values for the mutation rates M according to

Pr
(
M | sequences, A

)
3. combine 1. and 2.
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Path representation of an alignment

A_GTCCT__

ACG__GTTT

T

C

C

T

G

A

A C G G T T T

Pr(sequences | M) =
∑

alignment A

Pr(A,sequ. | M)

C

C

T

T T T

G

T

A

A C G G

Summing efficiently: label each edge with
Pr( Alignment contains this edge and generates the sequences so far | M )

C

C

T

T T T

G

T

A

A C G G

x

y
z

(
x · Pr

(
B
→ B

B

)
+ y · Pr

(
B

B
→ B

B

)
+ z · Pr

(
B → B

B

))
· πC · PC→T
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C

C

T

T T T

G

T

A

A C G G

x

y
z

(
x · Pr

(
B
→ B

)
+ y · Pr

(
B

B
→ B

)
+ z · Pr

(
B → B

))
· πC

After labeling all edges, generate alignment backwards.

C

C

T

T T T

G

T

A

A C G G

Random decisions in each step depend on edge labels and Markov transition probabilities.

True alignment for simulated sequence pair of
lenght 100 with indel rate 0.3 and substitution
rate 0.4.
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5000 sampled alignments for simulated se-
quence pair of lenght 100 with indel rate 0.3
and substitution rate 0.4

partial steps:

1. Assume that the mutation rates M are known. Generate alignments A according to

Pr
(
A | sequences,M

)
(as explained before)

2. Assume that the alignment A is known. Generate values for the mutation rates M according to

Pr
(
M | sequences, A

)
by Metropolis Hastings Algorithm

3. Combine 1. and 2. (Gibbs-Sampling)

=> Markov chain Monte Carlo Method for sampling (A,M) according to

Pr
(
A,M | sequences

)
posterior probability samplings of mutation parameters for HVR-1 of human and orangutan with

alignment given in data base (left) and alignments sampled simultaneously with parameters (right)
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Alignment Accuracy: HVR1 of Human and Orang
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D. Metzler, R. Fleißner, A. Wakolbinger, A. von Haeseler (2001) J. Mol Evol. 53:660-669.

12.2 Insertions and deletions of more than one site

InDels are usually longer than 1 position

ZeitA

A

A AT

T

T T

G

GG GA

A

CC C

CG

C C
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FID Model (also a pairHMM):

• instead of single nucleotides, fragments are inserted an deleted with rate λ.

• Length of the fragments: geometrically distributed, mean length: γ.

Pr(L = k) =
1

γ

(
1− 1

γ

)k−1

FID transition probabilities
The transition probability of the FID model can be derived from the transition probabilities of the

simplified (µ = λ) TKF91 model, taking into account that with a probability of 1 − 1
γ the position is

in the same fragment as its left neighbor and thus is in the same state. With the probability 1/γ the
fragment ends and the state of the next fragment is chosen according to the transition probabilities of
the simplified TKF91 model. This leads to the following transition probabilities between sites:

P (x→ y) y = B
B y = B y = B

x = B
B 1− 1+tλ−e−tλ

γ(1+tλ)
tλ

γ(1+tλ)
1−e−tλ
γ(1+tλ)

x = B
e−tλ

γ(1+tλ)
γ(1+tλ)−1
γ(1+tλ)

1−e−tλ
γ(1+tλ)

x = B tλe−tλ

γ(1−e−tλ)(1+tλ)
1−e−tλ(1+tλ)

γ(1−e−tλ)(1+tλ)
γ(1+tλ)−1
γ(1+tλ)
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forbidden in TKF92 and FID:

B B B

B B B B B B B

B B B B B BB

Zeit

GID Model:

• ↑ this is allowed

• no hidden Markov structure

Use GID to simulate data and test robustness of FID
Test robustness of ML estimates for mutation rates

• Generate sequence pairs according to FID and GID

• Tell FID-based estimator which positions are homologous

• Are estimates for GID data worse than FID data? (This will be the case only when true parameter
values are extreme.)

