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1 Intro: Outline and Tree Notation

Tentative plan for phylogenetics part

e Maximum Likelihood v. Maximum Parsimony vs. Distance-based Phylogeny Inferrence
e Sequence Evolution Models (JC, F81, HKY, F84, GTR, PAM and I'-distributed rates)
e Bootstrap

e MCMC and Bayesian Inferrence

e Calculations with sequence evolution models (and other stochastic processes)

e How to select a model

e Relaxed Molecular Clock and Time Calibration

e Independent Contrasts for Quantitative Traits



e Tests for trees and branches

e Statistical Alignment (TKF91, TKF92, pairHMMs, multiple HMMs)
Aims

e Understand princples and rationales underlying the methods

e Explore available software

What is efficiently doable, what is difficult?

e What are the strengths and weaknesses of the methods?

e Which method is appropriate for which dataset?

e Learn what is necessary to read papers about new computational methods

e Future directions of phylogenetics

Recommended Books

References

[Fel04] J. Felsenstein (2004) Inferring Phylogenies

[Yang06] Z. Yang (2006) Computational Molecular Evolution

[Niel05] R. Nielsen, [Ed.] (2005) Statistical Methods in Molecular Evolution

[DEKMO98] R. Durbin, S. Eddy, A. Krogh, G. Mitchison (1998) Biological Sequence Analysis
[EGO05] W. Ewens, G. Grant (2005) Statistical Methods in Bioinformatics

ECTS and work load per week
For Computational Methods in FEvolutionary Biology, 9 ECTS = 0.6 per week, 18 hours per week:

e 4 hours lecture (each 45 min + break)
e 3 hours exercise sessions
e 6 hours homework (exercises)

e 5 hours study lecture contents

For Phylogentics, 6 ECTS = 0.8 per week, 24 hours per week:
e all as above plus

e 2 hours of practicals and additional exercise session

e 2 hours learn software, apply to data, prepare presentation

e 2 more hours to learn algorithms and maths



How to study the content of the lecture
For the case that you are overwhelmed by the contents of this course, and if you don’t have a good
strategy to study, here is my recommendation:

1. Try to explain the items under “Some of the things you should be able to explain”
2. Discuss these explanations with your fellow students

3. Do this before the next lecture, such that you can ask questions if things don’t become clear
4. Do the exercises (at least some of them) in time

5. Study all the rest from the handout, your notes during the lecture, and in books

Terminology for trees

f leaf, terminal node, tip, taxon

internal node

~

- branch, edge

\/ root

degree of a node = number of edges adjacent to the node
binary tree = fully resolved tree: root has degree two, all other nodes have degree 3

star-shaped tree partially resolved fully resolved

VX )

pontomy
"soft polytomy" = uncertainty:

A B ¢ D E
NIV

could be

A B C E AC B E AB ¢

N

cladogram: branch lengths not meaningful
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as cladograms

A A B A B
, C D 1.5LJ1.5 1.5L 1.5
ol |2 C D C D
05L_________T05 05L____105
7 3 o = 3 5

as additive trees
dendrogam = chronogram = ultrametric tree = additive trees that are compatible with molecular-
clock assumption, i.e. all tips have the same distance to the root

A B C D

L | |_J

rooted additive tree

unrooted tree topology

Iengths have no meaning)
C

unrooted addltlve tree

Newick notation (simple examples)

A B C D E

(((A,B),C),(D,E));

(((A:1,B:1):1.1,C:2.1):2.2,(D:1,E:1):3);




Some of the things you should be able to explain

e Basic terminology of rooted and unrooted trees

e basics of Newick notation

2 Distance-Based Phylogeny Reconstruction

2.1 What is a distance?

Given a set of taxa S = {s1,52,...,5,} and matrix of distances (d;;),.,,, Where d;; is the (estimated)
distance between s; and s; we search for a tree whose tips are labeled with S and whose edges are labeled
with lengths, such that the distances between tips labeled with s; and s; should be (approximately) d;;
for all ¢, j.

) S3
ll l3
l¢ 17 For example, ls + g + 7 + I3 should be (as close .
S, )i . Dis-
/ y as possible to) dj 3
2
Iy 55

Sy
tances should be additive. E.g. the Hamming distance (number of observed differences) between DNA
sequences is in general not be additive if back-mutations or double-hits happened. A more useful distance
is the (ezpected) number of mutations according to a sequence evolution model; more about this later.
To be a proper distance matriz, (d;;)ij<n must fulfill the following requirements for all ¢, j, k:

o dij = dji
o d”:O@Z:]

o dij +djr > d;, (triangle inequality)

2.2 UPGMA

UPGMA (Unweighted Pairwise Grouping Method with Arithmetic mean, Sokal & Michener, 1985) is
hierarchical cluster method using means:

for i <nset C; := {s;}

C:={C4,...,C,} is the current set of clusters
m:=n

repeat ...

e m:=m-+1

e find C}, C; € C with minimum d;; > 0
o Cp:=C;UC;

¢ = CU{Cn} \{Ci, 5}

For all Cy, € C set

1
dkm = dmk == E d:c
‘Ok| ' ICm' 52 €CL,84,€CH !



countil Cp, = {s1,...,8,} and C = {Cp, }.

sl
s4

s3

s2
s5
s s5 s2 sl s4 s3

s5 s2 sl s4 s3

common ways to define the distance between clusters C' and C’ cluster algorithms:
single linkage: d(C,C’) = min,,cc,s;ec’ dij
complete linkage: d(C,C’) = max,,cc,s;cc’ dij

means (like in UPGMA): d(C,C") = (oo Licejecr dij

UPGMA works under ideal conditions
Assume the the there is an ultrametric tree (i.e. molecular-clock) in which the tips have exactly
the given distances d;;. Then, UPGMA will find this tree.

Reason: in the first step UPGMA will correctly join the closest relatives.

As a consequence of the molecular clock assumption, UPGMA will define reasonable distances between
the clusters.

Example:

From

dig = di14 = dog = das

follows

1
de7 = 5.9 (di3 + dia + doz + dos) = di3

s5

This means that we are in the same situation as in the
first step: The clusters are tips of an ultrametric tree, and
the distances for the clusters are just like the distances of
any taxa in the clusters.

Thus, UPGMA will not only get the first step right but
also any other step.

C6 C7 s5



When UPGMA fails
If the tree is not compatible with molecular-clock assumptions, UPGMA may fail even if the precise
distances are known.

In this example, UPGMA will first join s; and s, and will
not have a chance to correct this in any later step.

s3 s4

Ultrametric distances

Theorem 1 Let D = (d;j)i; be a distance matriz for (s1,...,sn). The following two properties are
equivalent:

(a) A binary tree exists that fulfills the molecular-clock assumption and the tips of this tree have the
distances given in D. (The distance between two tips is the sum of the lengths of the edges between
them.)

(b) D is ultrametric, i.e.
Ysets of three indices {i,j,k}aiE{iJ}k} tdje < dij = dik

2.3 Neighbor Joining

Idea: use modified distances that take into account how far a taxon is to all other taxa

1 n—1 —
Dij = dij—(’l"i—F’/‘j), where r; = mzk:dzk = n - d;.

-2
sl s3
s4
s2
s5
Neighbor Joining algorithm (Saitou, Nei, 1987)
Input T = {s1,...,8,} with distance matrix (di;)i; <n
NeighborJoining(T): Sm
e doneifn <2
e compute all D;;
e find taxa s; and s; in 17" with minimum D;;
e define internal node k with distances V,, : dim = %(dim + k
djm — dij)
S;
e NeighbourJoining({k} U T \ {s;,s;}) sj



Theorem 2 (Neighbor-Joining theorem, Studier & Keppler, 1988) If a tree exists whose tips
have precisely the distances given by (d;j;)i;, then Neighbor-Joining will find this tree.

Sketch of proof: assume that ¢ and j are not neighbors and show that D;; can then not be minimal.
Let set of tips Ly and Lg be defined as below and assume w.l.o.g. |L1| < |L2|. By definition,

1
Dij_Dmn:dij_dmn_ n_o9 <1Zdzu+dju_dmu_dnu> .

Ly

Using additivity, we can show that

iy + djy — dimy — dpy = dij + 2diy — 2dpy — dipn,

and diz + djz - dmz - dnz = dij - dmn - 2dpk - 2dek
hold for all tips y € L1 \ {n,m} and z € Lo.
J
And: d“ + dj, — dm, — dﬂl + dij + djj — dm]‘ — dnj = *4dkp — 2dmn

Further, we obtain d;, + djn — dmn — dpn = dij + 2dip + 2dpy, — dimn a0d di, + djrn — dmm — din =
dij + 2dgp + 2dpm — dmn

With the equations above follows that

(ZyGLl\{m,n} 2dpy — 2dky) + (ZzELg 2dpr + 2dgzk)

Di]’_Dmn n—29

Vv

2dpr(|L2| — |L1])/(n — 2) (because of dpy — diy > —dpi)

vV
o

and thus D;; > Dy,p, q.e.d.

Some of the things you should be able to explain
e basic properties of distance measures
e how does UPGMA work
e what is different in the approach of neighbor joining (NJ)?
e under what conditions will UPGMA and/or NJ find the right tree?
e example when UPGMA and NJ lead to a different result

e when is a distance ultrametric and what does this mean for the tree?

3 Parsimony in phylogeny reconstruction

3.1 Parsimony of a tree

1 11 1 eg.n=4:
, TLT e Tm Seql CAGGGTAC
Given n homologous DNA or protein sequences = Ty Ty Seq?2 CAGGGAAC
: : Seq3 CTGGCAAC
’ ) Seq4 CAGGCAAC
" = al,xh T



Which tree is most parsimonious, i.e. explains the data with the least number of mutations?

For this question we can neglect all non-polymorphic sites.
Which tree is most parsimonious?

AG AGA AG CA
Seql 2 1 Seq2 Seql 1 1 Seq3
1
ACA ACA AGA ACA
1
Seq3 Seq4 Seq2 Seq4
CA ACA AGA ACA
AG AGA
i !
Seql ) | Seq? This one!
ACA ACA
Seq4 ! Seq3
e e
qACA CA a

Given a tree whose tips are labeled with sequences, how can we efficiently compute the minimal
number of mutations?

ideas:

1. Do separately for each alignment col-
umn

2. label each inner node with the optimal

states for the tips above it and with G
the least number of mutations
1
b)

3. go from tips to root by dynamic pro-
gramming
{A,G} AT}

A G A T
A A T
1
{
2
{A}

Fitch algorithm
C' is a counter of mutations, and M}, is the set of optimal states in node k.
Do for all sites s:

1. Cy := 0 will be the counter of mutations at that site
2. for all tips b with label z set M = {x}.
3. Moving from tips to root do for all nodes k with daughter nodes i and j:

iszﬂMJ :®: set Mk:MzUMJ and Cs I:CS+1
else: set My = M; N M;

output ) C;



weighted parsimony
Tt is possible to take into account that different types of mutations (e.g. transitions and transversions)
differ in the frequency by defining a cost S(a,b) for a mutation a — b.

A variant of the Fitch algorithm calculates the minimal cost of a given tree to generate given sequences
at the tips. (~ exercise)

3.2 Finding parsimonious trees for given data

Given a large number n taxa, it is not feasible to consider all trees, because the number of unrooted
bifurcating trees with n taxa is
3X5XT7x---x(2n—5)

n|3x5xX7x--x(2n—25)
5 15

7 945
10 2,027,025
12 654,729,075
20 2.2-10%0
50 2.8-10™
100 1.7 - 10182

for comparison:
(estimated number of atoms in the observable universe) x (number of second since big bang) =
5-1097

problem of perfect parsimony
Given n sequences of length m with up to 2 different states per position (alignment column). Is there
a perfectly parsimonious tree, i.e. one that never has more than one mutation at the same position?

Idea: each polymorphism defines a split of the set of taxa L =
AUB, AnB=.
A branch of a tree also defines a split of L

Go through the alignment from left to right and further subdivide L until there is a contradiction or
you reach the end of the alignment.

Theorem 3 (Four-gamete condition) A contradiction will occur if and only if there are two polymor-
phisms that lead to two splits L = AUB = CUD such that the four intersections ANC, AND, BNC, BND
are all non-empty.

This gives us an efficient solution for the problem of perfect parsimony. How about a slight general-

ization?

Given n homologous sequences of length m with up to r different states in each column.
Is there a perfectly parsimonious tree, i.e. one without back-mutations and without more than one
mutation into the same state in the same position?

complexity: NP-complete for unbounded r and polynomial for any fixed r € N.

The problem of maximum parsimony
Given n homologous sequences of length m with up to 2 different states in each column, find the tree
that needs the minimum number of mutations to explain the tree.

complexity: NP-complete

There is a method that can guarantee to find a tree that needs at most twice as many mutations
as needed by the most parsimonious tree. However, in practice heuristic search algorithms are more
relevant.

11



enumerating all tree topologies
The sequence of numbers [i3][i5][i7] . .. [ian—5] With ir € {1,...,k} represents a tree topology with n
labeled leaves. It can be decoded as follows.

e Start with a 3-leaved tree whose leaves are labeled with x1,x2, 3 and whose edges are labeled
accordingly with 1,2,3.
e repeat for j =4,... n:
1. k:=2j-5
2. Add an edge to the new leaf z; to edge iy

3. Call the new edge k + 2.

4. In the subdivided edge i, give the part that is closer to z; the label k£ 4+ 1. The other part
keeps the label .

enumerating all tree topologies
Example:

x1

x4

This tree can be represented by [3][2][7]

enumerating all labeled tree topologies
Enumerate leaves-labeled topologies by iterating [a][b][c]....[z] like a mileage counter for all allowed
values (a <3,6<5,c¢<7,...):

apnponp e meome
[ monomoa 2
amonmon
[ 1 [ [ [ [2n -5
[ [ [ [ 2
RUNEIEY a1 2
ap [ Ay rr Bl

Branch and Bound
Let
(3][4][2]....[19][0] [0] 0]

denote the tree in which the last three taxa are not yet inserted. (zeros are only allowed at the end of a
series).

12



Now we also iterate over these trees. If, e.g. u,v,w,z,y are the maxima of the last five positions:

[a][b][c]...[m = 1][u][v][w][z][y]
[a][b][] - . . [ m J[0][0][0][0] O]
[a][b][] .. . [ m J[1][0][0][0] O]
[a][b][c] ... [ m J[1] [1][0][O][0]
[a[b][e] ... ['m JA][1][1]{O][O]

If the tree corresponding to [a][b][c]...[m][1][1][1][0][0] already needs more mutations than the best tree
found so far, go directly to

[a][b] ¢]...[m][1][1][2][0}[0] (*Bound”)

“Branch and Bound” saves time and can be used in practice for up to about 11 taxa.

For larger numbers of taxa we need to move around in tree space and try to optimize the tree topology.
Possible steps are

NNI: nearest neighbor interchange
SPR: subtree pruning and regrafting

TBR: tree bisection and reconnection

Nearest Neighbor Interchange

Subtree Pruning and Regrafting

D E
B ’713 T A F
) .

Tree Bisection and Reconnection

13



K

Note that each NNI move is special type of SPR move where the pruned subtree is regrafted in an
edge neighboring the original edge.

Each SPR move is a special TBR where one of the nodes of the new edge is the old node.

3.3 Limitations of the parsimony principle

limitations of parsimony
Parsimonious phylogeny reconstruction methods do not take back mutations and double-hits into
account in a proper way. This can lead to problems when there are long branches with many mutations.

A B

C D C
“long-branch attraction”

Comparison of phylogeny estimation methods

Durbin et al. (1998) simulated for several sequence lengths 1000 quartets 0

of sequences along this tree to compare the accuracy of phylogeny recon-
struction methods. Branch lengths are mean frequencies of transitions g3
per position. (no transversions)

Proportion of correctly estimated trees
Seq.length ‘ Max.Pars. Neigh.Join. ML

20 39.6% 47.7% 41.9%
100 40.5% 63.5% 63.8%
500 40.4% 89.6% 90.4%
2000 35.3% 99.5% 99.7%

Some of the things you should be able to explain

e What is the Fitch algorithm and how does it work?
e the four-gamete condition and how it helps to solve the perfect-parsimony problem

e NP-complete problems in parsimonious phylogeny reconstruction

14



e how to enumerate all trees and how to branch and bound
e how NNI, SPR and TBR are related to each other

e when will parsimony fail even if for very long sequences?

4 Measures for how different two trees are

The symmetric difference (aka “partition metric”)
Bourque (1978), Robinson and Foulds (1981)

B E
D

E c D

Each edge in the tree is a partition of the set of taxa. The symmetric difference is the number of
edges that exist in one tree but not in the other.

quartet distance
for fully resolved trees of n taxa.

B b B E
A (AC|DE) (AE|CD)
(AC|DF) (AF|CD) A F
(BC|DE) (BE|CD)
F (BC|DF) (BF|CD)
c
E c D

(AB|CD), (AB|CE), (AB|CF), (AB|DE), (AB|DF), (ABJ|EF),
(AC|EF), (ADIEF), (BC|EF), (BD|EF), (CD|EF)

Each of the (Z) quartets of taxa have a tree topology in each tree. The quartet distance is the relative
frequency of quartets for which the topologies do not coincide.

NNI distance
Waterman, Smith (1978)

The NNI distance is the number of NNI moves needed to change the one tree topology into the other.

Problem: It has been shown that the computation of the NNI distance is NP-hard.

Allen and Steel (2001) showed that the TBR distance is easier to compute.

