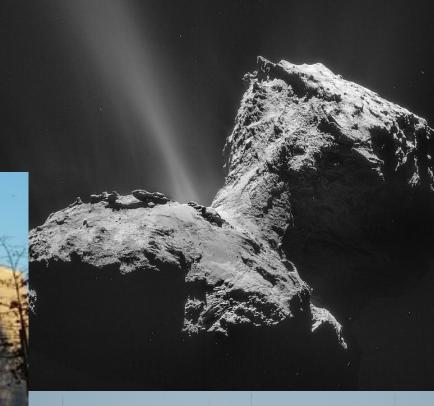


# MPI für Sonnensystemforschung



- on the North Campus in Göttingen since 2014
- departments: planetary science, sun, stellar interiors
- fundamental solar system science with space missions, laboratory work, computer simulations, theory





### **Overview**

- 1 Introduction
- 2 Induction
- **3 Fundamental Equations**
- 4 Dimensionless Equations and Parameter

### 1.1 Magnetic Fields are Useful

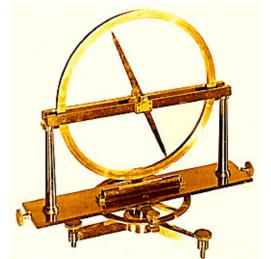


Magnetic fields have been of interest for a long time already!

# 1.2 Göttingen Contribution



Carl Friedrich Gauß, 1777-1855



*Inklinatorium* 

Gaußhaus





Determination of absolute value

Fundamental steps in measuring and understanding Earth's magnetic field

# 1.3 Spherical Surface Harmonics

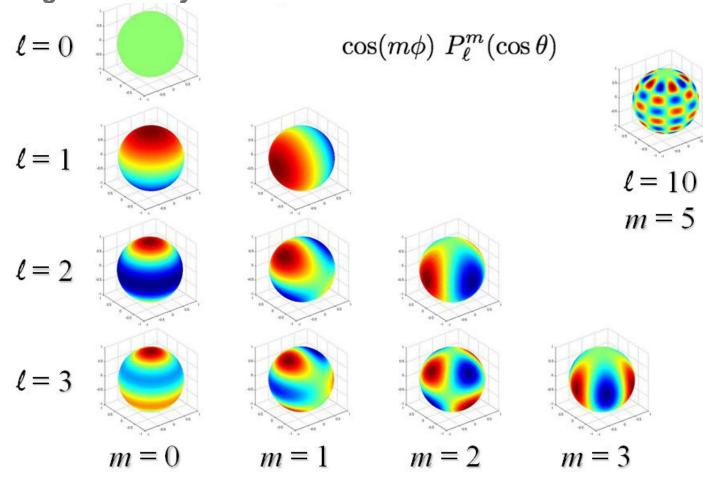
$$\vec{B} = -\nabla V$$

$$\nabla^2 V = 0$$

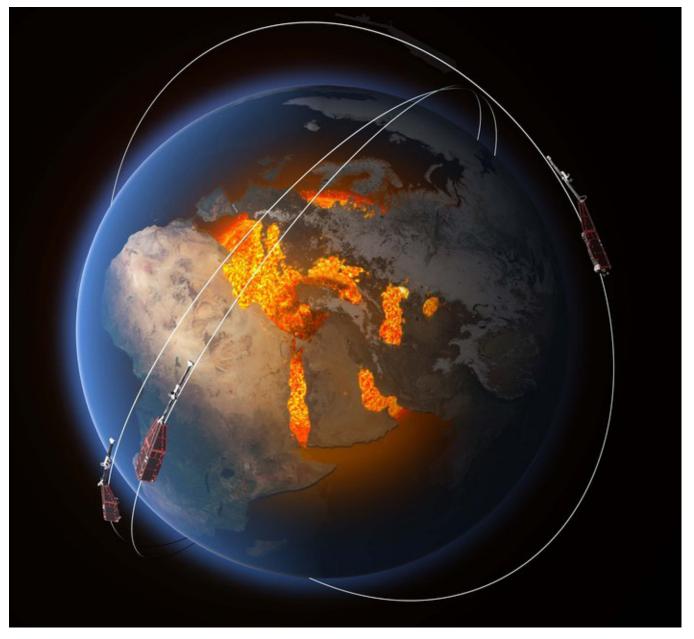
$$V = r_s \sum_{l=1}^{\infty} \sum_{m=0}^{l} \left(\frac{r_s}{r}\right)^{l+1} \left(g_l^m \cos(m\phi) + h_l^m \sin(m\phi)\right) \hat{P}_l^m(\cos\theta)$$

Describing magnetic field in a source free region.