• Differences should be lower when estimates are based on sequences instead of homology structures.
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How good are FID-based methods when GID/“Long Indel Model” is true?

• no problem for parameter estimations (Metzler, 2003)

• alignment accuracy can be decreased (Miklos, Lunter, Holmes, 2004)

Maybe generate mixed-geometric gap-length with different types of fragments.
Along a tree fragmentation may change from edge to edge.

InDel Model for detecting conserved regions
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12.3 Multiple Alignments
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multiple HMM for sampling a sequence given its neighbours
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TKF91: states of hidden Markov chain are the Sets Of Active Nodes (soans).

PS(k) =
∑

(R,e) : S=[R,e]

p(e)q(e)PR(k − ve)ϑ(e, k)

where

k : Multi-index of Positions in sequences at leaves

S = [R, e] : tihl e turns soan S into soanR
PS(k) : Pr(sequences up to k are generated and end there)

p(e) = Pr(indel history of e)

q(e) = Pr(no inserts at nodes in e)

ϑ(e, k) = Pr(e emits base given in data types at k)

ve ∈ {0, 1}n : indicates postions in leaf-sequences to which e emits

TKF91: states of hidden Markov chain are the Sets Of Active Nodes (soans).

Transfer this to FID or TKF92 (fragmentation may change from edge to edge)
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• D. Metzler, R. Fleißner, A. Wakolbinger, A. von Haeseler (2005) Stochastic insertion-deletion
processes and statistical sequence alignment.

• D. Metzler, R. Fleißner (2007) Sequence Evolution Models for Simultaneous Alignment and Phy-
logeny Reconstruction.

state space: edge-labellings with {B,H, e, b, h}.

b H
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tihl = tree indexed heirs line
Example: 3-leaved tree
TKF91: 23 = 8 possible sets of active nodes
TKF92/FID: 53 = 125 possible labellings, 41 of them are relevant

When changing the tree topology...

...keep alignments of exterior sequences fixed. (TKF91: 32 SOANS; FID: 437 relevant labellings)

Why Statistical Alignment is Important

• Over-optimization of alignments can bias your analysis.

• Without statistical alignment methods, like Bayesian tree sampling and bootstrapping will be by
far to optimistic about the uncertainty in phylogeny inference.

• Statistical alignment allows you to use the information contributed by insertions and deletions.

12.4 Software for joint estimation of phylogenies and alignments

BAli-Phy

http://www.bali-phy.org/

References

[RS05] B.D. Redelings, M.A. Suchard (2005) Joint Bayesian Estimation of Alignment and Phylogeny
Systematic Biology 54(3):401-418

[SR06] M.A. Suchard, B.D. Redelings (2006) BAli-Phy: simultaneous Bayesian inference of alignment
and phylogenyBioinformatics 22:2047-2048

[RS07] B.D. Redelings, M.A. Suchard (2007) Incorporating indel information into phylogeny estimation
for rapidly emerging pathogens. BMC Evolutionary Biology 7:40
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pairHMM in BAli-Phy
The alignment consists of a geometically distributed number of fragments. It is generated according

to the pairHMM

ε

ε

ε

δ

ε ε

ε

1− 1−

1−

(t)

(t)

δ

1−2

δ(t)

B

B

B

B

−

−

with
δ(t) = 1− e−λt/(1−ε).

MCMC steps in BAli-Phy

• Parts of the pairwise alignments along branches of the current tree are re-sampled. Felsenstein wild-
cards are used for the nucleotide or amino acid types, i.e. probability distributions conditioned on
the sequences at the tips of the tree.

• SPR steps for updating the tree.

• After an SPR step a pairwise alignment along the new branch is sampled. For efficiency, it keeps
the alignments within each of the two partial trees fixed.