Path-length difference metric
Penny, Watson, Steel 1993

Let naTb be the number of edges that separate taxa a and b in tree T'. Then, the path-length difference
metric between the trees T and T” is defined as

Z (”aTb - n%)z

a,b

15



taking branch lengths into account
For each partition P of the taxa set let fr(P) be the length of the corresponding edge in tree T if
such an edge exists. Otherwise set f7(P) =0

B B E

E D

branch score distance (Kuhner, Felsenstein, 1994)

Z (fr(P) = fr(P))*

P
Robinson-Foulds distance

> 1fr(P) = fr (P)]

P
Some of the things you should be able to explain

e symmetric difference
e branch score distance
e Robinson-Foulds distance

e Why some other distances are hard to compute

5 Maximum-Likelihood (ML) in phylogeny estimation
5.1 What is a likelihood?
Frequentistic parameter estimation

e Assume that we observe some data D.

e D is influenced by random effects but a parameter p plays a role.

e We are interested in the value of p

e D is random but observed

e p is unknown but not random

e A model describes how the probability of D depends on p
Maximum-Likelihood principle: estimate p by

p = argmax Pr, (D)
2

To describe how Pr, (D) depends on p we define the likelihood function:
Lp(p) := Prp(D)

The ML estimator p is the parameter value that maximizes the probability of the observed data.

16



simple example
If you toss a thumbtack, what is the probability p that the sting touches the ground?
Assume you made and experiment. In 1000 tosses, the sting touched the ground 567 times.

1000

567 1000—567
(1=
i )p (1-p)

p = argmaxPr,(567) = argmax (
p P
We calculate the derivative with the product rule and set it to 0 to look for the maximum:

0
67p (p567 3 (1 _ p)433) = 567 - p566 . (1 _p)433 _ p567 . 433 . (1 _ p)432

0=567- /\566 (1 _ 2/0\)433 _]/9\567 . 433 - (1 _ ]/9\)432

P56 . (1 — p)**? and obtain

As it is clear that 0 < p < 1, we can divide both sides of the equation by p —p

0="567-(1—p)—p-433 = p=0.567.

Another approach to solve this uses the (natural) logarithm:

1
p = argmaxPr,(567) = argmax 000 p°07 - (1 — p)1000=567
p P 567
= argmax log (p567 (1 —p)*3)
2
= argmax 567 -log(p) + 433 -log(1 — p)
2
= argmax log (p567 (1-— )433)
2
= argmax 567 -log(p) + 433 -log(l —p)
2
0 567 433
— (5671 4331og(1 — _——
o (5671og(p) + 433log(1 — p)) = PRl
567 433 ~
p 1-p

Important: the parameter p is not a random object. Thus it does not make sense to ask for the
probability that it takes some particular value py. However, the likelihood of pg is defined. It is the
probability of the observed data if p = py.

5.2 How to compute the likelihood of a tree

ML estimation of phylogenetic trees: Given an alignment D, find the tree T that maximizes
Pr(D|T) =: Lp(T), T:= argmigXLD(T)

What is Pr(D|T) and how can we compute it?

We assume that all alignment columns evolve independently o
each other. Then

fACG CCG AGG TCG

Pr(D|T) = HPr (d;|T),

where d; is the sequence data in the i-th alignment column.

But how can we compute Pr(d;|T)?

17



How to compute Pr(d;|T) = Lq,(T)?

Let’s first assume that d; also contains labels of the inner nodes.
Assume that for all nucleotide x,y and all £ € Ry we can com-
pute the frequency p, of = and the probability P,_,,(¢) that an
x is replaced by a y along a branch of length £.

Then, we get for the example tree

Pr(di|T) = pg-Pasa(lz)- Paor(ly)-
‘Paa(l1) - Passo(€s) -
-Pr_a(ls) - Pr—r ().

But usually, inner nodes are not labeled. What to do then?

Felsenstein’s pruning algorithm

For each node k let Dy be the part of the data d; that are labeled Dk/,, -
to tips that stem from k and define A )

wi(x) = Pr(Dglk has an = at this site )

for every nucleotide .
Idea: compute wy(x) for all k£ and all . Then you know it also for the root r and can compute

L(T)=Pr(DIT) =Pr(D,|T) = > p.-w().
ze{A,C,G,T}

Compute all wg(z) from the tips to the root by dynamic programming.
For any leave b with nucleotide y we have

0 if z
wb(m):{ 1 if xiz

\ / / If k£ is a node with child nodes ¢ and j and corresponding
l lj branch lengths ¢; and ¢;, then

wy(z) = > Pey(l) wily) | - > Peaty) - wi(2)

ye{A,C,GT} z€{A,C,G,T}

5.3 Jukes-Cantor model of sequence evolution

How to compute P,_,,(¢)?

You need a model for sequence evolution.The simples one is the Jukes-Cantor model:
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all sites independent of each other (given the tree)

all p, equal
e “mutations” appear at rate A

e a “mutation” lets the site forget its state and sample the new one uniformly from {A,C, G, T}.
(i.e. A can be replaced by another A)

e (in original paper for protein sequences)
What is a rate?
Let M, be the number of “mutations” in time interval [a, b].

e Rate A means that the expected number of “mutations” in a time interval of length ¢ is At¢:

EMy; = At

e If £ > 0 is extremly small, then the we may neglect the probability of more than one “mutation”
in a time interval of length €.

e Then, Ae is not only the expected number of mutations but also the probability that there ist one
in that time interval:

Pr(My. > 0) =~ Pr(My. =1) = EMy. = Ae
e numbers of “mutations” on disjoint intervals are stochastically independent

For longer time intervals [0, ¢] we choose a large n € N and argue:

Pr(Mo; =0) = Pr(Mys/m =0, M 2t =0,..., Mn_1yt/n, + = 0)

= Pr(Mo/n =0) Pr(M;/p2i/m =0) - Pr(M_1y¢/n,e = 0)

t n
(1 — /\) TS A
n

This means: the waiting time 7 for the first mutation is exponentially distributed with rate A. This
means it has

Q

PI‘(T > t) - ei)\t | - lamda=2
| — lambda=1
expectation value Er = 1/\ lambda=0.5

standard deviation o, = 1/\

lambda*exp(-lambda*t)
00 05 10 15 20
!

density f(t) =\ e

0.0 0.5 1.0 15 2.0 25 3.0

This means Pr(7 € [t,t +¢]) = f(t) - € for small € > 0. t
After this preparation we can finally compute P, (t), first for y # :

P,y(t) = Pr(Mp,>0)-Pr(last “mutation” leads to y)
1
— 1— — At -
(1-e). 1
and
P,,(t) = Pr(My,=0)+Pr(My, >0)-Pr(last “mutation” leads to x)
1
—At Xt

= 1 _— PR—
N (- ey L

13

R
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Overview of DN A substitution models

Jukes-Cantor-Modell (JC): nucleotide type not considered.

from\to| A C G T
A — a o o«
C a — a o
G a a — «
T a o a —
Kimura’s 2 Parameter Model (K2) transitions more frequent than transversions.
from\to| A C G T
A — a [ «
C a — a
G 5 o — «
T a B a —
Felsenstein (1981) (F81) takes nucleotide frequencies (74, 7¢, g, 7r) into account.
from\ to | A C G T
A — amgc awg Oonr
C aty — amg anr
G aTy, ang  —  afr
T ams Qo Qg —

Hasegawa, Kishino und Yano (HKY) regards nucleotide frequencies as well as differences between
transitions and transversions.

from\ to | A C G T
A arc Prg anr
C ary, — ang Pprr
G Bra  ame — anT
T amy fPre ang  —

Felsenstein (1984) (F84) also regards nucleotide frequencies and differences between transitions and
transversions. No matrix algebra is needed to compute transition probabilities,

from\ to | A C G T
A — AT Ama + m’: ifrc )\ﬂ'T”r
C AT A — ATa A + W(IT+TTrT
G AT A+ ﬂgij‘rc AT — AT
T AT 4 Ao + Wg:frT pYive —

The General Time-Reversible Model (GTR) considers differences between pairs of nucleotide

types.

von\ nach | A C G T
A arc  Brg 7T
C amg — omg €nr
G Bra  Omc —  yrp
T YTA €T NG —

Some of the things you should be able to explain

e What is a likelihood and why don’t we just say “probability”?

e How to calculate the likelihood of a tree with Felsenstein’s pruning algorithm
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e What exactly is the meaning of wy(A) in Felsentein’s pruning algorithm?
e How does the runtime of Felsenstein’s pruning algorithm scale with the size of the tree?
e What is a mutation rate and what is the probability distribution is the time until a mutation

occurs?

5.4 Reversibility and convergence into equilibrium

Markov chain

A (discrete-time) Markov chain is a sequence of random variables X, X5, X3,... on a state space
Z such that for every “time point” n the next state X, ; depends only on the present X,, but not
additionally on the previous states.As formula:

VineNabed-czPr(Xpt1=a | Xp=0)=Pr(Xpp1 =0 | X, =0, X1 =¢,Xp2=4d,...)

@E—1Y

Example: X, is the nucleotide at some position in generation ‘ ‘ ‘ ‘

n.
G0
Markov jump process

(The Markov assumption is a simplification.)

For each time point ¢ > 0 there is a random variable X; on the state space Z such that if X; = 2
then a “jump” to a different state y € Z occurrs a rate A that only depends on X; but in addition to
this not on any X, with s < t.

Examples: Jukes-Cantor, K2, HKY, F84, GTR,...

Let X = (X1,Xo,...) or (X;)ter., be a Markov chain with finite state space Z and transition
probabilities P,_,,(t) for t € N or t € R>y.

The transition dynamics P is irreducible, if

Veyezde: Pooyy(t) > 0.
In the discrete-time case, P is periodic, if
3.ez k>1VneN\ {k,2k,3k,... } Pesz(n) = 0

Otherwise, P is called aperiodic.
Note that the models JC, K2, F81, F84, HKY and GTR are

irreducible because mutations from each state to each other state have positive probability and

aperiodic because the possibility to stay in a state for arbitrary time already destroys all periodicities.
(That is, continuous-time Markovian jump processes are always aperiodic.)

Theorem 4 Fach aperiodic irreducible transition dynamic (or rate matriz) P on a finite state space Z
has one and only one stationary distribution (7.).cz, i.e.

VzGZ Ty = E Ty * Px—)za
r€EZ

and converges against this distribution in the sense that
vx,z lim Px—>z(t) = Tz,
t—o0

where Py_,,(t) is the transition probability from x to z for time span t.
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An equivalent expression for stationary distribution is equilibrium distribution.

Sketch of proof of convergence: Start two Markov chains X and Y with transition matrix P, one
with X; in z and one with Y; taken from the stationary distribution. When they meet in some step k,
i.e. if X = Y%, couple them: X; =Y for all j > k. If P is irreducible and aperiodic, and the probability
qr that X and Y do not meet before step k converges to 0, and

Pr(X; =) —m| = |Pr(Y;=2)—Pr(X; = 2)
|Pr(Y; =2, X; =Y;) + Pr(Y; = 2, X; #Yj)
(X = 2, X, = ¥;) — Pr(X, = 5 X, £ Y))]
Pr(Y; = 2, X, £ Y)) — Pr(X; = 2, X, £ Y;)]
max{Pr(Y; = 2, X; £ Y}) , Pr(X; = 2,X; # Y}
q; — 0.

INIA

A Markov chain with transition matrix P (or rate matrix P in the continuous-time case) and sta-
tionary distribution (7,).cz is reversible if

Vz,yEZ LTy Pz%y =Ty * Py—)z-

(“detailed-balance condition”)

Note: the detailed-balance condition already implies that (7,).cz is a stationary distribution of P.

The evolutionary dynamics described by Jukes-Cantor, F81, F84, HKY, GTR or PAM matrices are
reversible. If we assume reversibility and no molecular clock, the likelihood does not depend on the
position of the root in the tree topology.

T =

If the root divides a branch of length s + ¢ into sections of length s and ¢, reversibility implies that
the probability stays the same if we move the root into one of the nodes:

Ty - Poosy(s+1)
= Ty Pyoa(s+1)

1%

Some of the things you should be able to explain
e JC, K2, F81, HKY, GTR
e What is a Markov chain and what is convergence of a Markov chain?

e What is a stationary distribution and under what conditions will a Markov chain on a finite state
space converge against it?

e What do “equilibrium”, “stationary distribution”, “reversibility” and “detailed balance” have to
do with each other?

e consequences of reversibility of substitution models for the placement of the root in ML trees

e examples in which reversibility does not hold for in sequence evolution and why it is still common
as a model assumption
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5.5 How to search for the ML tree

Given a large number n of taxa (i.e. sequences), it is difficult to find the ML phylogeny. Two partial
problems have to be solved:

1. Given the tree topology, find the optimal branch lengths
2. Find the tree topology for which your solution of problem 1 leads to the highest likelihood value.

We first turn to problem 1.

Tree length optimization in the very first version of PHYLIP dnaml
Expectation-Maximization (EM) algorithm: Iterate the following steps:

E step given the current branch lengths and rates, compute the expected number of mutations for each
branch

M step optimize branch lengths for the expected numbers of mutations computed in the E step

More common: use the derivative of the likelihood with respect to the branch length

To optimize the length b of some branch, first rotate
it, such that one of its adjacent nodes is the root.

First we assume that the alignment D has only one column. Then, ICD (T) is 32, o Doy Poosy(b) - wi(y) -
(Zz Pxﬁzwl(z)) ’ (Zz’ Px%zle (Zl))

=

o) — 5 Y, Lty () - (5, Posows(2)) - (D Posorw ()

a2 8% Py (b
and %;;2 T =3, pe - 3 e wily) - (2, Pooswi(2)) - (o Poosorw ()
In the Jukes-Cantor model we can compute for example for x # y:

0 0

1

_ _ —Xb 1 _ Ty ,—Ab
gplen®) = G- e™™) g = A
62 1 2 —Xb

For alignments D with columns D ... D,, we can compute all L} := gL ,(T) and L} := 6b2 LDh( )
as explained above, and then compute the first two derivatives of Lp(T') = H wLp, (T) by applying the
product rule for derivatives:

Fiolm) = LMYl
and
0 LY L L
To optimize b, solve .
F(b) = % —0.
This is done numerically with a Newton-Raphson scheme using f’(b) = %.
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Newton-Raphson scheme to solve f(b) =0

1. Start with some initial value by

2. as long as f(bp) is not close enough to 0, replace by by bg — f(bo)/f'(bo) and try again.

\

- \ b,
b=b,~ flh Jif ()

Optimizing the topology
Now that we know how to search for the optimal tree, given the topology, how do we search for the
best topology?

stepwise addition (default of DNAML):

e start with the only possible tree of the first three taxa
e stepwise add one taxon

e to do this when k taxa are already added, try all 2k — 5 possible branches to add the next taxon,
optimize branch lengths

e when all are added, optimize with NNI steps

e repeat whole procedure with different input orders

branch and bound if only few taxa

Start with NeighborJoining and continue with SPR is nowadays most common

Supertree methods like TREE-PUZZLE: ML for all quartets, then build tree that respects most of
them.

Some of the things you should be able to explain
e What is the Newton-Raphson scheme and how is it used in ML phylogeny methods
e How to modify the Felsenstein pruning algorithm to calculate derivatives of the likelihood

e strategies of DNAML and more recent ML programs to optimize the topology

5.6 Maximum Parsimony from a probabilistic perspective

If we assume a probabilistic substitution model, we can set s(a,b) = —log P,_,;(1) and use the values
s(a, b) as costs in weighted parsimony. Thus, maximum parsimony can be considered as an approximation
for the case that

1. all edges in the tree have the same length

2. double-hits and back-mutations are negligible
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5.7 Maximum likelihood for pairwise distances

Jukes-Cantor model
Let the rate of “mutations” in which nucleotides “forget” their type be a.
Probability of segregating site with branch length ¢:

1 (1—e7)

0.8
|

0.4
| |

0.75*(1-exp(-alpha*t))

0.0

0 1 2 3 4

alpha * t

This is also the expectation value for the fraction of sites that are segregating.
Given a substitution model with known parameters we can compute the ML distance dlg/[yL between
sequence x = (1, 2,...,2,) and sequence y = (y1,...,Yn) by

arg max {H T, ooy, (t) }
2

E.g. for the Jukes-Cantor Model with rate o we get in the case of k£ mismatches:

ML
dyy

alpha=1, k=10, n=100

1 k oy n—k 3
[2=u® = (0 —e')) ((1+3e7") &
i 4 4 i
Optimizing this with the usual procedure we get: G
1 4k Z H T T T T T
dl;/;L = Ta In (1 - ?m) 00 01 02 03 04 05

t

This ML estimator is consistent, i.e. will give us the true distances in the limit of long sequences.
This implies that applying NeighborJoining to the ML distances is also consistent.

If the sequecens are not extremely long, direct ML methods may tend to give more reliable results
(as long as they are computationally tractable.)

5.8 Consistency of the Maximum-Likelihood method

Theorem 5 The ML estimator for phylogenetic trees is consistent. This means, if the model assump-
tions are fulfilled and you add more and more data (i.e. make the sequences longer) for a fixed set of
tazxa, the probability that the ML tree will converge against the true tree is 1.