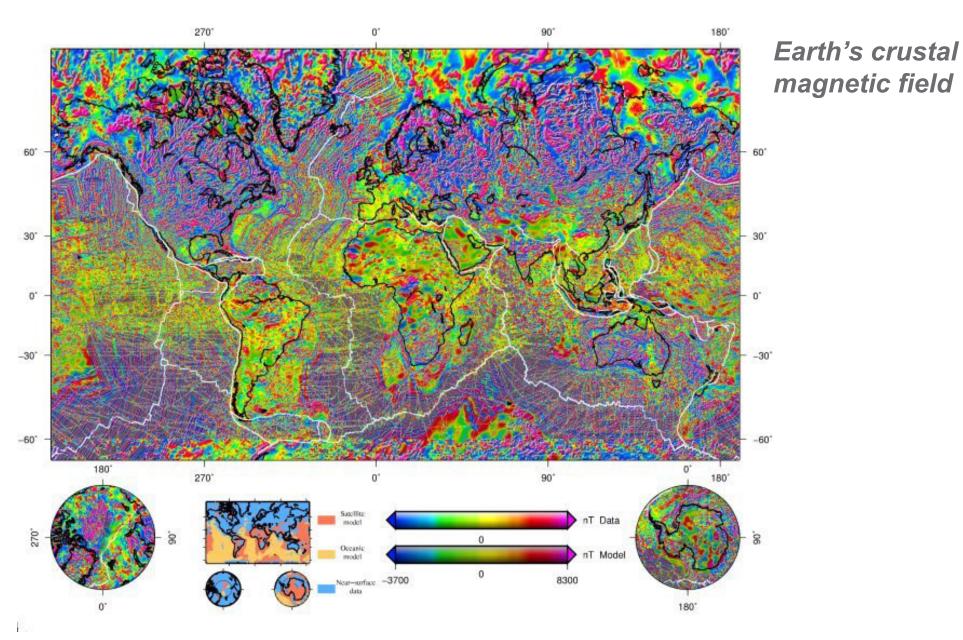
### 1.4 Measuring Earth's Magnetic Field



ESA's Swarm Mission

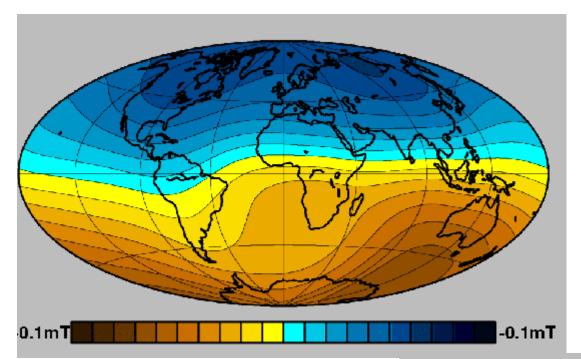
Global coverage is key for a good spherical harmonic model.

### 1.5 Crustal Field

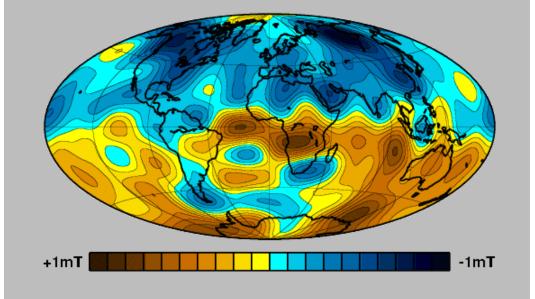


Because of the crustal magnetisation we only know the interior field up to degree 14 (or so).