Statistical alignment software StatAlign
StatAlign https://statalign.github.io/

1. simultaneous statistical alignment and phylogeny reconstruction

2. optionally also simultaneous RNA secondary structure prediction

3. extension StructAlign can account for protein or RNA secondary structure prediction

4. provides a graphical user interface where you can watch the changes in the alignment and the
phylogeny

References
[NMLH08] A. Novák, I. Miklós, R. Lyngsø, J. Hein (2008) StatAlign: an extendable software package for joint Bayesian estimation

of alignments and evolutionary trees. Bioinformatics 24(20): 2403–2404

[AEG+13] Arunapuram P, Edvardsson I, Golden M, Anderson JWJ, Novák Á, Sökösd Z and Hein J (2013) StatAlign 2.0: Com-
bining statistical alignment with RNA secondary structure prediction.Bioinformatics 29(5): 654–655

[HCN+19] Herman JL, Challis CJ, Novák Á, Hein J and Schmidler, SC (2014) Simultaneous Bayesian estimation of alignment and
phylogeny under a joint model of protein sequence and structure. Molecular Biology and Evolution 31(9): 2251–2266

Some of the things you should be able to explain:

• Why and how can optimized alignments bias a phylogeny analysis?

• Advantages of statistical alignment.

• What is a pairHMM?

• How is dynamic programming used in alignment and why are hidden Markov structures a prereq-
uisite for this?

• What model assumptions equip insertion–deletion models with a hidden Markov structure, also in
the case of longer indels?

• Approaches for multiple statistical alignment and their complexity.
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13 Tests for trees and branches (extra material; not part of
WS21/22 course)

13.1 The Kishino–Hasegawa (KH) test

Application Example

References

[HHB+03] J. Harshman, C.J. Huddleston, J.P. Bollback, T.J. Parsons, M.J. Braun (2003) True and
False Gharials: A Nuclear Gene Phylogeny of Crocodylia Systematic Biology 52:386–402
https://doi.org/10.1080/10635150390197028

Caimans

Alligators

Crocodiles

Dwarf Crocodiles

False Gharials

True Gharials
Classical Tree

based on
Morphology:

Tree based
on mtDNA:

• KH test with new data: has one tree significantly higher
likelihood than the other?

• Nuclear DNA from 8 crocodylian and 6 avian species

• Result: the tree with the true and false gharials grouped
together has significantly higher likelihood for the nu-
clear data.

The KH test compares two given trees. The null hypothesis is that differences in their likelihoods are
only due to “sampling error”, i.e. the mutations that randomly occurred at the sites in our dataset.Several
versions of the KH test exist, one of them is as follows:

• Given an alignment of length S let for each k ≤ S be `
(k)
1 and `

(k)
2 the log-likelihoods of the two

trees for the k-th column of the alignment.

• define δk = `
(k)
1 − `(k)

2

• estimate the variance of all δk by σ̂2 =
∑
k(δk−δ.)2
S−1 , where δ. is the mean over all δk.

• Under the null hypothesis (and model assumptions like independence of sites etc.), the log likelihood-
ratio `1 − `2 is normally distributed with mean 0 and variance S · σ2.

Hence, reject the null hypothesis on the 5% level if |`1 − `2| > 1.96 ·
√
Sσ̂

(other variants of the test use log likelihood-ratios of bootstrapped trees instead od site-wise log likelihood-
ratios)

Note that the selection of trees to be tested must be independent from the data that is used in the
KH test!

If one of the trees has been selected because of its high likelihood for this dataset, the other tree will
be rejected too often!

To apply the KH test to more than two trees, some multiple-testing correction is needed.

Basic version does not account for variation between genomic regions (ILS etc..). But could be done
for regions like for sites.