Note:

1. the ML tree is the tree with the highest likelihood. ML tree estimation programs do not always
find the ML tree
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2. the model assumptions include a model for the substitution process and that all sequence positions
are independent and correctly aligned

Sketch of proof for the consistency of the ML tree:

Let ay,...,ap be the different alignment columns and let ny, ..., n,, be their numbers of occurrences
in the data D. The likelihood of a tree T' is then

L(T)=Pr(D|T) = HPraZ|T

Idea of the proof: the probabilities Pr(a; | T') are characteristic for T, and those of the true tree will be
reflected in the relative frequencies R; = n;/n with n =nq + -+ 4 ny,.
The log likelihood is

In L(T an InPr(a; | T)=mn- ZR InPr(a; | T)
=1 =1
For long sequences we get R; — p;, where p1,...,p,, are the (unknown) probabilities of a4, ..., ay,, for

the true tree T*. Let ¢, ..., ¢y be those probabilities for some other tree T.Then we obtain
m m
flnL = OOZpllnqi and flnL s OoZpllnpi.
i=1 i=1

For p # q we get

m

sz Ing; < sz In p;,
because
3

Zpi Inp; — ZP@ Ing, = Zpi In=— >0,

— — — q;

=1 =1 =1
and the last inequation follows since Y., p; In % is the relative entropy, also called Kullback-Leibler-
Information, which is positive for p # ¢q. Y .-, p; 1n% = =Y p 1n% > =" i (% — ) =

Zz 1%+Zz 1pi=—-14+1=0

Some of the things you should be able to explain

e What does consistency of ML tree reconstruction mean?
e implicit model assumptions in parsimony (from a frequentist perspective)

e How to estimate evolutionary distances of sequences accounting for back-mutations and double hits

6 Bootstrapping

6.1 The concept of bootstrapping

Assume a panmictic Hardy-Weinberg population and a locus in equilibrium with genotypes MM, M N,
and N N.This means, the frequencies of these genotypes are (1 — 6)2, 20(1 — 6), and 62, where @ is the
frequency of allele V.
Assume the following observations:
MM MN NN ‘ total
342 500 187 | 1029
X Y Z

We estimate 6 by b= % = 0.4247. How accurate is this estimation?

(Example taken from Rice (1995) Mathematical Statistics
and Data Analysis. Duxbury press.)
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Simulate 1000 datasets, each consisting of 1029 individuals drawn from a Hardy-Weinberg population
with frequency 0.4247 of allele N.

Let 07,05, ...,07009 be the estimates of 6 from the 1000 datasets. We can then estimate the standard
deviation of our estimator € by

Bootstrapping is a general approach in statistics that is often used to assess the accuracy of an
estimator.

It is based on the following idea: If we estimate a parameter 6 by é\, we can check the accuracy of
the estimation method with simulated data.

Problem: We do not know the true value of 8 but need a value for the simulations.

idea: We pull ourselves up by our own bootstraps by using 0 for the simulations and assume that the
difference 6 — 6*, where 6* is the estimation from the simulated data, has a similar distribution as 6 — 6:

Since wie use the parameter and assumptions about its distribution, this is called paramteric bootstrap.
In the next example we use non-parametric bootstrapping, which means that we just the original data to

simulate new data.
We have caught 20 fishes

from a lake and want to esti-
mate the distribution of size
and weight in the popula-
tion by the sample means.
How accurate is this estima-
tion? Idea: simulate sam-
pling from a population by
putting the 20 fishes into a
pond and take a sample of
size 20. To avoid getting pre-
cisely the same sample, sam-
ple with replacement. Com-
L ) L . pute the mean length and
i e 1 weight from the “bootstrap
sample”. Repeat this proce-
dure 1000 times. The 1000
pairs of means can be used
for bias correction and to es-
timate the variance of the es-
timator.

weight
4
I
weight
4
|

length length

Bias correction: § — (6% — A) =20 -0~

6.2 Bootstrap for phylogenetic trees

non-parametric bootstrap of an alignment
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1 0210400202120022211010101
seql A C AT TCACCATT CATA AASTC T C
seqgz2 C C AATACACTA ATSC A A A C A C A C
seq3 C C A ATA A CCATCAAAASC A C A C
seqd C T T AATAAATCTA ATC A A AT c C T
segb A T T A AT A A CTATTCA A AT T T
seq6 AT T I T CACTTT C A A AT T T

C A A A cC A CA A AATATCTT CCA C C A A
T A A c Cc Cc A A A AACACCAALC C A A
C A A A c C A A A A AACA C A AC C A A
T A A A CTA A AAATAATCACT C A A
T A A A A A TA A A A AT A C A T C A A
T T A T CATT A T A T T c CcCA AT C AT

A bootstrap alignment has the same length as the original alignment. It consists of columns that
were randomly drawn from the original alignment with replacement. To the bootstrap alignment we
apply the same phylogeny reconstruction method as for the original alignment.

We repeat this many times and thus get many bootstrap trees. We label each branch of our originally
reconstruted tree by the percentages of bootstrap trees that have this branch. These bootstrap values
are supposed to give an impression of how reliable the branches are.

Alternatives to non-parametric bootstrap:

Jackknife: Create shorter alignments, e.g. 90%, by sampling without replacement. Like in non-parametric
bootstrapping, the bootstrap dataset is slightly less informative than the original data.

Parametric Bootstrap: Use the estimated tree and substitution rates estimated along with the tree
to simulate new data. (Disadvantage: does not take uncertainty about the substitution model into
account.)

6.3 How can we interprete the bootstrap values?

There are at least three different interpretations of the bootstrap values of tree branches:
1. posterior probability of the branch
2. measures of repeatability
3. confidence levels for the existence of the branch

None of these interpretations is perfect.
Are bootstrap values posterior probabilities?

Rather not, because posterior probabilities depend on the prior, and the bootstrap values do not (at
least if a non-Bayesian method was used for tree reconstruction).

Do bootstrap values measure repeatability?

This is the original interpretation of Felsenstein, who first proposed bootstrapping for phylogenetic
trees. However, the bootstrap value can only be an approximative measure because the bootstrap
sample is slightly less informative than the original sample. The question is also what repeatability
would actually mean? If the analysis is repeated with different data, varitions between loci may play a
role, which is not incorporated in bootstrapping.

Are bootstrap values confidence levels?

If a branch has a bootstrap value 97% and this is interpreted as confidence level, then this means the
following: Under the null hypothesis that the branch is actually not there or has length 0, the probability
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of getting a bootstrap support of 97% is 100%-97%=3%. This means: Among all branches that appear
in the estimated trees but are actually wrong, only 3% get such a high bootstrap level.

It has been conjecured that bootstrap values underestimate confidence because bootstrap datasets
are less informative than the original dataset. However, this argument disregards that the bootstrap
result 8* does not need to be an approximation for #, but 8* — 6 should be an approximation for 6 — 6.

References

[EHH96] B. Efron, E. Halloran, S. Holmes (1996) Bootstrap confidence levels for phylogenetic trees.
Proc. Nat. Acad. Sci. U.S.A. 93(13):429-434

show that bootstrap values can either over- or underestimate confidence, but are at least first-order
approximations of confidence values. They propose a meta-bootstrap procedure to correct the over- or
underestimation for each branch.
Some of the things you should be able to explain

e difference between parameteric and non-parameteric bootstrap

e how is bootstrap applied in phylogenetics

e Basic assumption of bootstrapping and what it means, e.g. for bias correction

e possible interpretations of bootstrap values on branches and why none of these interpretations is
perfect

7 Bayesian phylogeny reconstruction and MCMC

7.1 Principles of Bayesian statistics

In Bayesian statistics, also model parameters are random variables and thus have probability distribu-
tions.
E.g. for a phylogenetic tree T

prior probability distribution: P(T) is the probability density of the tree T disregarding the data,
e.g. we could a priori assume a uniform probability density for all trees up to a certain total branch

length.
posterior probability distribution: P(T'|D) is the conditional probability density of the tree T', given
the data D.
Bayes-Formula:
P(T,D Pr(D|T) - P(T
p(ripy— PTD) ___ PrDIT) P(T)
Pr(D) Jp Pr(D|T") - P(T") dT"
Computing
Pr(D|T) - P(T

[, Pr(D|T") - P(T") dT"
is not trivial. We can compute Pr(D|T) = Prp(D) = Lp(T) by Felsenstein pruning and P(T') is defined
by our prior distribution, but integrating over all trees is difficult.

What we can compute is the ratio of the probabilities of two candidate trees T4 and Tg:

Pr(D|T4)-P(Ta)
P(T4|D) T, Pr(D[T")-P(T") dT’ Pr(D|T4) - P(Ta)

Pr(D|T5) P(TE) .
P(Tp|D) ~  BBIRI P Pr(DIT5) - P(Th)
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7.2 MCMC sampling

We are not just interested in finding the mazimum a-posteriori (MAP) tree
arg max, P(T|D),

but, very much in the spirit of Bayesian statistics, to sample trees from the posterior distribution, that is,
to generate a set of (approximately) independent random trees 71, Tb, . .., T;, according to the probability
distribution given by P(T|D). This will allow us not only to infer the phylogeny but also to assess the
uncertainty of this inferrence.

Idea: Simulate a Markov chain on the space of trees with stationary distribution P(T'|D) and let it
converge.
P(Ta|D)
P(Tp|D)
Given the probability distribution Pr(.|D), how can we construct a Markov chain that converges
against it?

How can we do that if we can only compute ratios

for given trees Ty and Tg?

One possibility: Metropolis-Hastings
Given current state X; = x propose y with Prob. Q(z — y)
Accept proposal X; 1 := y with probability

mm{l Qy — z) - Pr(y | D)}
"Q(x — y) - Pr(z | D)

otherwise X; 1 := X

(All this also works with continuous state space, with some probabilities replaced by densities.)

Why Metropolis-Hastings works
¢ Q=) Pr(y | D)

Qz—y)-Pr(z | D)
if we start in x, the probability Pr(x — y) to move to y (i.e. first propose and then accept this) is

Qly = x)-Pr(y | D) Pr(y | D)
Q(z —y) - Pr(z | D) Pr(z | D)

Let’s assume tha < 1. (Otherwise swap z and y in the following argument).Then,

Qr —y)- =Q(y — )

If we start in gy, the probability Pr(y — z) to move to z is

since our assumption implies % > 1.

This implies that the reversibility condition
Pr(z | D) -Pr(z = y) =Pr(y | D) - Pr(y — z)
is fulfilled. This implies that Pr(. | D) is an equilibrium of the Markov chain that we have just constructed,
and the latter will converge against it.(let’s watch a simulation in R)
Applying Metropolis-Hastings

e You are never in equilibrium (your target distribution), but you can get close if you run enough
steps.

e You can take more than one sample from the same chain, but you should run enough steps between
the sampling steps to make the sampled objects only weakly dependent.

e Your initial state may be “far from equilibrium” (i.e. very improbable). So you should run the
chain long enough before you start sampling (“burn-in”).

e Launch many independent MCMC runs with different starting points and check whether they lead
to the same results.
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Mau, Newton, Larget 1996
Seminal paper on MCMC for phylogenies; propose a propsal chain for ultrametric trees.

. Draw the tree in the plane.
. In each internal node rotate subtrees with probability 1/2.

1

2

3. Remove edges from drawing.

4. Shift each internal node in time by a random amount.
5

. Reconstruct edges from modified time points of nodes.

1 2 3 4 5 6 4 3 1 2 6 5
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Most programs for Bayesian phylogeny inferrence can also estimate parameters of the substitution
model. Combine the estimation of trees with the estimation of divergence times or even alignments.

Gibbs sampling is applied to combine Bayesian estimations for different kinds of parameters.

Gibbs samping
Assume we want to sample from a joint distribution Pr(A = a, B = b) of two random variables,
and for each pair of possible values (a,b) for (A, B) we have Markov chains with transition probabilities

Pb(f;a) and PP~ that converge against Pr(B = b|A = a) and Pr(A = a|B = b).

—a’
Then, any Markov chain with transition law

LPEEY 112 if a=d/ and b=V
%Péij,b) if a#d and b=V
Plapy—ar by =
%Pb(f;,a) if a=d and bF#V
0 else

Most software packages use more common tree modifications like NNI, SPR and TBR.
Examples of software for Bayesian sampling:

MrBayes http://mrbayes.csit.fsu.edu/

RevBayes https://revbayes.github.io/

BEAST http://beast.bio.ed.ac.uk/Main_Page

BEAST?2 http://www.beast2.org/

PhyloBayes http://www.atgc-montpellier.fr/phylobayes/binaries.php

BAIli-Phy http://www.bali-phy.org/

TreeTime http://evol.bio.lmu.de/ _statgen /software/treetime/
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(MC)3=MCMCMC
=Metropolis-Coupled MCMC= MCMC with “heated chains”.
If 5; € (0,1], where T; = 1/3; can be considered as “temperature” for chain 7, then chain ¢ samples
from distribution p; with p;(z) = p% (z)-const. (For the unheated chain we have #; = 1 and thus p; = p.)
The usual MH acceptance prob. for chain ¢ is

mm{Lpi(y) Qwr} mm{ljp(y)ﬁi Qy%}

pz(m) Qx—w p(x‘)[j? Qm—)y

Sometimes a swap between the current state x; of chain ¢ and the current state x; of chain j is proposed.
The acceptance with probability
L opla)” p(x)
min < 1 . -

p(@)P plag)?

fulfills the requirements of both chaines (check this!).

7.3 Checking convergence of MCMC

Sampled value

0 5000 10000 15000 20000 25000 30000
MCMC step
0 “ 7
=
]
s
B <o
k=
£
I
o
T T T T T T T
0 5000 10000 15000 20000 25000 30000
MCMC step

Effective Sampling Size (ESS) o
Assume that we want to estimate the expectation value u of a distribution by taking the mean X of

n independent draws X, Xs, ..., X,, from the distribution with variance ¢2. Then,
EX = L EH:IEX =
oo i=1 Cor
- - 1 n B 1 n B 1 n B 1 )
var(X) = var - Z;XL = —gvar Z;Xi =3 Z;var (X)) = —o”
If we instead use m correlated draws Y7,Y5,...,Y,, from the same distribution, then
— 1
EY = — EYi = U
m :
o 1 m m m
) = —S Vi) o= ot L Y5),
var(Y) ( n; ) ma +WL2;];—1COV Y;)
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Effective Sampling Size (ESS)

1, 1, 2&&
W T T a2 2 vy
=1 j=14+1
With the autocorrelation pp = cor(Y;, Y;_) = cov(Y;, Yi_x)/0?, Y has (approximately) the same variance
as X, if
B m
1+2- leil Pk

Therefore, we estimate the Effective Sample Size by

n

m

ESS = ————sx—
1"'2'21?;10/@

where py, is an estimation of the autocorrelation py, := cor(Y;, Yi_g).

Problem: ESS may be too optimistic because correlation may be underestimated.

0 50 100 150 200

Index

estimated effective sample sizes:
range : ess
1-90 : 788
110-140 : 31.00
160-200 : 28.77
1-200 : 1.53
Ways to check convergence of MCMC

e ESS

e visually inspect paths of log likelihood and parameter estimates

e start many MCMC runs with different start values and check whether they appear to converge
against the same distribution

7.4 Interpretation of posterior probabilities and robustness

If the prior is correctly chosen and the model assumptions are fulfilled, the posterior probability of a tree
topology should be the probability that the topology is correct.This is confirmed for trees with six taxa
in a simulation study in:

References

[HRO04] J.P. Huelsenbeck, B. Rannala (2004) Frequentist Properties of Bayesian Posterior Probabilities of
Phylogenetic Trees Under Simple and Complex Substitution Models. Syst. Biol. 53(6):904-913.

However, when a the model chosen for the substitution process is too simple (e.g. neglecting rate hetero-
geneity), the estimated posterior probabilities can be over-optimistic.Using a model that is more complex
than necessary, may lead to just slightly conservative estimates of posterior probabilities. Recommenda-
tion: If you are not sure, rather use the more complex substitution model.
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[YRO5] Z. Yang, B. Rannala (2005)

Branch-Length Prior Influences

Bayesian Posterior Probability

of Phylogeny Syst.  Biol.

54(8):455-470

B c

simulate rooted ultrametric trees with three tips and different priors for lengths of
inner and outer branches. Compute posterior probabilities for the three possible
topologies with various priors for tree lengths.

e MAP estimates are robust against misspecification of prior.

e High posteriors are underestimated and low posteriors are overestimated if prior favors very short
internal edges.

e High posteriors are overestimated and low posteriors are underestimated if priors for internal edge
lengths are flat.

Note: flat priors are sometimes called “uninformative”, but this is misleading, and in Yang and Rannala’s
study these priors were most problematic!

To decrease the risk of too optimistic posteriors for tree topologies when the substitution process is
inappropriate,

References

[YO8] Z. Yang (2008) Empirical evaluation of a prior for Bayesian phylogenetic inference
Phil. Trans. R. Soc. B 363: 4031-4039

recommends using priors favoring shorter internal branch lengths if the input alignment is long.

Star-tree paradox

B . . .
A ¢ If the inner branch of a rooted 3-taxa tree is extremely short, or even non-existing,

and the Bayesian method takes only binary trees into account with “liberal” priors
for the branch lenghts, it will often assign a high posterior probability to one of
the three tree topologies, and with probability = 2/3 it will be a wrong one.

A B € A B ¢ A ¢ B

This is related to the fair-coin paradoxr and Lindley’s paradox, which we will discuss in the context
of Bayesian model selection.