#### **1.6 Downward Continuation**

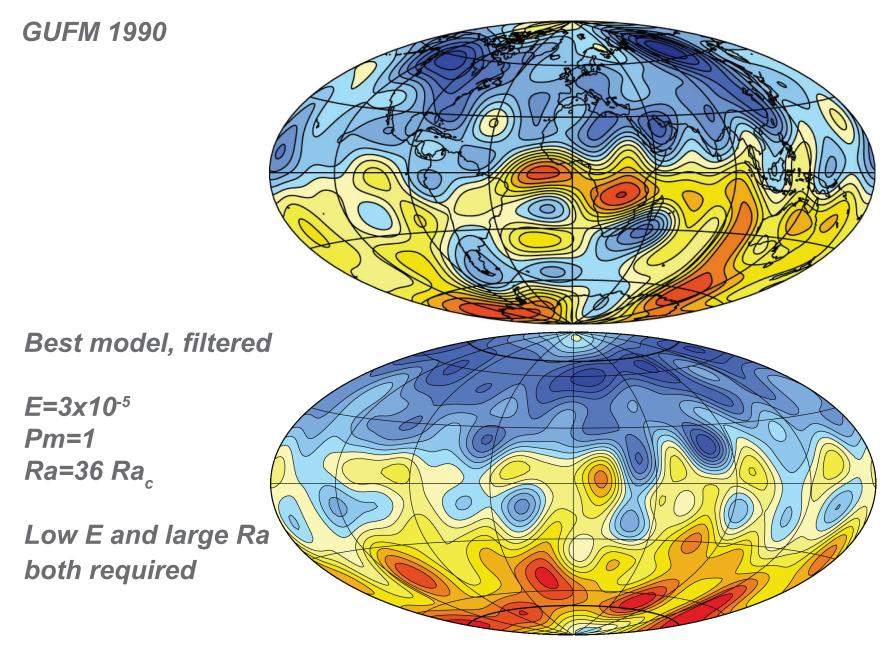


GUFM1 field for 1990 at Earth's surface and at the core-mantle boundary.



Because of the crustal magnetisation we only know the interior field up to degree 14 (or so).

### 1.7 Comparison with Models



Selected snapshot of my personal best model at degree 14.

### 2.1 Technical Dynamos

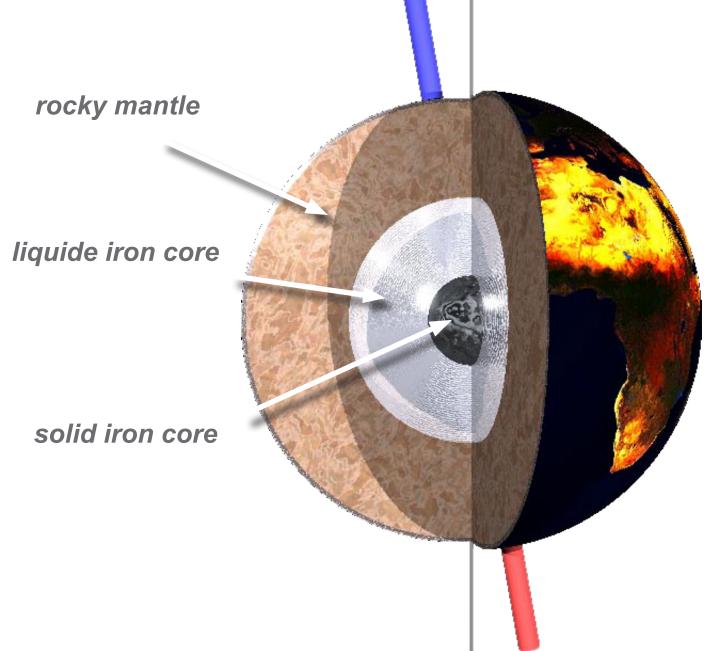






- Necessary ingredients for induction:
  - 1) electrically conducting material = copper cabels, coils, ...
  - 2) motion = rotation
  - 3) suitable geometry = complex combination of cabels, coils, ...

2.2 Earth's Homogeneous Dynamo



- Earth's magnetic field is created by a dynamo operating in the liquid core.
- Instead of a complex structure, this dynamo requires a complex flow!

### 2.3 Ohm's Law and Induction

- Dynamos are driven by magnetic induction.
- The essence of induction is formulated by Ohm's law:

$$\mathbf{j} = \sigma \left( \mathbf{U} \times \mathbf{B}_0 + \mathbf{E} \right)$$

with current density j , electrical conductivity  $\sigma$  , flow U , initial magnetic field  $B_0$  , and electric field E .