13.2 The Shimodaira–Hasegawa (SH) test

Application example
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References

[MTW20] Murahwa, A.T., Tshabalala, M., Williamson, A.-L. (2020) Recombination Between High-Risk
Human Papillomaviruses and Non-Human Primate Papillomaviruses: Evidence of Ancient
Host Switching Among Alphapapillomaviruses J Mol Evol 88: 453–462 https://doi.org/

10.1007/s00239-020-09946-0

• Genomic regions with evidence of recombination

• Are trees for these regions significantly different from tree for rest of the genome?

• (Be cautious: is evidence of recombination independent of phylogenetic signal?)

References

[1] Shimodaira H, Hasegawa M (1999) Multiple Comparisons of Log-Likelihoods with Applications
to Phylogenetic Inference Molecular Biology and Evolution 16 (8): 1114–1116 https://doi.

org/10.1093/oxfordjournals.molbev.a026201

• Assume that a set of trees is given that includes the true tree.

• Again, the choice of the set of trees must be independent of the data. The null hypothesis is that
differences in the likelihoods of the trees are only due to “sampling error”.

SH-Test
1. MakeR bootstrap samples from the S sites and

compute the log likelihood `t,r for each tree t
in the set and each bootstrapped data set r.

2. R̃t,r := `t,r − 1
R

∑R
k=1 `t,k

3. Dt,r := maxs R̃s,r − R̃t,r

4. A 95 % confidence range of trees consists of
that trees t for which more than 5 % of the
Dt,r are larger than maxs `s − `t.

r
t `t 1 2 3 . . . R
1 `1 `1,1 `1,2 `1,3 . . . `1,R
2 `2 `2,1 `2,2 `2,3 . . . `2,R
3 `3 `3,1 `3,2 `3,3 . . . `3,R
...

...
...

T `T `T,1 `T,2 `T,3 . . . `T,R

Note that this includes some multiple testing correction, but not completely.

13.3 The SOWH test

Application Example

References

[AGD11] Almeida, F.C., Giannini, N.P., DeSalle, R. et al. (2011) Evolutionary relationships of the old world
fruit bats (Chiroptera, Pteropodidae): Another star phylogeny? BMC Evol Biol 11:281 https:

//doi.org/10.1186/1471-2148-11-281

Jamaican
Fruit Bat4 Old World

Fruit Bat
Species 

ca. 50 Old World
Fruit Bat
specis

four outgroup
species

???
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Jamaican
Fruit Bat4 Old World

Fruit Bat
Species 

ca. 50 Old World
Fruit Bat
specis

four outgroup
species

• data: sequenced 8 genes (4 mt, 4 nuclear), complemented by data from genbank

• “The SOWH test confirmed that basal branches’ lengths were not different from zero, which points to closely-spaced cladogenesis as the most
likely explanation for the poor resolution of the deep pteropodid relationships.”

• caution: In general don’t draw conclusions from non-significance!

• But they also state: “Simulations suggest that an increase in the amount of sequence data is likely to solve this problem.”

References

[GAR00] N. Goldman, J.P. Anderson, A.G. Rodrigo (2000) Likelihood-Based Tests of Topologies in Phylogenetics
Syst. Biol. 49(4): 652–670

[SOWH] D.L. Swofford, G.J. Olsen, P.J. Waddell, D.M. Hillis (1996) Phylogenetic inference in: D.M. Hillis,
C. Moritz, B.K. Mabe (eds.) Molecular Systematics, Sinauer.

To test whether a tree T0 can be rejected (H0: “T0 is the true tree”), use as a test statistic the difference
δ = `ML − `0 between the maximum log likelihood `ML and the log likelihood `0 of T0.

Simulate many datasets d by parameteric bootstrapping using T0 and the corresponding estimates of all
parameters (mutation rates, branch lengths etc.).

Let `0,d be the log likelihood of T0 based on bootstrap data set d with new estimations for all parameters,
and let `ML,d be the same maximized over all tree topologies.

Use all δd = `ML,d−`0,d (for all d) to estimate the distribution of the test statistic δ under the null hypothesis
that T0 is correct.