Some of the things you should be able to explain

e differences between Bayesian and frequentistic stats
e role of priors in Bayesian stats
e idea of MCMC

e Metropolis-Hastings:
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— how it works
— why it does not need the integral in the denominator of the posterior

— why it converges to the target distribution (in our case the posterior)
e MCMCMC
e main idea of Gibbs sampling
e idea of effective sample size (ESS)
e why high ESS do not guarantee that MCMC ran long enough
e good practice of applying MCMC

e possible problems with inappropriate priors

8 Common problems in phylogenetics and consequences for phy-
logenomics

8.1 Long-branch attraction (LBA)
True tree: Inferred tree:

A —— A
B

C C
D D

e appears as systematic error in parsimony based methods (“Felsenstein zone”)
e can also occur in NJ, ML and Bayesian methods if

— sequence evolution model is to simple (mixing models may help)

— overoptimized alignment

8.2 Alignment
Alignment
e For distantly related species only genes or even only gene domains may be alignable

e Thorough, model-bases alignment methods like BAli-Phy and StatAlign might be to slow for large
datasets

e still somewhat model-based but faster: PRANK (Loytynoja, Goldman, 2008)
e Vialle, Tamuri and Goldmann (2018, Mol. Biol. Evol. 35(7):1783-1797):

— variants of MAFFT also show good accuracy in reconstructing ancestral states
— Systematic bias of over-alignment or under-alignment in most methods

— essentially unbiased: PRANK (but not PRANK+F), PAGAN (Loytynoja, Vilella, Goldman,
2012)

8.3 Gene trees and gene families

Major systematic error:
to assume that all gene trees are equal
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8.3.1 Why gene trees differ from each other

Recombination and Gene flow ) ) )
When alleles of a gene are sampled from populations, their genealogies

can vary along the gene due to recombination.
Population genetic data contain information about the genealogies, which
allows us to draw conclusions about gene flow and population growth.

Population 2

Population 1

Present

Joint ancestral population

E‘E

Incomplete Lineage Sorting (ILS)

Humans Chimps Gorillas
Present

5 MYBP

8 MYBP

References

[MVO05] E. Mossel, E. Vigoda (2005) Phylogenetic MCMC Algorithms Are Misleading on Mixtures of
Trees. Science 309: 2207-2209

point out that, when the data is a mixture of data from two different trees, MCMC convergence can be
slow and assign a high posterior probability to a tree that is different from both. See also

References

[RLH+06] F. Ronquist, B. Larget, J.P. Huelsenbeck, J.B. Kadane, D. Simon, P. van der Mark (2006)
Comment on “Phylogenetic MCMC Algorithms Are Misleading on Mixtures of Trees” Science
312:367a

[MVO06] E. Mossel, E. Vigoda (2006) Response to Comment on “Phylogenetic MCMC Algorithms Are
Misleading on Mixtures of Trees” Science 312:367b

The problem is not restricted to Bayesian approaches:
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[SHOO] M.H. Schierup, J. Hein (2000) Consequences of recombination on traditional phylogenetic analysis
Genetics 156(2): 879-891

A BCDEF A BCDEFA BCDETF A B CDTETF

= e e L

Neglecting recombination leads to more star-shaped phylogenies with short internal and too long
external branches (perhaps falsely suggesting fast radiation or, in the case of population genetics, popu-
lation growth).

The problem is even worse:

References

[RLH+06] F.A. Matsen, M. Steel (2007) Phylogenetic Mixtures on a Single Tree Can Mimic a Tree of
Another Topology Systematic Biology, 56(5): 767-775

Mixtures of data from the same topology but different branch lengths can lead to the same site pattern
frequency spectrum (that is, distribution of alignment columns when neglecting where they appear) as
a tree of a different topology.

A c c A c
A
e.g. a certain and looks
mixture of like
B
D D
B B D

Possible solution: multi-species coalecent
For example:

References

[LP0O7] L. Liu, D.K. Pearl (2007) Species trees from gene trees: reconstructing Bayesian posterior distri-
butions of a species phylogeny using estimated gene tree distributions Systematic Biology 56(3):
504-514 Software: BEST

[HD09] J. Heled, A.J. Drummond (2010) Bayesian Inference of Species Trees from Multilocus Data
Molecular Biology and Evolution 27(3): 570-580 Software: *BEAST (“star beast”)

(open problem: gene flow)

coalescence
time

incomplete
~&— |ineage
sorting (ILS)

(depends on effective population sizes)

Furthermore:
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e substitution models can differ between genes

e for some genes, selection can change evolution process on certain branches

8.3.2 Avoiding paralogues

orthologs
paralogs orthologs

gene
duplications

1-to-1 orthologs

)//////A\\\\\\\\\\\*‘:jjatif

gene
duplications

xenologs

/N
....... N\

horizontal
gene

transfer

(HGT)

gene
duplications
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Methods for gene tree reconstruction for given species tree:

References

[ASA+09] O. Akerborg, B. Sennblad, L. Arvestad, and J. Lagergren (2009) Simultaneous Bayesian gene
tree reconstruction and reconciliation analysis PNAS 106(14): 5714-5719 https://doi.org/10.
1073/pnas.0806251106

[MKSS20] B. Morel, A.M. Kozlov, A. Stamatakis, G.J. Szoll6si (2020) GeneRax: A Tool for Species-Tree-
Aware Maximum Likelihood-Based Gene Family Tree Inference under Gene Duplication, Transfer,
and Loss Molecular Biology and Evolution 37(9): 2763-2774https://doi.org/10.1093/molbev/
msaal4dl

References in Kapli et al. (2020) for methods for the joint inference of gene trees and species trees:

References

[STDB15] Szoll8si, G.J., Tannier, E., Daubin, V., Boussau, B. (2015) The inference of gene trees with species treesSyst. Biol. 64,
e42-e62, https://academic.oup.com/sysbio/article/64/1/e42/1634124

[BSD+13] Boussau, B., Szollési, G.J., Duret, L., Gouy, M., Tannler, E., Daubin, V. (2013) Genome-scale coestimation of species
and gene trees Genome Res. https://doi.org/10.1101/gr.141978.112

[WBB+08] Wehe, A., Bansal, M. S., Burleigh, J. G., Eulenstein, O. (2008) DupTree: a program for large-scale phylogenetic
analyses using gene tree parsimony Bioinformatics 24: 1540-1541

[BBE10] Bansal, M.S., Burleigh, J. G., Eulenstein, O. (2010) Efficient genome-scale phylogenetic analysis under the duplication-
loss and deep coalescence cost models. BMC Bioinformatics 11(Suppl. 1): S42.

[CBF13] Chaudhary, R., Burleigh, J.G., Ferndndez-Baca, D. (2013) Inferring species trees from incongruent multi-copy gene
trees using the Robinson-Foulds distance. Algorithms Mol. Biol. 28: 8

[CBBF15] Chaudhary, R., Boussau, B., Burleigh, J. G., Ferndndez-Baca, D. (2015) Assessing approaches for inferring species trees
from multi-copy genes. Syst. Biol. 64: 325-339.

8.4 Consequences for phylogenomics
General remarks and application examples
e large datasets should in principle allow for accurate inference, even with fast neighbor joining

e many data pre-processing steps (alignment, finding orthologues, ...) take time for each locus and
thus do not fit well in high-thoughput data analysis pipelines

e for large data sets model bias (e.g. due to long-branch attraction, pooling data from different

trees,...) can make support values way too optimistic

Over-optimistic support values
Two sources of estimation error:

e random variation due to limited data

e systematic bias due to simplifying model assumptions

Statistical tools like
e testing (p values)
e posterior probabilities
e bootstrap values

estimate random variation but rely on model assumptions.

For very large data sets all error comes from model bias and support values typically indicate 100
% support and statistical tests reject all null hypotheses. This may however be an artifact of model
assumptions combined with big data.
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8.5

lutionary proximity between domains Bacteria and Archaea Nat. Commun. 10: 5477
https://doi.org/10.1038/s41467-019-13443-4

Possible approaches
Multi-Species Coalescent (MSC):
— account for coalescence, ILS, introgression and differences between gene trees

— Software: e.g. in *BEAST, BPP, IMa2

— more about coalescence in lectures on computational population genetics
Full-Bayesian Gibbs sampling of

— gene-duplication and gene loss

— HGT

— coalescence and ILS

— alignment

— sequence evolution models

— and species trees

seems computationally too demanding for large genomic data sets, but maybe iterative optimization
of prelimnary reconstruction?

massive parallelization of software, also using GPUs

to assess reliability of tree reconstruction account check robustness against model assumptions,
alignment errors, errors with paralogous genes etc. . .

Some of what you should be able to explain

long-branch attraction and under what conditions it may happen

how recombination an gene flow leads to different trees at different loci

incomplete lineage sorting

effects of pooling data from different tree topologies in a phylogenetic analysis
gene duplications, paralogs, ortholog, 1-to-1-orthologs and xenologs

misleading support values with large data sets and consequences for phylogenomics

possible solutions

40


https://doi.org/10.1038/s41576-020-0233-0
https://science.sciencemag.org/content/346/6210/763
https://science.sciencemag.org/content/346/6210/763
https://doi.org/10.1038/s41467-019-13443-4

9 Modelling the substitution process on sequences

The methods of stochastic modelling that we discuss here in the context of substitution models apply
for many other stochastic models, in biology e.g. for

e biochemical reactions

e ecological or behavioral interactions,
e speciation processes

e population genetics

9.1 Transition matrix and rate matrix

Let P,—(t) be the probability that a nucleotide a is a nucleotide b after time (i.e. branch length) ¢.

Pasa(t) Pasc(t) Pasg(t) Pasr(t)
S(t) = Poa(t) Posc(t) Posce(t) Posr(t)
' Pga(t) Posc(t) Posc(t) Poor(t)
Pra(t) Proc(t) Proa(t) Pror(t)
Each row has sum 1.
How can we compute S(2) from S(1)?
For example: Po_, 4(2)
/ A=A
c — C/ Poa(2) = Pooa(l)-Pasa(l)+
\ Peo(1) - Poa(l) +
G Poa(1) - Pa—a(l) +
Pcr(1) - Proa(1)
T
With matrix multiplication we can write this as
S(2) =8(1)-5(1)
More generally:
S(t+s)=5(t)-S(s)
Matrix multiplication A- B =C
air a2 -t Qim
G21 Q2 -t A2m by big oo by - ik
bar b2 - by e by
S 7 R 7 : :
bml bm2 e bmj te bmk
an1  Qan2 e Anm
Cll 612 ... PRI Clk
C21 C22 e . Cok m
= Cij ) Cij = Z aip * brj
. . . h=1
Cnl cn2 ... PR c'n,k;
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Matrix times column vector A -v is column vector

ail a2 A1m U1 a1l -v1+ a2 v+ -+ Qi U
ag1 Q22 a2m, V2 ag1 V1 + a2 -V + -+ Ao - U
an1 an2 Anm Um anp1 * V1 + ap2 - V2 + -+ Anm * Um
Row vector times matrix v - A is row vector
ail ai12 alk
azi a22 azk
( V1, U2, y Um ) .
am1  Am2 Amk

= ( V1611 + -+ UmGmi, V1012 + 0 UGy, ©, o VG1g o UkGmk )

Matrix addition A+ B =C

ailr a2 A1m bin b2 bim
a1 422 a2m, bar  bao bam
. + .
apl  an2 Anm bnl bn2 bnm
a1n +bin az + b2 Q1 + bim
a1 +ba1  aza + bao a2m + bam
anl + bnl an2 + bn2 Anm + bnm,
Rules:
A+ B=DB+ A, (A+B)+C=A+(B+0C), (A-B)-C=A-(B-C)
A-(B+C)=(A-B)+(A-0), but in general A- B # B - A
Matrix multiplied by number r
a1l a2 A1m r-aijxz T-a2 T aim
az1 Aa22 a2m rT-a21 T-a22 T aam
T . . =
an1 an2 Anm T ap T an2 T Qpm
Rules:
r-(A+B)=r-B+r-A, r-A=A-r (A-r)-B=A-(r-B)
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Entrywise product Ao B (also known as Hadamard product)

a1 a2 - Gim bir bz -+ bim
az1 a2 - A2m b1 bag - bop
O
an1 an2 e Anm bnl bn2 e bnm
a1 -bir aiz-biz 0 i bim
a1 -bar  aga-baa - agm - bom
an1 * bnl anp2 - bn2 e Anm * bnm

In more compact notation:

(aij)ign,jgm °© (bij)ign,jgm = (ai; 'bij)ign,jgm

Felsenstein’s pruning recursion in matrix notation

wk,p(x) = Z Px—>y(£z) : wz,p(y) : Z Px%z(zj) : wj,p(z)

ye{A,C,G, T} 2€{A,C,G,T}
wg, p(x) partial likelihood for node k, sequence position p and nucleotide x.

Wi = (P(t;) - Wi) o (P(¢;) - Wy)

Wk, 1 (A) wk72(A) .. wkm(A)
P = (P peincam s Vo= | (G WG )
Wi 1(T) wkﬂg(T) .. wk,n(T)

Exercise: Check whether this is really true!

Advantages of matrix notation
e Compact mathematical notation of equation systems
e Matrix algebra
e In programs shorter source code
e In R and python/numpy: Matrix operations more efficient than loops

Example in R with w[x, p, k] being the partial likelihood for nucleotide x, position p and node k.

With loops:
for(p in 1:n) { . . .
for(x in c("A", "C", "G", "Tm)) { With matrix operation:
L<0
for(y in c("A", "C", "G", "T")) { wh,,"k"] <= (PL,,"i"] %% wi,,"i"D) = (PL,,"3"] %% wi,,"3"D
L <- L +P[x, y, "i"] x wuly, p, "i"]

}
R <- 0
for(; iz_l ;(+A;'[x'c’z' f‘] ,:T"),)[Z{ P, "' In a test run with n=100,000 the code with the matrix operations
} was more than 500 times faster than the code with loops.

wlx, p, "k"] <= L+R
¥
¥

We can use matrix notations for mutation rates. To see how, let € > 0 be a very short time span,
such that we get for the Jukes-Cantor model:

3 3
Prnle) = 140 e ~ T 2100 = 1-0x

and for y # x:
1 . 1 1
Pysyle) = Z'(l—e ) ~ 11— A=29)) = JAe
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The same in matrix notation

1-3X e e L)e
4 1
S ~ %)\s 1—3)e %/\5 %/\5
& = %)\s %)\s 1-3X  1Xe
IAe IAe 1Ae —3)e
1000 o SN W S W S\
F N SO SN
_foroo ) o S B
“ oo 10 ]|" R P S D
0001 TN Y W DN D)
I R
S(e) ~ I +¢- R or, more precisely, R = lim._,¢ S(i)_[
Interpretation of rate matrix
=3x I ix 1 R R R R
1 i i 3 aa Rac Rac Rar
R %)\ -3 i %/\ _ | Bea Rec Ree Rer
%)\ %/\ -3Xx 3 Rga Rec Roe Rar
TN VN DY D) Rra Rrc Rrg Rrr

Assume be start in . Then R, is the increase (per time unit) in probability of being in y. (Where

for x = y the negative increase means a decrease).
For very small ¢ > 0, P,_,.(¢) is close to 1 and there is a matrix R, the so-called rate matrix (or

Q-matrix), such that S(e) =~ (I + R - €), where I is the identity matrix (or unit matrix)

1 0 0

7= 0 1
0
0 0 1

with the property that A-I = A and I - B = B for all matrices A and B of suitable dimensions.
Thus, we obtain S(t +¢) = S(t) - S(e) = S(t)(I + Re) = S(t) + S(t)Re and
_ -1
lim Sltte) = 50 =S{#)R and as S(0) = I: lim Se) =1 =

e—0 £ e—0 £

R

S(t)R is like the derivative of the process, and R the derivative at ¢ = 0. Note that the row sums
in R are 0. The diagonal entries are negative. All other entries are the rates of the corresponding

substitutions.
Rate matrix of the Jukes-Cantor-Model for DNA

—3) 1y 1y 1
14)\ _4§)\ i/\ i)\
1 Yooty
IS N D W5 W D)
%)\ %)\ 14>\ 43)\
4 4 4 T4

The model F81 (Felsenstein, 1981) allows for unequal nucleotide frequencies (74, 7¢, g, 7r) and has
the rate matrix

—a+ amy (6% ¢6 angG anT
QT A -+ oo anmg QT
AT A amo —a+ ang aTmT
QT A (% Y6 anmg —a + anr

In addition, the HKY model (Hasegawa, Kishino, Yano, 1985) allows that transitions are more probable
than transversions by using an additional parameter 5. Its rate matrix is
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BT A —anmp — B(mp +7g) Bra am

am Brc —amy — B(ng + mp) Brp
Brg

( —ang — B(rg + 7p) Bre arg Brp )
R :=

By anc —arg — B(rg +7g)
(ma, 7o, e, ) is the stationary Distribution (or equilibrium distribution) for any of these

rate matrices. This means Voe(a,c,6,7} * 2yea.c.cr} Ty - Py—a(t) = Tz, or in matrix notation:
(ﬂ-Av TC, TG, 7TT) : S(t) = (’R—Aa TC, TG, ﬂ-T)

Equivalently, we can write this with the rate matrix R as

(7TA,7TC,7TG,7TT) "R = (0707()’0)7

because
S(e)—1 S(e)—1
(7TA,7TC,7TG,7TT) ‘R = (ﬂ-Aaﬂ-Caﬂ-Gaﬂ-T) - lim (6) = lim <(7TA77T077TG77TT) ! (6)>
e—0 IS e—0 e

— lim (7TA77T077TG77TT)'5(6)_(7TA77T077TG77TT)'I
- e—0 5
— lim (ﬂ—Aaﬂ-C,ﬂ-Gaﬂ-T) - (’/TAaﬂ-Caﬂ-Gaﬂ-T)

e—=0 3

0,0,0,0

~ lim 0,0,0,0) _ (0,0,0,0).

E—r £

Some of the things you should be able to explain

e how matrix multiplication accounts for double-hits and back-mutation

e structure and properties of rate matrices

e how the equilibrium property of a distribution can be expressed with a rate matrix or a substitution
matrix

9.2 Residence time

If we think of discrete generations and a per generation mutation probability of p, the probability of
seeing the first mutation in generation k is (1 — p)k’1 - p.
A random variable X with values in {1,2,...} is geometrically distributed if Pr(X = k) =

(1-p)*"-p.
Then,
- 1
EX = E-(1—pft.p=-=
k; (1-p) ;
It is easy to check that this is the only possible value:
EX = ) (k+1)-(1-p)*-p
k=0
= Y k-(1-pfp+d A-pFp=01-p) -EX+p -
k=1 k=0
1
= EX = -
p

The geometric distribution is characterized by the no-memory condition:

PriX=k+n|X>k)=Pr(X =n)
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The continuous analogon is the exponential distribution: A random variable Y with values in R>¢ is
exponentially distributed with rate A if

Pr(Y > z) = e M.