- Essential ingredients:
  - 1) electrical conductor
  - 2) motion
  - 3) initial magnetic field

# 2.4 Deriving the Induction Equation

lacksquare Divide by  $\sigma$  and take the curl:

$$\nabla \times \left(\frac{1}{\sigma}\mathbf{j}\right) = \nabla \times \left(\mathbf{U} \times \mathbf{B}_0\right) + \nabla \times \mathbf{E}$$

Use Ampere law and Maxwell-Faraday law of induction:

$$\mathbf{j} = \frac{1}{\mu_0} \nabla \times \mathbf{B}$$
  $\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B}$ 

lacksquare Assume that the induced field can replace the initial field, use  $~\lambda=1/(\sigma\mu_0)$ 

$$\frac{\partial}{\partial t} \mathbf{B} = \nabla \times (\mathbf{U} \times \mathbf{B}) - \nabla \times \lambda \nabla \times \mathbf{B}$$

• Assume homogeneous diffusivity  $\lambda$  and use  $\nabla \cdot \mathbf{B} = 0$ 

$$\frac{\partial}{\partial t} \mathbf{B} = \nabla \times (\mathbf{U} \times \mathbf{B}) + \lambda \nabla^2 \mathbf{B}$$

### 2.5 Induction Equation

$$\frac{\partial}{\partial t} \mathbf{B} = \nabla \times (\mathbf{U} \times \mathbf{B}) + \lambda \nabla^2 \mathbf{B}$$

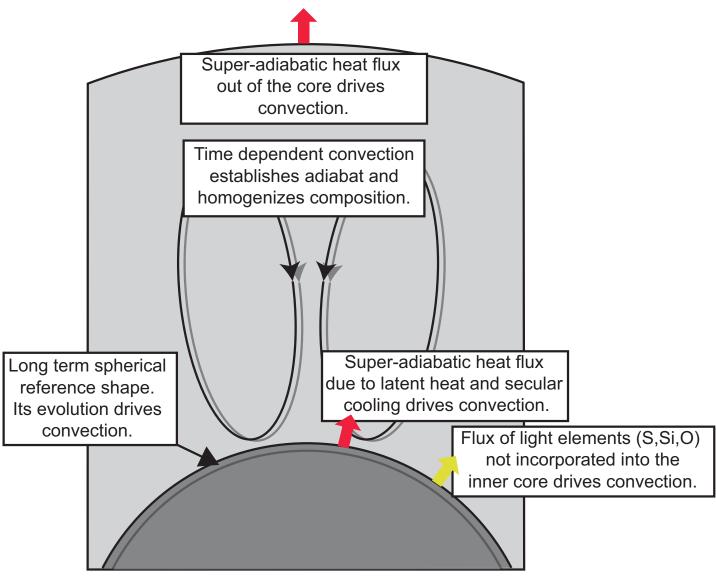
Ratio of induction to dissipation

$$\frac{\text{induction}}{\text{dissipation}} = \frac{\nabla \times (\mathbf{U} \times \mathbf{B})}{\nabla \times \lambda \nabla \times \mathbf{B}} \approx \frac{UD}{\lambda} \frac{\ell}{D} = \text{Rm} \frac{\ell}{D}$$

Magnetic Reynolds number (VERY IMPORTANT!):