Reject T0 on the 5% level if less than 5% of the δd are larger than δ.

References

[B02] T.R. Buckley (2002) Model Misspecification and Probabilistic Tests of Topology: Evidence from Empirical
Data Sets Syst. Biol. 51(3): 509–523

Shows examples where SOWH test and posterior probabilities falsely reject too many trees because of using
the wrong substitution models. The SH test does not have this problem and rather tends to be too conservative.

Uses real data with phylogeny more or less well known.

Advantage: Realistic because all substitution model used in simulation study are somehow idealized.

Drawbacks: Only a few such datasets are available and results may not be representative. In principle, the
assumed phylogenies could still be erroneous.

13.4 Anisimova and Gascuel’s approximate Likelihood-Ratio Test (aLRT)

References

[AG06] M. Anisimova, O. Gascuel (2006) Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate,
and Powerful Alternative Syst. Biol. 55(4): 539–552

• We want to show significance of a particular branch in the tree, i.e. the null hypothesis is that this branch
has length 0.

• We assume, however, that with any other respect, the topology of the tree is true.

• A likelihood-ratio test:

– H0: Length of this branch is 0.
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– H1: Length of this branch > 0.

• Thus, we have to approximate the distribution of the log likelihood-ratio under the null hypothesis.

Ususally, if we have a model M1 with n − d parameters nested in a model M2 with n parameters, then
under the null-hypothesis that the data come from the more simple model M1, the double log likelihood ratio is
approximately chisquare-distributed with d degrees of freedom,

LM1

(
2 · log

LD(M2)

LD(M1)

)
= LM1 (2 · (logLD(M2)− logLD(M1))) ≈ χ2

d,

where the likelihood of a model LD(Mi) is maximum likelihood obtained by optimization over all parameters of
the model.

x

y y=x

This only works if the model M1 is in the inner of the model M2. In our case, the null hypothesis is at the
boundary of the more general model, because the branch length 0 is on the boundary of the set of allowed branch
lengths.

Therefore, the following correction proposed: The distribution of 2 · (logLD(M2) − logLD(M1)) is approxi-
mated by a distribution that puts weight 0.5 on 0 and half of the density of χ2

1 on all positive values.
Anisimova, Gascuel (2006): Let `1 be the log likelihood of the ML tree, `0 that of the topology with the

length of the focal branch removed, and `2 > `3 the log likelihoods of the two topologies where the focal branch
is removed in an NNI step and (see Figure 1 in Anisimova, Gascuel (2006))[1.5ex]

A

B

C

D

A

B

C

D

A

B

C

D

C

D

A

B

For more robustness, 2(`1− `2) ≤ 2(`1− `0) is used as a test statistic. (Maybe the idea is that the null hypothesis
should be that one of the other fully resolved trees is right.)[1.5ex] The likelihood of a topology is the maximum
likelihood of a tree with this topology. Thus, each value `0, `2, `3 needs own optimization of all branch lengths.
Here, Anisimova and Gascuel use an approximation by optimizing only the four neighboring branches of the
focal branch and its alternative branch in the case of `2 and `3.[1.5ex] If the null hypothesis is true, any of the
three possible fully resolved topologies can get the highest likelihood. Therefore, a multiple-testing correction is
needed. The Bonferroni correction is applied, which means that the α-level is replaced by its third.

Anisimova and Gascuel conclude from simulations that

• Approximate likelihood-ratio test (aLRT, i.e. with optimization over only five branches) has accuracy and
power similar to standard LRT.

• aLRT is robust against mild model misspecifications.

• aLRT was slightly more accurate w.r.t. 5% type I error than ML bootstrap.

• In contrast to wide-spread belief, bootstrap was a bit too liberal, i.e. its type I error rate was higher than
the significance level.