In this case

> 1
EY = / 2de Mdz = =
0 A

The exponential distribution approximates the geometric distriburion if p is small and k is large:
(1-p)f=e ™

In a continuous-time substitution model, the residence time in a state is exponential. For example,
if a site has nucleotide A, and the HKY model applies, it stays an A for a exponentially distributed time
with expectation value 1/(amg + B(mc + 7r)). When it then mutates, it becomes a

. Br
C with prob. WWCM

Using this approach to simulate stochastic processes is sometimes called Gillepie’s algorithm. (It was
presented by D. Gillespie in 1976 for simulations of chemical reactions, but in fact this approach was
already used long before that.)

Some of the things you should be able to explain:

e In many models the time until the next event (e.g. mutation) is exponentially distributed (or
geometrically distributed if time is discrete)

e no-memory condition of exponential and geometrical distribution
e other basic properties of these distributions

e how to simulate processes with exponential waiting times

9.3 Computing S(t) from the rate matrix R

Any linear map F : R" — R™ can be represented by a matrix
First some basics from linear algebra:

Linear means Vv,w € R",a € R:
F(v+w)=F(v)+ F(w) and Fla-v)=a-F(v)

Note that f(z) =32 +bis only linear if b=0,e.g. (3-14+9)+(3-24+9) #3-(1+2)+9 If for row
vectors v, w and column vectors X, y, real numbers a and a matrix M of suitable dimensions, we have
the linearity on both sides:

v-M+w-M = (v+w)-M and (a-v)-M = a-(v-M)
M-x+M-y = M-(y+x) and M- (a-x) = a-(M-x)
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A linear map F : R™ — R™ is fully determined by F(e1), F(ez2),..., F(en), where eq,..., ey, are the
unit basis vectors of R™, e.g. as column vectors:

1 0 0
0 1 0
€ = , €2 = . ) ;€n =
0 0 1
If
vy
V2
vV = . = U1'61+02'92+"'+Un-em
Up,
then F(v) =F(vy-e1+vo-ex+ -+ v, -€ey) =v;-F(er) +ve-F(ea) + -+ v, - Flen).
In the matrix presentation of F' : R — R™ as F(v) = M - v, the columns of the matrix are

F(e1),F(e2),...,F(en).
The analogous statement applies for the rows of the matrix if the row vector notation is used.
Now back to transition matrices of substitution models:

If S(1) is known, you can compute S(n) by
S(n) =S(1)".

To do this efficiently, diagonalize S(1). This means, find a matrix U and a diagonal matrix D (this

means D;; = 0 if ¢ # j), such that
S1)=U-D-U "

For
0 0
D = 0 2
ST
0 0 fim
we call use
w0 0
pr_ | 0 w2
: 0
0 0
and
s = (U-D-UH"

= U- vlv.put...u-p v tu.-p.-ut
= UD-I-D-I---D-U" = UD"U™!

But how to find a matrix U, such that
S(1)=U-D-U"'  holds?

The inverse U~! of the matrix U is defined by U1 - U=I=U-U"".

In this case, the diagonal entries D;; = A; of D are the eigenvalues of S(1), the columns of U are
corresponding right eigenvectors and the rows of U1 (with entries u;J) are left eigenvectors, that
is:

U4 U4
S(1 U2; o U2; s / / S(1) = \ / /
(1) Uz = ) T A (Uiry - ig) - S(1) = A+ (ugqs - oo Usy)
31 u3;
Uy Uyg;
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Note that the eigenvectors in U and U1 have to be scaled appropriately, to make sure that v/, -u; = 1.
Further, if A\ # Xj, then v/ - w; = 0, but if Ay = \; for some k # j, we have some choice in the
eigenspace and must make sure that /- u; = 0.

(General explanations of eigenvectors and eigenvalues on whitebord and with R file.)

Why A; # A; implies v/; - u; = 0:

/ _ / . ! _ !
Nty ug =l - S(1) -ug =l - Ay oug = Al -y,

t

Note: u'y and u} (or (u'y)" and u;.) are orthogonal, as u’;, - u;. is their scalar product.

If o jruj =a# 1, divide one of the two vectors by a or, alternatively, each by /a:

/
Uy uj, 1

Va Ve Vava M

:7-a:1

IS

Note that the scaled eigenvectors % and u—\/é are still eigenvectors with eigenvalue A;, e.g. for u—\/é :

Calculating right eigenvectors in R

> (M <- matrix(c(0.8,-0.8,-0.5,1.2),ncol=2))
[,1]1 [,2]

[1,] 0.8 -0.5

[2,] -0.8 1.2

> eigen(M)

$values

[1] 1.663325 0.336675

$vectors

[,1] [,2]
[1,] 0.5011716 -0.7334959
[2,] -0.8653479 -0.6796939

—0.733

( 0.501 ) is the right eigenvector of M with eigenvalue 1.663 and ( _0.679

—0.865
vector of M with eigenvalue 0.336.

E.g.:
08 —05 ) 0.501 — 1663 0.501 B 0.834
-0.8 1.2 —0.865 o —0.865 n —1.439

To calculate left eigenvectors with R, transepose the matrix with t (M) and calculate the right eigen-
vectors of the transposed matrix (and transpose them). Exercise: calculate the left eigenvectors for
Matrix M, first without R, then with R.

) is the right eigen-

Equilibrium distribution as eigenvector
Note that the equilibrium condition

(7TA77T077TG77TT) : S(t) = (ﬂ-Avﬂ-Cvﬂ-G)TrT)

means that the equilibrium distribution forms a left eigenvector with eigenvalue 1 for the transition
matrix S(t).

Thus, the equilibrium distribution can be found by calculating a left eigenvector for eigenvalue 1 and
by scaling the eigenvector such that its entries sum up to 1.
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Stochastic matrices, that is, matrices with non-negative entries and rows that add up to 1 always
have 1 as their largest eigenvalue.
The situation is similar in the continuous case. For t € [0,00) we get S(t) =U - Tt - U~! with

eMt 0 0
Tt _ 0 6)\2t
0
0 0 ernt
where A1, Ag, ..., Ay, are the eigenvalues of R (with m = 4 for nucleotides and m = 20 for amino acids).

Explanation: For very small ¢ > 0 we have

S(t)=S8()/*~({I+R-¢)/*=U.-DY* .U,

where D, is a diagonal matrix of the eigenvalues p; of I +¢ - R.

It is common to write this as S(t) = €' and call it “Matrix exponential”.
For the right eigenvectors v; we have

(I+e-R)-vi=p; v
and thus

pi — 1
€

R'Viz

V.

Therefore,
pi — 1
€

>\i =
is an eigenvalue of R (if u; # 1) and we can write the diagonal entries of DY* as
(1 + 6)\¢)t/€,

which converges to et for e — 0.

Calculation above also shows that columns of U are not only eigenvectors of I + R but also of
R. Note that transition matrices always have pu; = 1 as greatest eigenvalue, which corresponds to the
eigenvalue \; = “17_1 = 0 of the rate matrix, for which the diagonal entry in 7% is e** = €% = 1).

Further, note that the equilibrium distribution, e.g. (74,7, g, 7r) is a left eigenvector of the rate
matrix R for this eigenvalue 0, that is

(7TA77TC'77TG77TT) -R=0- (7TA,7TC,7TG,7TT) = (0707070)

Efficient implementations functions for computing eigenvalues and eigenvectors are available for most
programming languages and we can use them to calculate matrix exponentials. However, this is some-
times numerically unstable.

One alternative is to use the following alternative definition of the matrix exponential:

r_ ~ (LR)"
¢ _Zo n!

which can be made more stable by chosing § > max{A1,..., A\, } and then using the variant

otR — Bt i (BO)" - (I+ R/ﬁ)n.

n!
n=0
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Another approach is to use the limit

or its variant

for the approximation

or

with a large value of n.

Some of the things you should now be able to explain:
e how powers of matrices can be used to calculate transition probabilities
e how to calculate the powers of a diagonal matrices
e what are eigenvectors and eigenvalues and how do they help to

— transform a matrix into a diagonal matrix and calculate a matrix power

— find an equilibrium distribution for a transition matrix

how matrix exponentials can be used to express transition matrices for a rate matrix

e one or two ways of calculating matrix exponentials

9.4 A model for transition probabilities in closed form

The F84 model (Felsenstein, 1984) is similar to the HKY model but allows the computation of
transition probabilities without numerics by using similar ideas as in the Jukes-Cantor model.

F84 model: Pepper crosses and bullets into the ancestral lineages of the all positions that make them
(partly) forget their former type.

crosses come rate A. The new type is drawn according to (w4, 7c, 7a, 7r).

bullets come at rate u. The lineage only remembers if it was a purine or a pyrimidine. If it was a
purine, the new type is A or G w1th probablhty or —r¢— If it was a pyrimidine, the new

7TA+7TG TA+TG
type is C or T with probability P +7TT or +7TT

A transversion needs at least one cross. If we condition on having at least one cross but not on the
nucleotide that was selected at the cross, then the last bullet or cross before time ¢ draws a nucleotide
according to the distribution (74, 7c, 7q, 7). Thus, we get, for example:

Py,c(t) = (1 — eiAt) ST
A transition needs either at least one cross or no cross and at least one bullet. We get, for example:

PA—)G(t) _ (1 . ef)\t) ~Ta + e*)\t (1 _ e*Ht) . ﬂ-G/(ﬂ—A + ﬂ-G)

Even if we do not need it for computing the transition probabilities, we can write down the F84 rate
matrix:

_ _ _ kTG e
A=) = G Ame - Arg + WA+WG MTMT
—2(1 — —_ =2t A A
MAMA MU= o) = woFEr ATG g AT+ TR
ATA+ TG Ao A - me) - e Amp
um
Amg M(C+"04+% Arg A1 — ) — WCG
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9.5 Position-dependent mutation rates

Model for site-dependent rates
There is one rate matrix ) and for each site i there is a coefficient r;, such that

Ri=r-Q

is the substitution rate matrix for site 1.
Estimating n additional parameters r1,...,7, is not feasible.

Instead estimate one meta-parameter o and assume I'-prior with shape parameter « for all ;.

densities of Gamma-distributions

w0 |
— —— shape=0.5
—— shape=1
—— shape=5
S
—
o
2 -
o
o
T T T T T 1
0.0 0.5 1.0 15 2.0 25 3.0

The I' distribution has another parameter, the scale parameter 5. The expectation value of the I
distribution is « - 3.

We always assume [ = 1/«, such that
]ETZ‘ =1 and EQ = ERZ

Density of the I'-distribution:
xo‘71 . 6im/’5

ga,,@(x) = W7

with T'(a) = [(¥ 27! - e "da

We use
ga(x) ‘= Ya,1/a
To contribution of data column D; to the Likelihood of a tree T is then

Lp,(T) = P;r(Di) = /000 Pr(D; | r; = ) - go(z) dx.

For each fixed r; = x we can efficiently compute Pr(D; | r; = x) with the Felsenstein pruning algorithm.
But not for all  from 0 to co.
Idea: compute Pr(D; | r; = z;) for some z; and approximate

oo k
Pr(D;) = / Pr(D; | mi=12) - go(x) do =~ ij -Pr(D; | r; = x;).
0

j=1

What are good choices for wy, ..., wg and x1,...,xx?
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Method of Yang (1994)
Divide [0, oo] into k sections [a, b] of equal probability

[ sutwrae=17x

e.g. for k=5:

0.3
|

0.2
|

0.1

0.0

Then, x; is the expectation value of the I' distribution conditioned of being in the jth section, i.e.
the center of gravity of the area under the density.

All w; are 1/k.

0.3

0.1

0.0

x1 x2 x3 x4 x5

Alternatitve to or (extension of) the I'-model: A proprotion p of the sites in invariate (“4I17).
Alexis Stamatakis’ CAT approximation

The “CAT model” provided by RAxML can be seen as an approximation to the discretized I'-model.

e sites belong to a few different categories

e cach category has its own rate acceleration factor that must be estimated

e ML estimate for each site to which category it belongs

e instead of marginalizing over all categories only use ML categories for likelihood computation

e Assignments of positions to categories are part of the parameter space and must be updated during
ML optimization

e recommended if more than 50 taxa

Note: There is a completely different substitution model also called CAT in Lartillot and Philippe’s
program PhyloBayes.
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9.6 Time-calibration with fossils and relaxed molecular clocks

Drawing conclusions from fossils

Assume a 10 Mio year old fossil has features that both genera A and B have, but no feature that
only A or only B has.

Further assume: such features would not evolve twice and not get lost.

Which conclusion can we draw?

GenusA Genus C

e Must node V be 10 Mio years old? No!

e Must node W be older than 10 Mio years?

Yes!
‘ e Must node V be younger than 10 Mio years?
v No!
10 Mio years
old Fossil: ‘ ! '
‘ e Must node X (and Y) be younger than 10 Mio
N years? No!
GenusA Genus B Genus C

10 MYBP ?-- Np=fohs - -

We can only conlude that the parent node of the
MRCA of A and B is older than the fossil.

A evolved
1OMYBP 2 =+erveeeeaN

TOMYEP 2 oreereereeeee N ,  Can we use fossil record to limit the age of a node?
. Not clear (to me)!

Maybe from the absence of fossils?
N But what if species lived where conditions did not
lead to fossilation?

uncorrelated log-normal (ULN), uncorrelated exponential (UEX)

In ULN, UEX and DM each edge in the tree gets a rate randomly drawn from the distribution and
uncorrelated to the neighboring branches. [2ex]

e.g. in the case of ULN, the logarithm of the rate on the current branch follows a normal distribution
with mean log(7) 4+ 02/2 and variance o2, which leads to an expectation value of 7 for the rate.

Compund Poisson Process (CPP)

Rate change points are peppered randomly into the tree at rate .

At each change point, the current rate is multiplied with r, which is drawn from a T'-distribution.

Problem: If Er =1 or E[logr] < 0, rates converge to 0, and if E[logr] > 0, rates converge to oo for
long branches.

Solution: T'-parameters must lead to Ellogr] = 0, and a prior on A\ must limit the number of
change-points.

Some of the things you should be able to explain:

e why we do not estimate mutation rates for each site
e how we can avoid this by estimating a meta-parameter

e properties of the I' (Gamma) distribution and why it is appropriate to model rate heterogeneity
(and many other things)

why and how we need to discretize the I' distribution

e how the runtime of your analysis depends on the number of “Gamma categories” and why
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e What is the difference between the Gamma model and the CAT model in RAxML and when should
you use which

e how to use fossil information in phylogenetic analyses

e some relaxed molecular-clock models, like ULN and UEX

10 Quantitative Characters and Independent Contrasts

10.1 Brownian motions along the branches of the tree

Type of questions to be answered
Quantitative traits like number of genes, mutation rates, or morphological traits like weight or body
length differ for different species.

e Do two traits evolve in a correlated way or are their values just correlated because they evolved
independently along the same tree?

e Is a trait significantly different for a certain group of species such that adaptation must have played
a role?

e Can we use morphological traits for phylogeny reconstruction?
Model for the neutral evolution of a quantitative trait along the branches of a phylogenetic tree.
e Independent on different branches

e After an appropriate rescaling it changes randomly like a Brownian motion.

This is a Markov process with
Xs—&-t - Xs ~ N(Ov t)’

where N(0,¢) means normal distribution with mean 0 and variance 0% = t.

Example: Brownian motion starts in node 0 of this tree with a non-random value z¢:

Then, EX; = z( for all 4, and the variance of any node is its distance to the root, e.g. var(Xs) =
lh+13+15.

COV(X5,X4) = COV(X5 — X3 + X3, X4 — X3 + Xg)
= COV(X5 — X3, X4 — Xg) + COV(X5 — X3, Xg) + COV(X3, X4 — Xg) + COV(‘X37 X3)
= var(X3) = {1 + 43
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In general: The covariance of the values Xj and X, at the nodes k and ¢ is the variance var(X}) of
the value at their most recent common ancestor h. o x
Let v; be the parent node of node 7, then the values ( i\;f’" ) are stochastically independent
g i=1,...,n

and standard-normally distributed. Together they are a standard-normally distributed random vector.
Moreover, the map

Vi X
Y = : — : =X
Xn\/gvn Xn
is an affine transformation, i.e. can be represented as Y — w+ MY = X with appropriate vector w and
matrix M. This implies that X is also normally distributed, and its distribution is determined by its
expected value and its covariance matrix.

