
COMPUTATIONAL POPULATION GENETICS (D. METZLER) — EXERCISE SHEET 4

1. Assume you simulate an ancestral recombination graph (ARG) for a n whole chromosomes
sampled from a neutral, constant-size population (with positive recombination rate). From
all the trees that this ARG assigns to single nucleotide positions, you choose four:

Tree A is the tree at position 1000.

Tree B is the next tree after Tree A, that is, you move on from position 1000 until there is
a recombination event somewhere on a branch of tree A. Tree B is then the tree of the
nucleotide position right after the recombination event.

Tree C is the 100th tree in the list of all trees appearing from left two right, that is, the tree
after the 100th recombination event (where only recombination events that effect the
current tree are counted).

Tree D is the next tree after Tree C, that is, you move on until there is a recombination event
somewhere on a branch of tree C. Tree D is then the tree of the nucleotide position right
after the recombination event.

Which of the following statements (a) to (k) are true? Substantiate your answers either
logically or with computer simulations. (Start with n = 2 and n = 3). If you rely on
computer simulations, try to find logical explanations for your observations.

(a) The probability distribution of Tree A is that of a standard Kingman coalescent.

(b) The probability distribution of Tree B is that of a standard Kingman coalescent.

(c) The probability distribution of Tree C is that of a standard Kingman coalescent.

(d) Tree B has the same probability distribution as tree A.

(e) The expected total branch lenght of A is smaller than that of B.

(f) The expected total branch lenght of B is smaller than that of A.

(g) Tree C has the same probability distribution as tree A.

(h) The expected total branch lenght of A is smaller than that of C.

(i) Tree D has the same probability distribution as tree C.

(j) The expected total branch lenght of C is smaller than that of D.

(k) The expected total branch lenght of D is smaller than that of C.

2. You want to estimate θ = 4Neµ and the population growth rate g for a population from
which you have sampled genetic data and calculated two summary statistics s and r. The
values for the original data are s0 = 8.2 and r0 = 4.6. To carry out an ABC analysis you
simulated five datasets according to the population model with parameter values that you
sampled from your prior and calculated the summary statistics. The results were as follows:

θ g s r
5.3 1.6 5.2 5.8
8.4 1.2 7.9 5.6

12.6 0.8 8.9 4.6
3.1 1.4 5.7 8.4

15.0 1.1 10.1 1.6
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Do the following exercises without any ABC software package. (But you can of course use
general R functions.)

(a) The very classical ABC method is applied to the data, with the euclidean distance as a
distance measure on the summary statistics (without normalization) and a threshold of
2. Which combinations of parameter values are in the ABC posterior sample?

(b) ABC with local regression correction is applied with an Epanechnikov kernel with
δ = 4 for the local regression part. Which combinations of parameter values are used
for the local regression and with which weights?

(c) Calculate for each of the two summary statistics the intercept and the slopes of the
local-regression corrections. (Hint: you can do this either with matrix algebra as shown
in the lecture or by using the lm command in R, which has the optional parameter
“weights”.)

(d) Use the results of the local regression to calculate the local-regression corrected values
of the ABC-sampled parameter combinations.

(e) Calculate the approximated posterior distribution density of θ at the value 10 with the
above local-regression ABC results and a bandwidth of ∆ = 2.5.

(f) Visualize the approximated posterior distribution density function of the population
growth rate g with the above local-regression ABC results and a bandwidth of ∆ =
0.25.

3. Two populations emerged from a recent split of an ancestral population. There may still be
a little amount of gene-flow between the populations.

(a) Explore for different sizes of datasets (start with 10 independent gene loci) how ac-
curately ABC and at least one of IM/IMa, Lamarc and Jaatha can estimate the model
parameters θ for the ancestral and the two descendant populations, time of populations
split, migration rates and population growth rates.

(b) How can we deal with recombination within loci? Does recombination within loci
increase or decrease the accuracy of parameter estimations?

4. Simulate datasets of sequence data sampled from two populations that stem from a recent
joint ancestral popultion and compute the JSFS of the data (e.g. with the R package coala).
Explore (e.g. by averaging over many simulations) how the expected values of the entries of
the JSFS depend on parameters like the time since the split, rates of geneflow between the
population, population size ratios and population growth rates.

5. Four sequences have been sampled for each of two populations, and additionally an outgroup
sequence from a closely related different species. Only sites that are segregating within the
two populations are shown here:

sequence_1 pop_1 ACGGCAGCGAATGGGCTCA
sequence_2 pop_1 ACGATAGCGGGTGGTCCTA
sequence_3 pop_1 AGGGCAACGGGTGTTCCTA
sequence_4 pop_1 AGCGCAACGGGCGTTCTTG
sequence_5 pop_2 ACCGCGATAGGCGTTCTTA
sequence_6 pop_2 GCCGCGATAGGCGTTCCTA
sequence_7 pop_2 ACGGCGATAAGCGTTCTTA
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sequence_8 pop_2 ACGGCGATAGGCGTTTTTG
outgroup AGGGTGGCAGGCGTTCTTA

(a) Calculate the JSFS of this dataset.

(b) Calculate Tajima’s π and Watterson’s θW from the JSFS.

(c) Calculate separately for each of the two populations Tajima’s π and Watterson’s θW
from the JSFS.

6. Implement ABC-PMC in R for a demographic model like in the above exercise and explore
the performance of this approach. (For the actual ABC steps you can use the abc command
from the abc package.)

3