• Bayesian methods were a bit too conservative in this simulation study.
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A Basic concepts from probability theory

This is a very quick overview of some basic concepts from probability theory.
I give a more thorough introduction in my videos and handouts of the statistics course, see
http://evol.bio.lmu.de/_statgen/StatEES/20SS/Videos/StatEES_3a.mp4

http://evol.bio.lmu.de/_statgen/StatEES/20SS/Videos/StatEES_3b.mp4

http://evol.bio.lmu.de/_statgen/StatEES/stochbasics_handout.pdf

And of course there are many excellent textbooks and other internet resources.

A.1 Events and their probabilities

Event in probability is something that takes place with a certain probability, but is not necessarily associated to
a certain time or place.

Examples of events:

• A ={The next time I role a dice, it is a six.}
• B ={The next time I role a dice, the result is an even number.}
• There are five segregating sites in this alignment.

• No mutation happend in this genomic region.

Conditional Probability of A, given B:

Pr(A | B) =
Pr(A,B)

Pr(B)
=

1/6

1/2
=

1

3

Pr(A,B) = Pr(B) · Pr(A | B)

Two events A and B are stochastically independent if and only if

Pr(A,B) = Pr(A) · Pr(B).

If A and B are independent, then Pr(B | A) = Pr(B) and Pr(A | B) = Pr(A).

Pr(B) = Pr(A,B) + Pr(Ac, B)

= Pr(A) · Pr(B | A) + Pr(Ac) · Pr(B | Ac)

A B
A,B

A

Ac

B

B
c

A.2 Law of total probability

Law of total probability
If one and only one of the events A1, A2, . . . , An will take place, then

Pr(B) =

n∑
i=1

Pr(Ai) · Pr(B | Ai).

.....A A A1 2 nA...

B

A1
A2

An

B
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Law of total probability in Felsenstein’s prunig algorithm

Pr(D) = Pr(A) · Pr(D|A) + Pr(C) · Pr(D|C) + Pr(G) · Pr(D|G) + Pr(T ) · Pr(D|T )

A C C A T

D

A? C? G? T?

A C G T

D

A.3 Random Variables and their Distributions

Examples for random variables:

Roll a dice two times

X: result of the first throw

Y : result of the second throw

S = X + Y

M = number of mutations in some genomic region

N = number of mutations on a branch of a tree

IU indicator variable of some event U :

IU = 1 if event takes place

IU = 0 if event does not take place

B = the nucleotide type A, C, G or T of the next mutation

The set of possible values of a random variable is calles state space.

Distribution of a random variable
If X is a random variable with discrete state space S (e.g. a finite set like {A,C,G, T} or N or Z), the

distribution of X is a function that assigns to each subset U ⊂ S the probability

Pr(X ∈ U) =
∑
k∈U

Pr(X = k).

If Z is a random variable with a density f on a continuous state space R (e.g. R or R+), the distribution of
Z is a function that assigns to each measurable subset U ⊂ R the probability

Pr(Z ∈ U) =

∫
U

f(x)dx,

where measurable means that the integral is defined.

A.4 Expected Values

If the random variable Y has a discrete state space S ⊂ R:

EY =
∑
k∈S

k · Pr(Y = k)

If Z is a continuous random variable with state space R ⊆ R and probability density f :

EZ =

∫
R

x · f(x) dx
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(More generally also works if S ⊆ Rn.) If A and B are random variables and c is a (non-random) number,
the expectation value is linear. This means:

E(A+B) = E(A) + E(B)

E(c ·A) = c · E(A)

If A and B are stochastically independent, then

E(A ·B) = E(A) · E(B),

but note that this is in general not true if A and B are stochastically dependent.

Law of total expectation
Conditional expectation of a discrete random variable X given an event A:

E(X | A) =
∑
k

k · Pr(X = k | A).

If one and only one of the events A1, A2, . . . , An will take place, then

EX =

n∑
i=1

Pr(Ai) · E(X | Ai).
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