10.2 Excursus: Multidimensional Normal Distribution

e An d-dimensional random vector is a vector of d random elements

e The expectation of a random vector X = (X1, Xo,..., Xd)T is the vector of the expectations:
X1 EX;
EX=E| : | = :
X4 EXq4

e The expectation of a random matrix M = (Mij)i:lun’jzlud is the matrix of the expectations:

Myy M2 --- Mg EMi1 EMi2 --- EMg

Mnl Mn? e Mnd EMnl EMnQ to EMnd

e reminder: The variance of a univariate random variable X is Var(X) = E [(X — EX)?] =E [X?] — (EX)*.

e The analog in the multivariate case is the so called covariance matriz (or dispersion matrix or variance-

covariance matrix). The covariance matrix Var(X) = ¥ of X = (X1,..., Xq)7 is
Cov(Xi,X1) Cov(X1,X2) -+ Cov(X1,Xq)
5 Cov(Xs2,X1) Cov(Xz,X2) -+ Cov(X2,Xaq)
Cov()éd,)ﬁ) Cov(Xg4, X2) - Cov()éd,Xd)
X1 —EX;
—E : -(Xl—]EXl,---7Xd—]EXd)
Xq—EXy

~E [(X “EX)- (X — EX)T]
-E [X : XT] _EX - (EX)T
e Linearity of the expectation is analogous to the univarite case: Let X = (Xi,...,Xy) be a random
vector and C = (Cyj)i=1..n,j=1..¢ be a deterministic matrix. Then

E(C - X) = C-E(X)

o f Y :=X —E(X), then
Var(C - X) = Var(C -Y)
=E[C-Y-(C-Y)T]
=E[C-Y-YT.CT]
=C-E[y-YT].C"
=C-Var(Y)-C"
=C-Var(X)-CT
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e Reminder: Univariate normal distribution N (y,o?) with mean p € R and variance o> € (0,00) has the

density
(z — u)z)

f@%zw%pem(— -

standard normal density
o

Remember: Pr(p —oc < X <p+o0)=0.68 and Pr(pg— 1960 <X < p+ 1.960) =0.95

e The density of the d-dimensional normal distribution with mean p € R? and covariance matrix ¥ € R4*4

I N A ) R )
1@ = e p( 2 )

for z € R* where det(X) is the determinant of ¥, and X! is the inverse matrix. We write Ny (u, ) for
this distribution.

is analogous:

e The standard multivariate normal distribution has mean y = 0 and the identity matrix 3 = I as covariance
matrix.

Plots for d =2

Correlation 0.0: X = (1

. (1)) Var(X1) = 1 = Var(Xa), Cov(X1, X2) = 0.0

Plots for d =2
Correlation 0.3: ¥ = (013 013>7 Var(X:1) = 1 = Var(X2), Cov(X1,X2) =0.3
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Plots for d = 2

1= Var(Xg), COV(Xl,XQ) =0.6

1 06
_(0.6 1>’Var(X1)_

Correlation 0.6: X

Plots for d =2

1= Var(Xg), COV(X17X2) =0.9

1 09
= (09 1 ), VaI‘(X1) =

Correlation 0.9: X

Properties of a Ny (i, X)-distributed random vector X:

e Linear combinations are univariate normal distributed: (¢, X) ~ N ((c, 1y, CECT)

57



Where (., .) is the scalar product: (v,w) =>""_ v;-w; = (v1,v2,...,0n)" . = ||v]| - |w] - cos(Lv,w)

Wn
e X; and X; are independent <= Cov(X;, X;) =0
e The standardized normal distribution is standard normal distributed

S7E (X — ) ~ Na(0,1)

where M = 27% is a matrix such that MT - M -X =1.

e The square of the standardized normal distribution is chi-squared distributed with d degrees of freedom:
(X =)™ 27X = p) ~ i

e If Y1,Ys,...,Y, are independent and standard normal distributed, then (Yi,...,Ys) ~ N(0,1).
e If M € R”*% is a non-random matrix, then M - X ~ N, (M -, MEMT)

10.3 Why to use REML

Assume now that the values of X; in the tips of the tree are given and that the topology of the tree is
known. How can we estimate the branch lengths? Let’s apply ML!

Example: For a rooted tree with two tips, we measure the values z1; and zo; for t = 1,...,p of p
different traits in the tips 1 and 2. The values xg; in the root of the tree are unknown. For known values
o; we assume that the value of trait x; for j € {1,2} is normally distributed with mean z¢; and variance
l;o?, where (; is the unknown length of the branch to tip j.We have to maximize the likelihood

L(a:o,él,EQ) = H 20107 - e 20507
2 2
i=1 \/m 2oty
L4 (2152042 | (zo;—x0;)?
1 _%< 112“0 n 212£20

i1 27‘&' flfg
e —wo )2 (@ —wn)2
1 ( 1 )P ,%.<Zf:1(%2.<(11£101) +lezizra) >>
e ?

-1 02 27‘[‘\/5162

To find values z¢1,...,%op, and ¢; and {2 that maximize L(zo,¢1,{2), we first note that for any ¢,
and /5, the xp; that minimizes

<.

P

(xu - $0i)2 + (1'21' - $0i)2
21 Uy
is
= _ x1i - o + x9; - 41
01 61 +€2

Then we search for /; and ¢, that minimize y/¢1¢5 and

(SUu - 50\1')2 + ($2i - @)2 _ @ : (IEM - $2z‘)2 f% : ($2i - $1i)2 _ (mu - $2z‘)2
fq 2 ly - (£1 + 62)2 /- (51 + £2)2 b1+ 4o

This means that ¢1¢5 should be small and ¢; 4 ¢5 should be large, and we get that by setting ¢/; = 0 and
{5 — 0o or vice versa.

This is perhaps not what we expected. What is the reason for this absurd result?

Heuristic explanation: We have one parameter per ¢ too much in the model. This parameter vanishes
for /1 = 0 because this forces xg; to be z1;.

There are several ways to circumvent this problem, which also appears when for trees with more than
two tips, e.g.:
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e Assume a strict molecular clock such that all tips must have the same distance to the root (Thomp-
son, 1975)

e Felsenstein’s REML (REduced Maximum-Likelihood) approach is to avoid the root and consider
only unrooted trees. For the example above this means that we only estimate ¢; 4+ ¢2 by the ML

estimator
R N
b+ l==)" () .
P i

10.4 Computing Independent Contrasts by Pruning the Tree

Let Z = (Z1,...,Zm)T be the vector of values for a quantitative character in the tips by, ..., by, of the
tree. To compute the likelihood of the tree or correct correlations for phylogenetic relationship or to
decide whether there is significant evidence for adaptation, we apply REML and transform the values in
the tips back into a standard-normally distributed vector.

One way of doing this is a variant of Felsenstein’s pruning algorithm. It leads to independent trans-
formations — so-called contrasts — between the values in the tips that can be associated with the branches
of the tree, which helps to interprete them.

We start with the contrast Zs — Z;. Then we assign a value
W to node k (the MRCA of nodes b; and by) that is a
weighted average of Z; and Z5 but independent of the con-
trast Zo — Z1: Set

W:$21+(1—$)Zg
and search for x such that

O=cov(z-Z1+ (1 —2a)  Zo, 71 — Zs)

= z-var(Zy) —x-cov(Zy,Zs) + (1 — x) - cov(Za, Z1) — (1 — z) - var(Zs)
= z-var(Z;) —x-var(K)+ (1 —z) -var(K) — (1 — x) - var(Z2)
= z-var(Z; — K)— (1 —z)-var(Z2 — K)
= z-s—(1—2x)-t
t
=T =
s+t

Hence, we set
= 7+ .z
Tstt N swt T
If the distance between k and some tip with value Z3 is r, then

var(K — Z3) =,

where K is the value in node k.

We should not consider W as an estimate for K because var(W — Zs)

s t s t
= Var<t+s'Z1+m'Z2—Z3> = VaI'(m(Zl—K)+m(ZQ—K)+K—Z3)

2 2
= (sj—t) -Var(Zl—K)—l—(SLH) -var(Zs — K) + var(K — Zs)

$2 t2
= t+

(s+1)? s+r = S—tJrr > var(K — Zs).

(s+1)2 s+t
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Thus, we can imagine that we prune the subtree of b; and by from the tree and extending the branch
to k by length SS—th To the new tip at the end of this extended branch we assign a value of W. The
contrast Z; — Zs is uncorrelated to all values at tips of this new tree and thus also to any contrasts that

we can compute from them.

This means, we continue with this tree:
For the next contrast we can use W — Zj.

We repeat this pruning step until we have m — 1
independent contrasts.

Dividing all contrasts by their standard deviations leads to a standarﬁ—normaﬂy distributed vector
of contrasts:

Zo — 74 W -2,
Vs tt Tyt oh

All this is only true under the null hypothesis of neutral evolution. We can reject this null hypothesis
if the vector of standard-normalized contrast deviates signifcantly from the normal distribution. Since
the contrasts are associated with branchs of the tree, we can then identify which branch of the tree shows
evidence for process of adaptation. (Here we assume that the phylogeny is known.)

In principle, we can also use quantitative characters to estimate the tree, but usually the amount
of available data is insufficient to infer the tree, adaptation processes and correlation between different

quantitative traits. It ususally makes more sense to estimate the tree from molecular data and then use
the independent contrasts method to analyse the evolution of the quantitative traits along the tree.

10.5 Software

Phylip: contrast

http://evolution.genetics.washington.edu/phylip/doc/contrast.html

Can deal with variation of traits within species (Above we have always assumed only one value for per
trait for each species. This should be the average value, which, however, can ususally not be estimated
with high precision.)

Note that correlation of different traits within species is usually different from correlation between
species.

References

[FO8] J. Felsenstein (2008) Comparative Methods with Sampling Error and Within-Species Variation:
Contrasts Revisited and Revised. American Naturalist 171(6): 713-725

Note: when calculating correlations of contrasts « and y of two traits (that is, phylogeny-corrected correlations of the traits),
phylip contrast assumes that the expected values of the changes are 0 and therefore estimates the correlation by i i¥i
Ve
Silz;=7)-(y;—7)

instead of .
VEi(ai—5)2 /2 ;-

BayesTraits
The software package BayesTraits from Mark Pagel’s group provides several Bayesian and Likelihood-
based methods for inferring the evolution of continuous and discrete traits along phylogenetic trees.
http://www.evolution.reading.ac.uk /BayesTraits.html

Coevol
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Some of the things you should be able to explain:

e why and how to correct for phylogenetic correlation when comparing quantitative traits among
species

e what is the Brownian motion model for the evolution of quantitative traits

e how are quantitative traits correlated when they evolved neutrally along a given phylogeny
e properties of multidimensional normal distribution

e what is the REML approach and in which cases do we need to use it instead of ML?

e how to calculate the (reduced) likelihood of a tree for such data with a pruning algorithm

e What are potential problems if we want to estimate a tree from quantitative traits without any
molecular data?

10.6 Extra topic, so far not covered in the lecture: Pruning algorithm for
the Ornstein—Uhlenbeck model
In this section we write

_@ow?
e 2v

f@ | pv) =

for the Gaussian density function of a normal distribution with mean p and variance v.

The Ornstein-Uhlenbeck process is a generalization of the Brownian motion. It combines the random
fluctuations of the Brownian motion with the tendency to move toward some value 6. Thus, it can
be applied in biology to model the evolution of a quantitative trait with a fitness optimum of 6. If
the process is in a value x at some time point, its state at an infinitesimally time dt later is normally
distribted with expected value a - (§ — x) - dt and variance o2 - dt. This has the consequence that after
a longer time span ¢ (or, in the context of phylogeny, after a branch of length t) the state of the process

2mv

. 2 — .
and variance g— (1 —e 20“), in other words, has a

is normally distributed with mean 6 + (z — ) - e~

Gaussian distribution density
2

ny(?J ’9+(x—9)~€°‘t,;a(1—62m)>7

see e.g. Karlin, Taylor “An Introduction To Stochastic Modeling” (1998, 3rd Ed.).

The pruning algorithm of e.g. FitzJohn (2012) and [Freckleton (2012)| to compute the likelihood in
this model uses the fact that partial likelihoods in this model are again Gaussian functions of the trait
value of the focal node. (A Gaussian function is a product of a Gaussian probability density an a scaling
factor.) Extenstions of the Ornstein—Uhlenbeck model allow for example that the optimal trait values
vary in the tree. The RevBayes| packages provides functions to analyse data based on this model. Here,
we cover only the basic phylogenetic Ornstein—Uhlenbeck model.

To derive the pruning algorithm, we need the following three properties of Gaussian functions:

flatiea) = 5o (e 2500 )
AU w o vw
e Ihw) e L) = SO o) f (x| A2 10 ®
[ @i s lnode = FO0wotw) = £l Aot w) (3)
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Note that equation [I] implies for a tree consiting of a single branch of length ¢ and a value of y at the
tip that the likelihood is Gaussian function of the initial value z:

f(y ‘9+(x9)'eat "2(1@2“)>

" 2a

2
= f(y ‘9.(1eo‘t)Jr:r.eo‘t,;a(leQat))

eat.f(x

We can derive equation [1] as follows:

fyla+bow) = — exp<_<yabfv>>

2

R ) @
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1 y—a w
- bf(m b’@)
To proof equation [2} we first expand
L (2= A2 u—uf)
z| A\w)- f(z | pov) = ——exp | — — 5
fa | fla [uo) = e (2R L o)

and then rewrite the exponent with the aim to obtain a single x in a term as it appears in the exponent
in a Gaussian:

2w 2v

v @M tw (o p)?
n 2vw
v (@ = 22A+ N +w - (2 — 2zp+ p?)
n 2w
2t (vt w) = 2z (W + pw) + oA+ wp?
o 2uw

2 vt A twp®
ot o

VW
v4+w
2 2 R 5
2 Av+ Av+ Av+ AT+
22— 2p . Ay (ui )" (b )" oX
= vw
v+w
2 2 5 R
(.1? _ )\v+,u,w) ()\eruw) _ VA +wp
v+w vt+w v+w
= - vw vw
v+w v4+w

2
Av+pw
(“?Z ) N (Mo + pw)? — (A% + wp?) - (v + w)

2.5 20w - (v + w)

2
Av+
(m - Z-s—iw) A202 2 opw + pPw? — 022 — w?p? — vwd? — vwp?

255 20w - (v + w)
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Av+pw
(x T Tofw ) 20 vpw — vwA? — vwp?

250 2vw - (v + w)
Av+pw 2
o _<$_ v+w ) _ —2)\u+)\2+u2
2,55 2(v+ w)
2
Av+pw
_ 7(x— ot ) B (A —p)? 6)
Uﬁ:"w 2(v+w)

Inserting this into equation [5| we obtain
[l | Xw)- flz]| p,v)

I BN Gl ) NS0

—— X
V2rw /21w P 255 2(v+ w)

Av+pw 2
1 1 A —p)? (95* vw )
exp <_<u>> exp | T )

Vam(v +w) | fom e 2(v+w) 2%

v+w vtw

AV 4 pw vw

= A ) : )
FO o) f (o | 20ERE B0
Equation [3| has to do with the fact that sum of two normally distributed random variables is normally
distributed, but also follows easisly from the above and the fact that the area under a probability density

is 1:

[ffm|xwwfu|vax

= [ sl g (o

fu|mv+w»/ff<x
= FOV o+ w)

A
v—&—uw7 vw >dx
v+w v+ w

A
v—&—ﬂw’ vw >dx
vtw vtw

To move on to the pruning recursion, let R be a node with two daughter nodes N and M with branches
of legths ¢y and tps, and let dy, dys and dgr be the vectors of trait values at all leaves that stem from the
nodes N, M, or R, respectively. Let ky - f(x | un,vn) and ks« f(x | par, var) be the partial likelihoods
at nodes N and M. That is, e.g. kx - f(x | pun,vn) is the multi-dimensional probability density of
dy, assuming that the trait value in N is x and assuming given values for the parameters 6, «, o of
the Ornstein—Uhlenbeck process. We already assume here that the partial likelihoods are Gaussian —
including the possibility of a fixed value at uy with vy = 0 if N is a tip — and show that the partial
likelihood at R is then also Gaussian, which then justifies the assumption as it shows that we stay in the
family of Gaussian functions.

The Likelihood in R starting in z is the product of the probability densities of dx and dps, both
starting in = in R. If N is a leaf with value y, the density is given by equation [d] which is a Gaussian
function of x. Otherwise, the density of dy is calculated taking all possible values y in N into account
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and apply first equation 3| and then equation [1] as follows:

[ (oot o T (=) ) Sl | o)y

)
PN 2a

2
= Ifo(,uN '0'(1—604)_’_1"6Ott,,UN_’_g—a(l_e2005))

2
_ kNeoctf (l’ eat.(NN_Q.(1_6—0&))7@]\[.620&_’_;@(€2at_1)>

2
— kNeo‘tf<x eat'(ﬂN—9)+9,UN'€2at+;O[(62(”'—1))

Note that this is a Gaussian function of z, and analogously we get the density of the data dj;, which is
again a Gaussian function that has the same structure as above, with each N replaced by M. As Gaussian
functions are determined by tree parameters (mean and variance of the density part and scaling factor),
we only need to calculate these three parameters when we implement the algorithm. To obtain the
partial likelihood function in R, which assigns to each x the denstity of dr, assuming the value x in R,
we multiply the two Gaussians and obtain again a Gaussian function of & according to equation [2| This
leads to

2
kr = kykye2®t.-f (eo‘t (uny —0)+0 ‘ et (upr —0) 4+ 0, (vn +opy) -2+ 7 (e%‘t - 1))
e’
o2
= knkne® - f (eat "N ‘ e - pr, (vy +oy) - €2+ — (2 — 1))
!
t o’ —20t
= knkye™ - f{pn ‘ jye UN"‘UM“FE(l_e o)
(e (un = 0) +0) - (oar + 5o - (1= €7220) ) + (e (g — 0) + ) - (vn + 52 - (1= 7))
KR = 52 oot
UN+UM+Z(17€ O‘)
e2o¢t . (,UN + % (1 _ e—2at)) . (UM + % (1 _ e—2at))
Vp = .

N + vpr + %2 (1 — 6_20“")
11 Model selection

11.1 Concepts: AIC, hLRT, BIC, DT, Model averaging, and bootstrap again

AIC
The likelihood of a model M,

Lp(M) = LD(H):meaXPrM)g(D)

max
ALGEM//
tells us how well M fits the data D. The more parameter dimensions d (i.e. 8 = (01,602,...,04)) the
higher the likelihood and the higher the risk of overfitting!

Under certain assuptions (with normal distributions, not phylogenies), the error of future predictions
in terms of Kullback-Leibler-Information can be estimated by Akaike’s Information Criterion:

AIC = -2 -logLp(M)+2-d.
One approach: use the model of lowest AIC.

Model selection via LRT
If we have a model M; with n — d parameters nested in a model M> with n parameters, then under
the null-hypothesis that the data come from the more simple model M7, the double log likelihood ratio
is under certain conditions approximately chisquare-distributed with d degrees of freedom,
Lp(Ms)

L, (2 -log LD(W) =Ly (2 (log Lp(Msy) —log Lp(M7))) = XZ,
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where the likelihood of a model Lp(M;) is maximum likelihood obtained by optimization over all pa-
rameters of the model.

In cased where the x% approximation is dubious (e.g. when the models are not nested) one can
simulate the likelihood ratio distribution under the null hypothesis.

One approach of model selection is to accept the more complex model only if the simpler model is
significantly violated.

Problems of this LRT approach

e Model selection is different from the original idea of testig. If a test does not show significance,
one cannot conclude anyzthing, and especially not that the null hypothesis (the simpler model) ist
favorable.

e One can inprinciple apply this to a hierarchy of nested models, but the result will depend on which

JC/ K2 ———>HKY \
N 4

intermediate steps are allowed. F81 —— F384

GTR

Bayesian model selection
Each model M; has a prior probability Pr(M;). Its posterior probability is then

_ Pr(D|M;) - Pr(M;)
Pr(M;|D) = >, Pr(DIM;) - Pr(M;)

with
Pr(D|M;) = /PY(D|Mi79) - Pr(6|M;)df.
6

Note the difference between Pr(D|M;), where we integrate over 6, and Lp(M;) where we maximize over
f! The sum over all models in the denominator above cancels if we compare two models by taking the
ratios of their posteriors:

Pr(My|D)  Pr(D|M;) Pr(M)

Pr(Ma|D) — Pr(D|M,) Pr(My)

The fraction Pr(D|M;)/Pr(D|Ms) is called the Bayes factor of the models My and Ms.

To avoid the priors of the models we use the Bayes factors rather than the posterior distributions to
decide between models. If the Bayes factor Pr(D|M;)/Pr(D|Ms) is larger than 1 we may favor M7 over
M. The rule of thumb says that a Bayesfactor between 1 and 3 is not worth mentioning, between 3 and
20 it indicates some evidence, between 20 and 150 strong evidence, and over 150 very strong evidence.

It is important to note that even if the priors Pr(M;) of the models do not matter, the priors Pryy, (6)
within the model may have a strong influence. An important difference between Bayesian parameter
estimation and Bayesian model selection is that priors become less important for paramterestimation as
more data is added. This is not the case in model selection, where priors for the model parameters will
always have an important impact!

Some people find the following properties of posterior probabilities counter-intuitive:

Lindley’s paradox In the limit of uninformative priors, the simplest model is always preferred.

Star-tree paradox If all internal node have length (almost) 0, there will often be a fully resolved tree
with high posterior probability (deciding between topology can be considered as model selection).

Fair-coin paradox If a (almost) fair coin is tossed many times, but the models compared allow only
for one or the other side to have probability larger than 0.5, it will often be the case that one of
the two models have a high posterior probability.
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Computation of Bayes factors from MCMC runs
If 6, ... 0™ are (approximately) independent samples Pr(f|D, M) we can compute Pr(D|M) by
importance sampling approximation:

Pr(D|M) 1
Pr(D|M) = =
r(D|M) fg Pr(6|M)d6 f.g ;}?;((g‘\jj\\?) do
1

1 S Pr(6()| M)
m £+40) Pr(D[M)-Pr(6(D|D,M)
m

m

Pr0O|M) N1
20 Pr(D,00)| M) > Pr(D|M,0(9)

(note that this harmonic mean estimator may be numerically unstable.)

BIC
For a model M with a d-dimensional parameter # and data D consisting of N independent samples,
we can under certain conditions approximate

-~

d
log Pr(D|M) =~ log Pr(D|M, 0) — 3 -log N

~

We call BIC(M) = —2 - logPr(D|M,0) + dlog N the Bayesian Information Criterion or Schwartz
Criterion, and favor models of low BIC. Moreover,

Pr(D|M;) ~ o(BIC(M2)~BIC(My))/2
Pr(D[Ms) '

Minin, Abdo, Joyce, Sullivan (2003): “[..] rather than worry about the somewhat artificial criterion
whether or not a model is correct, we will focus on the accuracy of the branch lengths estimated under
various models”
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Assume that the unrooted phylogeny with £ tips is known or use some inital guess.

Candidate modles: M, ..., M, with uniform prior Pr(M;) = 1/m.

Branch lengths estimated with model M;:

2k—3 o .2
1B: = Bill = | Y (Bie— By)
=1

Risk when choosing Model M;:

¢-BIC(M,) /2
ZHB - Bjl|- S -BIC(M)/2

R; = ZHB B;l| - Pr(M,|D) ~
Jj=1
DT

The Decision-Theoretic (DT) criterion of Minin, Abdo, Joyce, Sullivan (2003) is to choose the model

with the minimal risk
e—BIC;)/2

m
Z:HB - Bill- Zh: e—BIC(My,) /2

22

based on the initial tree.

In a follow-up paper they study the robustness of this approach against uncertainty about the initial
tree.

Model averaging
Let 6 be the vector of parameters and s(f) some interesting aspect of the parameters. s must have
the same meaning in all considered models My, ..., M,,. We can then estimate:

ZPr 0)|D, M;) - Pr(M;|D)

One possible implementation of Model averaging is reversible-jump MCMC, see Huelsenbeck, Larget,
Alfaro (2004)

Reversible-Jump MCMC

If an MCMC procedure shall sample from a state space that has several continuous components of
different dimensions (e.g. for averaging over several models with different numbers of parameters), the
problem arises that a density of n dimensions cannot be directly compared to a density in e.g. n + 1
dimensions in a Metropolis-Hastings ratio.[1.5ex] Simple approach is to add an artificial parameter to
the state of n dimensions, which has a uniform distribution on [0, 1] and no influence on the probability
of the data. [1.5ex] Then you can apply Metropolis-Hasting to perform reversible jumps between the
components of dimension n and dimension n + 1.

Parametric bootstrap approach
If different models lead to different results, and it is not clear which model fits best, one should ask
for all ¢ and j:

If model M; was right, how accurate would an analysis based on model M; be?
do for each i:
1. ’9\1 := estimate 6 based on M;
2. repeat for kK =1,...,1000:

(a) D simulated data based on M; and @
(b) For all j: let 5”” the Mj-based estimation for dataset D; j

3. Analyse for all j how close the average §i7.,j is to @
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11.2 Does model selection matter?

Substitution models for phylogeny reconstruction
Study with wide range of data sets for : Ripplinger and Sullivan (2008)

e Different model selection methods led to different models in 80% of the cases

e use of different best-fit models changes the optimal tree topology in 50% of the cases, but only for
poorly supported branches.

e BIC and DT selected simpler models than hLRT and AIC. The simpler models performed at least
as well as the more complicated.

e Use of models supported by model selection in ML gave better trees than MP or ML with K2P.

e Trees based on models favored by different model selection strategies gave similar results in hy-
pothesis tests.

e Recommend to use the simpler BIC- and DT-selected models.

From Lin Himmelmann’s PhD thesis
Simulation study to compare (relaxed) molecular-clock models

MC strict molecular clock model

CPP compound Poisson process

DM Dirichlet model (rate factors on branches add up to 1, no correlation of neighboring branches)
ULN uncorrelated log-normal

UEX uncorrelated exponential

Results of Lin’s model comparison
Data origin ‘ Performance of models in analysis
MC MC best
CPP, DM, ULN almost as good
UEX much worse
CPP, DM, ULN | MC, CPP, DM, ULN give good results
UEX slightly worse
UEX DM, ULN best
UEX slightly worse
CPP worse
MC worst

Lin recommends: DM, ULN okay for most situations
More severe than substitution model selection may be:

e Alignment
e Confusion of paralogs
e Gene trees can differ due to recombination combined with

— Incomplete Lineage Sorting (ILS, details on white board)
— Horizontal gene transfer (HGT)

— Coalescence of lineages further back than speciation

Introgression

e Phylogenetic methods can be confused by incompatible trees
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Some of the things you should be able to explain:

e criteria AIC, BIC, hLRT, Bayes factors, DT and model averaging to decide which model to use for
your data (e.g. substitution model for sequence data)

e Lindley’s paradox and other differences between Bayesian and frequentist approach

e how relevant is model selection, also compared to other potential problems in your data

12 Insertion-Deletion Models for Statistical Alignment

12.1 Alignment sampling with pairHMMs

To Do: estimate mutation rates from sequences

ACTCGCGCTT
ACGTCGATT

Classical Approach:

1. Take best Alignment:

AC_TCGCGCTT
ACGTCGA__TT

2. Count Mutations in best Alignment:
1 Mismatch : 7 Matches
2 Indels (3 Sites) : 8 homologous Sites

Problem: underestimation of mutation rates, since alignment fits too welll
What are typical Alignments and Mutation Rates for given sequences?
Idea: Generate many random alignments A with corresponding mutation rates M according to

Pr( (A, M) | sequences )

Needed: A model of sequence evolution with insertions, deletions and substitutions. Otherwise
Pr(...) has no meaning!

Model of Sequence Evolution

Thorne, Kishino, Felsenstein (1991):

Deletions with rate p at each site.

Insertions with rate A right of each site & at the very left.

Substitutions with Rate s at each site.

A c G T T c G C

J( time

A T TG Cc C Cc G
like this: not like this:
TKF alignment convention: ACGT_TC_GC_ ACGT_TCG_C.
A_TTG_CC_CG A_TTG_C_CCG
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Reversibility?

time J< o
reversed U e J
time /T

Consequence of TKF convention

The bare alignment e \
BBBB_BB_BB_ B )
B_BBB_BB_BB @ B

is generated by a Markov chain: >/

from \ to B B

B B
£ Q-2 2e F [ A-2p20-c /) 2B

- —e H_
B ag—e—t A8 1—e B
- 1—e— I 1—e— I
5 (1—,\[;‘)%e*f‘ (1-)45)%(1—&*#) 3

_eA

transition probabilies im (model: TKE'91), 8 = —L=¢

—XeA—H
The Markov chain (the alignment) is hidden, observable is the pair of sequences emitted by the
alignment.

pair Hidden Markov Model (pair HMM)
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Why Markov?

B||B ||B |[B————|| B —||B||lB

B — B B —BBBB B B|| — B

Galton and Watson

Sir Francis Galton
1822-1911

Henry William Watson
1827-1903

Galton Watson Tree
X} := number of offsprings at node k

X1, X5, X3, ... i.i.d. random variables

EX; < 1: “subcritical”
EX;, =1 : “critical”
EX) > 1: “supercritical”

Galton-Watson Process in continuous time
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‘ Time

!
il

Binary Branching GW Process in cont. time

q‘— -

Theorem 6 If a Galton-Watson process with binary branching or geometric offspring distribution (on
{0,1,2,...}) is still alive at time t, then the number of survivors at time t is geometrically distributed

(on {1,2,3,...}).

on {0,1,2,...}: Pr(X =)= (1-p)* p, E(X) = (1-p)/p
on {1,2,...}: PriX=Fk)=(1—-p)Ft-p EX)=1/p

The geometric distribution is the only one on {(0,)1,2,3,...} without memory: Pr(X =n+k| X >
n)=Pr(X =k)

Why Geometric Distribution?
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B - 277
0 0
t t

B 77?

B - - M B - - - m
B B 77 B B B M
Computing transition probabilies
Simplification: A = p

t

B

X := number of survivors at time ¢ E(X) =1
Pr(X=k|X>0)=(1-p*r1t-p
%z]E(X|X>0)=1+t~)\ =p=1/1+¢t-})

- - 1 tA B -
r(B_)B> T+ix — 1+ix r(B—>B>
. B 1 B B
Pr — = e =Pr —
B B 14+t B B
1 = EX)

= Pr(X=0)-EX | X=0)
+Pr(X >0)-E(X | X >0)
= Pr(X>0)-(1+¢-A)

B B_ 1
:>Pr(B>+Pr(_B> —Pr(X>0)——1+t.>\

B 1
P - - - —tA
r<_B) T+t x ¢
B _ 1 —tA
Pr B—>_ = Pr(-BB) - rex — ©
_ B Pr(_) 1—etA

T—e (141N
(T4tA) - (1 —e )
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From the previous calculation we obtain that after }? the probability that this site has no surviving
offspring is

L l—e ety tA
(L4+tA) - (T—e ) (14t - (1 —e )
As the probability that the next B survives is e~**, we obtain
pr(B B the A
T =
_ B (14+tA) - (1 —e )
tA- (1 —e ™
pr(® 8 = u-e™) _ 0
_ - (14+tA) - (1 —e ) (L+tA)

Aim: Sequences are given. Generate alignments A and mutation rates M = (A, y, s) according to

Pr( (A, M) | sequences )

partial steps:
1. Assume that the mutation rates M are known. Generate alignments A according to

Pr( A | sequences, M )

2. Assume that the alignment A is known. Generate values for the mutation rates M according to

Pr (M | sequences, A )

3. combine 1. and 2.
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Path representation of an alignment
A C G G T T T

A_GTCCT__ ]
ACG__GTTT c

Pr(sequences | M) = Z Pr(A,sequ. | M)

alignment A

A Cc G G, T T T

T

Summing efficiently: label each edge with
Pr( Alignment contains this edge and generates the sequences so far | M)

A c G G| T T T

(0]



After labeling all edges, generate alignment backwards.

in each step depend on edge labels and Markov transition probabilities.
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Alignment Accuracy: HVR1 of Human and Orang

cTom 10CCTOACC!

‘oACGT
0CCTTCOCO \COAGTT
ATT

D. Metzler, R. FleiBner, A. Wakolbinger, A. von Haeseler (2001) J. Mol Evol. 53:660-669.

12.2 Insertions and deletions of more than one site

InDels are usually longer than 1 position

7 |

G

Zeit

A

References

[TKF92] J.L. Thorne, H. Kishino, J. Felsenstein (1992) Inching towards reality: an improved likelihood model
for sequence evolution. J. Mol. Evol. 34, 3-16.

[MO3] D. Metzler (2003) Statistical alignment based on fragment insertion and deletion models. Bioinformatics
19:490-499.

FID Model (also a pairHMM):
e instead of single nucleotides, fragments are inserted an deleted with rate A.

e Length of the fragments: geometrically distributed, mean length: ~.

a1

FID transition probabilities

The transition probability of the FID model can be derived from the transition probabilities of the
simplified (u = A\) TKF91 model, taking into account that with a probability of 1 — % the position is
in the same fragment as its left neighbor and thus is in the same state. With the probability 1/ the
fragment ends and the state of the next fragment is chosen according to the transition probabilities of
the simplified TKF91 model. This leads to the following transition probabilities between sites:

Pae—y | y=3§ | wy=35 | y=2"
r— B 1_ 1+td—e ' tA 1—e” N
B Y(14¢X) Y(14+tX) (14t

_ e " y(A+tA) -1 1—e

_ B (14t Y(1+tA) y(1+tA)
_ B the "t 1—e (14N y(1+tN)—1

T= 2| 3A=e-™MAFtN) | y(d—e ) (I+tN) MEEESY
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forbidden in TKF92 and FID:

B B B B B B B Zeit

GID Model:
e 1 this is allowed

e no hidden Markov structure

Use GID to simulate data and test robustness of FID
Test robustness of ML estimates for mutation rates

e Generate sequence pairs according to FID and GID
e Tell FID-based estimator which positions are homologous

e Are estimates for GID data worse than FID data? (This will be the case only when true parameter
values are extreme.)

e Differences should be lower when estimates are based on sequences instead of homology structures.
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How good are FID-based methods when GID/“Long Indel Model” is true?
e 1o problem for parameter estimations (Metzler, 2003)

e alignment accuracy can be decreased (Miklos, Lunter, Holmes, 2004)

Maybe generate mixed-geometric gap-length with different types of fragments.
Along a tree fragmentation may change from edge to edge.

InDel Model for detecting conserved regions
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[AMPO07] A. Arribas-Gil, D. Metzler, J.-L. Plouhinec (2007) Statistical alignment with a sequence evo-

lution model allowing rate heterogeneity along the sequence IEEE/ACM Transactions on
Computational Biology and Bioinformatics 6(2): 281-295

slow fast TKF92 slow fast TKF92 slow fast TKF92

[]|BBBB [555][5][5055 | [5 | [5055 ]

12.3 Multiple Alignments

[ BBBBBBBB [ l BBB H BBB [

References

[HBO1] I. Holmes, W. J. Bruno (2001) Evolutionary HMMs: a Bayesian approach to multiple align-
ment Bioinformatics 17:803-820.

[MFvHO5] R. Fleifiner, D. Metzler, A. von Haeseler (2005) Simultaneous statistical multiple alignment
and phylogeny reconstruction. Systematic Biology 54(4):548-61.

multiple HMM for sampling a sequence given its neighbours

=

G.A. Lunter, I. Miklés, Y.S. Song, J. Hein (2003) An efficient algorithm for statistical multiple alignment
on arbitrary phylogenetic trees. J. Comp. Biol. 10(6):869-889.
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HEH HHH EH HEH HHH EHB HEH HHH EHB

1 4
AG ACG T AG ACG T2 AG ACG TA

AG ACG TA AG ACG TA AG A ACGA TA
A-G. A-.G. A.G.
ACG - ACG -
.TaA ..TA

BHHHNB BHHHNB

HHHEHE EHBEN

AGA ACGA TAT AGA ACGA TAT AGAT ACGA TAT
A-GARA. A-GAA . A.GAA_T
ACG - A - ACG - A - ACG-A--
ST ST ... .T.

TKF91: states of hidden Markov chain are the Sets Of Active Nodes (soans).

Psk) = > ple)a(e)Prk—ve)i(e,h)
(Re) : S=[R.e]
where
k . Multi-index of Positions in sequences at leaves
S=[R,e] : tihl e turns soan S into soanR

Ps(k) : Pr(sequences up to k are generated and end there)

p(e) = Pr(indel history of e)

g(e) = Pr(no inserts at nodes in e)
Pe, k) = Pr(e emits base given in data types at k)

ve € {0,1}" : indicates postions in leaf-sequences to which e emits

TKF91: states of hidden Markov chain are the Sets Of Active Nodes (soans).

Transfer this to FID or TKF92 (fragmentation may change from edge to edge)
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e D. Metzler, R. Fleifiner, A. Wakolbinger, A. von Haeseler (2005) Stochastic insertion-deletion
processes and statistical sequence alignment.

e D. Metzler, R. Fleifiner (2007) Sequence Evolution Models for Simultaneous Alignment and Phy-
logeny Reconstruction.

state space: edge-labellings with {B, H, e, b, h}.

59 B

labeling 1 H 9 E
H

tihl

tihl = tree indexed heirs line

Example: 3-leaved tree

TKF91: 23 = 8 possible sets of active nodes

TKF92/FID: 5% = 125 possible labellings, 41 of them are relevant

When changing the tree topology...

NN

...keep alignments of exterior sequences fixed. (TKF91: 32 SOANS; FID: 437 relevant labellings)

Why Statistical Alignment is Important

e Over-optimization of alignments can bias your analysis.

e Without statistical alignment methods, like Bayesian tree sampling and bootstrapping will be by
far to optimistic about the uncertainty in phylogeny inference.

e Statistical alignment allows you to use the information contributed by insertions and deletions.

12.4 Software for joint estimation of phylogenies and alignments

BAli-Phy

http://www.bali-phy.org/

References

[RS05] B.D. Redelings, M.A. Suchard (2005) Joint Bayesian Estimation of Alignment and Phylogeny
Systematic Biology 54(3):401-418

[SRO6] M.A. Suchard, B.D. Redelings (2006) BAli-Phy: simultaneous Bayesian inference of alignment
and phylogeny Bioinformatics 22:2047-2048

[RS07] B.D. Redelings, M.A. Suchard (2007) Incorporating indel information into phylogeny estimation
for rapidly emerging pathogens. BMC' Evolutionary Biology 7:40
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pairHMM in BAIli-Phy
The alignment consists of a geometically distributed number of fragments. It is generated according
to the pairHMM

1-¢
€
-

with
5(t) = 1 — e-M/(1-2),

D)0

MCMC steps in BAli-Phy

Parts of the pairwise alignments along branches of the current tree are re-sampled. Felsenstein wild-
cards are used for the nucleotide or amino acid types, i.e. probability distributions conditioned on
the sequences at the tips of the tree.

SPR steps for updating the tree.

After an SPR step a pairwise alignment along the new branch is sampled. For efficiency, it keeps
the alignments within each of the two partial trees fixed.

Statistical alignment software StatAlign
StatAlign https://statalign.github.io/

1.
2.
3.
4.

simultaneous statistical alignment and phylogeny reconstruction
optionally also simultaneous RNA secondary structure prediction
extension StructAlign can account for protein or RNA secondary structure prediction

provides a graphical user interface where you can watch the changes in the alignment and the
phylogeny

References

[NMLHO8] A. Novak, I. Miklés, R. Lyngsg, J. Hein (2008) StatAlign: an extendable software package for joint Bayesian estimation

of alignments and evolutionary trees. Bioinformatics 24(20): 2403-2404

[AEG+13] Arunapuram P, Edvardsson I, Golden M, Anderson JW.J, Novak A, S6késd Z and Hein J (2013) StatAlign 2.0: Com-

bining statistical alignment with RNA secondary structure prediction. Bioinformatics 29(5): 654—655

[HCN+19] Herman JL, Challis CJ, Novék A, Hein J and Schmidler, SC (2014) Simultaneous Bayesian estimation of alignment and

phylogeny under a joint model of protein sequence and structure. Molecular Biology and Evolution 31(9): 2251-2266

Some of the things you should be able to explain:

Why and how can optimized alignments bias a phylogeny analysis?
Advantages of statistical alignment.
What is a pairHMM?

How is dynamic programming used in alignment and why are hidden Markov structures a prereq-
uisite for this?

What model assumptions equip insertion—deletion models with a hidden Markov structure, also in
the case of longer indels?

Approaches for multiple statistical alignment and their complexity.
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13 Tests for trees and branches (extra material; not part of
WS21/22 course)

13.1 The Kishino—Hasegawa (KH) test
Application Example

References

[HHB+03] J. Harshman, C.J. Huddleston, J.P. Bollback, T.J. Parsons, M.J. Braun (2003) True and
False Gharials: A Nuclear Gene Phylogeny of Crocodylia Systematic Biology 52:386—402
https://doi.org/10.1080/106351560390197028

o KH test with new data: has one tree significantly higher

Classical Tree True Gharials~  Tree based likelihood than the other?
based on .
Morphology: False Gharials\"" MPNA: e Nuclear DNA from 8 crocodylian and 6 avian species
Dwarf Crocodiles
Crocodiles o Result: the tree with the true and false gharials grouped
Alligators together has significantly higher likelihood for the nu-
Caimans clear data.

The KH test compares two given trees. The null hypothesis is that differences in their likelihoods are
only due to “sampling error”, i.e. the mutations that randomly occurred at the sites in our dataset.Several
versions of the KH test exist, one of them is as follows:

e Given an alignment of length S let for each k£ < S be égk) and Z(Qk) the log-likelihoods of the two
trees for the k-th column of the alignment.

o define 5, = ¢{* — ¢V

T \2 —
e estimate the variance of all §* by 52 = Z’“(gl”ijlé’), where §_ is the mean over all .

e Under the null hypothesis (and model assumptions like independence of sites etc.), the log likelihood-
ratio £, — {5 is normally distributed with mean 0 and variance S - o2.

Hence, reject the null hypothesis on the 5% level if [¢; — £5| > 1.96 - /S&

(other variants of the test use log likelihood-ratios of bootstrapped trees instead od site-wise log likelihood-
ratios)

Note that the selection of trees to be tested must be independent from the data that is used in the
KH test!

If one of the trees has been selected because of its high likelihood for this dataset, the other tree will
be rejected too often!

To apply the KH test to more than two trees, some multiple-testing correction is needed.

Basic version does not account for variation between genomic regions (ILS etc..). But could be done
for regions like for sites.

13.2 The Shimodaira—Hasegawa (SH) test

Application example
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References

[MTW20] Murahwa, A.T., Tshabalala, M., Williamson, A.-L. (2020) Recombination Between High-Risk
Human Papillomaviruses and Non-Human Primate Papillomaviruses: Evidence of Ancient
Host Switching Among Alphapapillomaviruses J Mol Evol 88: 453-462 https://doi.org/
10.1007/s00239-020-09946-0

e Genomic regions with evidence of recombination
e Are trees for these regions significantly different from tree for rest of the genome?

e (Be cautious: is evidence of recombination independent of phylogenetic signal?)

References

[1] Shimodaira H, Hasegawa M (1999) Multiple Comparisons of Log-Likelihoods with Applications
to Phylogenetic Inference Molecular Biology and Ewvolution 16 (8): 1114-1116 https://doi.
org/10.1093/oxfordjournals.molbev.a026201

e Assume that a set of trees is given that includes the true tree.

e Again, the choice of the set of trees must be independent of the data. The null hypothesis is that
differences in the likelihoods of the trees are only due to “sampling error”.

SH-Test
1. Make R bootstrap samples from the S sites and
compute the log likelihood ¢, , for each tree ¢ r
in the set and each bootstrapped data set 7. t ] 1 ) 3 . R
5 1 —R 1] 4 ba|ba | big| ... | g
2 Bup =iy = 7 2= o 2| 4 log | log | lag | ... | lar
3. Dt r o= INaXg ES’T — Et,r 3 Ed 6371 83’2 63’3 - ES’R

)

4. A 95 % confidence range of trees consists of
that trees ¢ for which more than 5 % of the T|tr bra | bro | trs | .- | lrr
D, are larger than max, {; — {;.
Note that this includes some multiple testing correction, but not completely.

13.3 The SOWH test
Application Example

References

[AGD11] Almeida, F.C., Giannini, N.P., DeSalle, R. et al. (2011) Evolutionary relationships of the old world
fruit bats (Chiroptera, Pteropodidae): Another star phylogeny? BMC Ewvol Biol 11:281 https:

//doi.org/10.1186/1471-2148-11-281
Jamaican P t

ca. 50 Old World
Fruit Bat
specis

4 Old World
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ca. 50 Old World

4 Old World

Jamaican
Fruit Bat

four outgroup
species

e data: sequenced 8 genes (4 mt, 4 nuclear), complemented by data from genbank

e “The SOWH test confirmed that basal branches’ lengths were not different from zero, which points to closely-spaced cladogenesis as the most
likely explanation for the poor resolution of the deep pteropodid relationships.”

e caution: In general don’t draw conclusions from non-significance!

e But they also state: “Simulations suggest that an increase in the amount of sequence data is likely to solve this problem.”

References

[GAROO] N. Goldman, J.P. Anderson, A.G. Rodrigo (2000) Likelihood-Based Tests of Topologies in Phylogenetics
Syst. Biol. 49(4): 652670

[SOWH] D.L. Swofford, G.J. Olsen, P.J. Waddell, D.M. Hillis (1996) Phylogenetic inference in: D.M. Hillis,
C. Moritz, B.K. Mabe (eds.) Molecular Systematics, Sinauer.

To test whether a tree Ty can be rejected (Ho: “Tp is the true tree”), use as a test statistic the difference
0 = Ly — €o between the maximum log likelihood £rr and the log likelihood £y of Tp.

Simulate many datasets d by parameteric bootstrapping using 7y and the corresponding estimates of all
parameters (mutation rates, branch lengths etc.).

Let ¢o,q be the log likelihood of Ty based on bootstrap data set d with new estimations for all parameters,
and let arr,q be the same maximized over all tree topologies.

Use all g = €arr,a —Lo,q (for all d) to estimate the distribution of the test statistic § under the null hypothesis
that Ty is correct.

Reject Tp on the 5% level if less than 5% of the d4 are larger than ¢.

References

[B02] T.R. Buckley (2002) Model Misspecification and Probabilistic Tests of Topology: Evidence from Empirical
Data Sets Syst. Biol. 51(3): 509-523

Shows examples where SOWH test and posterior probabilities falsely reject too many trees because of using
the wrong substitution models. The SH test does not have this problem and rather tends to be too conservative.

Uses real data with phylogeny more or less well known.
Advantage: Realistic because all substitution model used in simulation study are somehow idealized.

Drawbacks: Only a few such datasets are available and results may not be representative. In principle, the
assumed phylogenies could still be erroneous.

13.4 Anisimova and Gascuel’s approximate Likelihood-Ratio Test (aLRT)

References

[AG06] M. Anisimova, O. Gascuel (2006) Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate,
and Powerful Alternative Syst. Biol. 55(4): 539-552

e We want to show significance of a particular branch in the tree, i.e. the null hypothesis is that this branch
has length 0.

e We assume, however, that with any other respect, the topology of the tree is true.

o A likelihood-ratio test:

— Hy: Length of this branch is 0.
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— H;: Length of this branch > 0.
e Thus, we have to approximate the distribution of the log likelihood-ratio under the null hypothesis.

Ususally, if we have a model M; with n — d parameters nested in a model My with n parameters, then
under the null-hypothesis that the data come from the more simple model M, the double log likelihood ratio is
approximately chisquare-distributed with d degrees of freedom,

Lp(M:
£A41 <2 . log M) = ‘CMl (2 . (IOgLD(Mg) - IOgLD(Ml))) ~ X?i»
Lp(M)
where the likelihood of a model Lp(M;) is maximum likelihood obtained by optimization over all parameters of
the model.

yA y=x

x Y

This only works if the model M; is in the inner of the model M>. In our case, the null hypothesis is at the
boundary of the more general model, because the branch length 0 is on the boundary of the set of allowed branch
lengths.

Therefore, the following correction proposed: The distribution of 2 - (log Lp(M2) — log Lp(My)) is approxi-
mated by a distribution that puts weight 0.5 on 0 and half of the density of x7 on all positive values.

Anisimova, Gascuel (2006): Let ¢1 be the log likelihood of the ML tree, ¢y that of the topology with the
length of the focal branch removed, and ¢2 > ¢3 the log likelihoods of the two topologies where the focal branch
is removed in an NNI step and (see Figure 1 in Anisimova, Gascuel (2006))[1.5ex]

A

D
For more robustness, 2(¢1 —£2) < 2(¢1 — o) is used as a test statistic. (Maybe the idea is that the null hypothesis
should be that one of the other fully resolved trees is right.)[1.5ex] The likelihood of a topology is the maximum
likelihood of a tree with this topology. Thus, each value £y, £2, 3 needs own optimization of all branch lengths.
Here, Anisimova and Gascuel use an approximation by optimizing only the four neighboring branches of the
focal branch and its alternative branch in the case of ¢3 and ¢s3.[1.5ex] If the null hypothesis is true, any of the
three possible fully resolved topologies can get the highest likelihood. Therefore, a multiple-testing correction is
needed. The Bonferroni correction is applied, which means that the a-level is replaced by its third.
Anisimova and Gascuel conclude from simulations that

e Approximate likelihood-ratio test (aLRT, i.e. with optimization over only five branches) has accuracy and
power similar to standard LRT.

e aLLRT is robust against mild model misspecifications.
e aL.RT was slightly more accurate w.r.t. 5% type I error than ML bootstrap.

e In contrast to wide-spread belief, bootstrap was a bit too liberal, i.e. its type I error rate was higher than
the significance level.

e Bayesian methods were a bit too conservative in this simulation study.
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A Basic concepts from probability theory

This is a very quick overview of some basic concepts from probability theory.
I give a more thorough introduction in my videos and handouts of the |statistics course, see
http://evol.bio.lmu.de/_statgen/StatEES/20SS/Videos/StatEES_3a.mp4
http://evol.bio.lmu.de/_statgen/StatEES/205S/Videos/StatEES_3b.mp4
http://evol.bio.lmu.de/_statgen/StatEES/stochbasics_handout.pdf

And of course there are many excellent textbooks and other internet resources.

A.1 Events and their probabilities

Event in probability is something that takes place with a certain probability, but is not necessarily associated to
a certain time or place.
Examples of events:

o A ={The next time I role a dice, it is a six.}

e B ={The next time I role a dice, the result is an even number.}

e There are five segregating sites in this alignment.

e No mutation happend in this genomic region.
Conditional Probability of A, given B:

P
PralB) = 1273

Pr(A,B) = Pr(B) - Pr(A | B)

f(A,B) 1/6 1
r(B)

Two events A and B are stochastically independent if and only if
Pr(A, B) = Pr(A) - Pr(B).
If A and B are independent, then Pr(B | A) = Pr(B) and Pr(A | B) = Pr(4).

Pr(B) = Pr(A,B)+Pr(A° B)
Pr(A)-Pr(B | A) +Pr(A°) -Pr(B | A7)
Pr(B | A)

Pr(A)

A.2 Law of total probability

Law of total probability
If one and only one of the events Ai, As,..., A, will take place, then

Pr(B) = ZPr(Ai) “Pr(B | A).
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Law of total probability in Felsenstein’s prunig algorithm

Pr(D) = Pr(A) - Pr(D|A) + Pr(C) - Pr(D|C) + Pr(G) - Pr(D|G) + Pr(T) - Pr(D|T)

A?2C?G?T?

A.3 Random Variables and their Distributions

Examples for random variables:

Roll a dice two times

X: result of the first throw

Y result of the second throw

S=X+Y
M = number of mutations in some genomic region
N = number of mutations on a branch of a tree

Iy indicator variable of some event U:

Iy =1 if event takes place

Iy = 0 if event does not take place

B = the nucleotide type A, C, G or T of the next mutation

The set of possible values of a random variable is calles state space.

Distribution of a random variable
If X is a random variable with discrete state space S (e.g. a finite set like {A,C,G,T} or N or Z), the
distribution of X is a function that assigns to each subset U C S the probability

Pr(X €U)= Y Pr(X =k).
keU

If Z is a random variable with a density f on a continuous state space R (e.g. R or Ry), the distribution of
Z is a function that assigns to each measurable subset U C R the probability

Pr(ZeU)= / f(z)dz,
U
where measurable means that the integral is defined.

A.4 Expected Values

If the random variable Y has a discrete state space S C R:

EY => k-Pr(Y =k)

kesS

If Z is a continuous random variable with state space R C R and probability density f:

IEZ:/Rm~f(:E) dz
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(More generally also works if S C R™.) If A and B are random variables and c¢ is a (non-random) number,
the expectation value is linear. This means:

E(A+B) = E(A)+E(B)
E(c-A) = c¢-E(A)

If A and B are stochastically independent, then
E(A- B) = E(4) - E(B),

but note that this is in general not true if A and B are stochastically dependent.

Law of total expectation
Conditional expectation of a discrete random variable X given an event A:

E(X | A) =) k-Pr(X =k| A).
k
If one and only one of the events Aq, Ao, ..., A, will take place, then
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