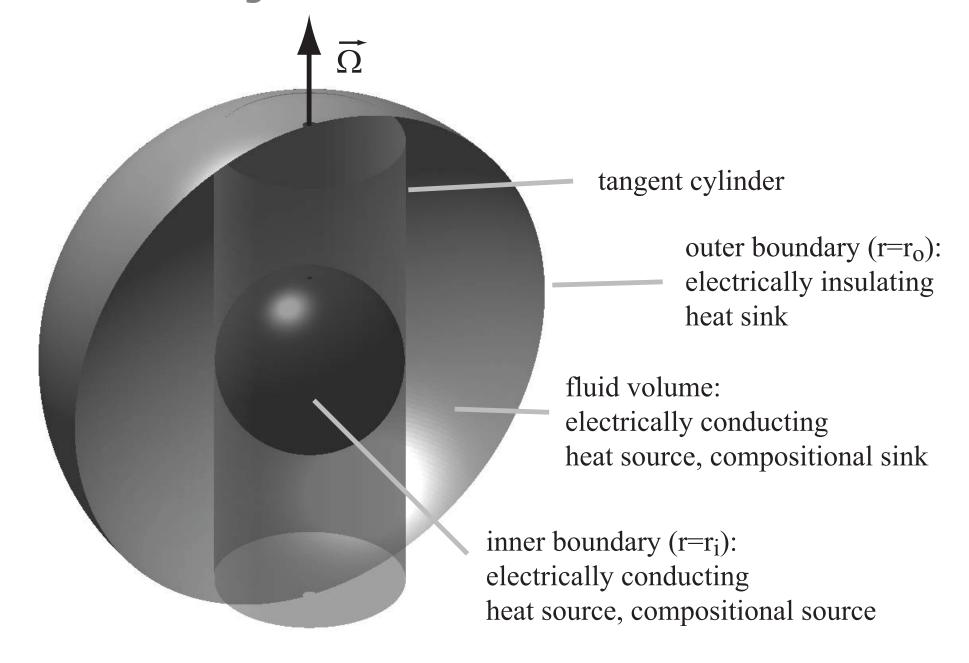
$${
m Rm}=rac{UD}{\lambda}$$
 Earth 10 $^{
m 3}$  Jupiter 10 $^{
m 6}$  DNS 10 $^{
m 3}$  minimum 10 $^{
m 2}$ 

# 3.1 Driving the Dynamo



- Ocore convection is driven by the (super-adiabatic) heat flux and by light elements (O) emanating from the inner-core boundary.
- Earth's mantle imposes heat flux amplitude and pattern.

### 3.2 The Model Geometry



Rotating spherical shell filled with viscous and conducting fluid.

### 3.2 Disturbances

Solve for disturbance (prime) around a background state (tilde)

$$\epsilon = \frac{T'}{\widetilde{T}} \approx \frac{\rho'}{\widetilde{\rho}} \approx \dots \ll 1$$

The primary force balance in hydrostatic:

$$\frac{\partial \widetilde{p}}{\partial r} = \widetilde{\rho}\widetilde{g}$$

Gradients given by material properties:

$$\frac{1}{\widetilde{T}}\frac{\partial\widetilde{T}}{\partial r} = \left(\frac{\partial T}{\partial p}\right)_{S}\frac{1}{\widetilde{T}}\frac{\partial\widetilde{p}}{\partial r} = \frac{\alpha}{c_{p}}\widetilde{g} \qquad \qquad \frac{1}{\widetilde{p}}\frac{\partial\widetilde{p}}{\partial r} = \beta_{S}\frac{\partial\widetilde{p}}{\partial r} = \beta_{S}\widetilde{p}\widetilde{g}$$

Characterized by Dissipation number of Compressibility parameter:

$$Di = \frac{\alpha d}{c_p} \tilde{g} \qquad Co = d\beta \tilde{\rho} \tilde{g}$$

Both vanish in the Boussinesq limit.

# 3.3 Navier-Stokes Equation

$$\frac{\partial \mathbf{U}}{\partial t} = -\nabla p - \mathbf{U} \cdot \nabla \mathbf{U} + 2\mathbf{\Omega} \times \mathbf{U} + \alpha_C g_o \left( r/r_o \right) \rho \hat{\mathbf{r}} + \frac{1}{\widetilde{\rho}\mu} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} + \nu \nabla^2 \mathbf{U}$$

- Solve in corotating reference frame.
- Assume Boussinesq limit, which yields simplified continuity equation:

$$\nabla \cdot \mathbf{U} = 0$$

lacksquare Simplified equation of state with thermal expansivity lpha .

$$\rho = \alpha \ \widetilde{\rho} \ T$$

Assume linear gravity (homogeneous density):

$$\mathbf{g} = (r/r_o) g_o \,\hat{\mathbf{r}}$$

Assume Newtonian viscosity.

# 3.4 Navier-Stokes Equation

$$\frac{\partial \mathbf{U}}{\partial t} = -\nabla p - \mathbf{U} \cdot \nabla \mathbf{U} + 2\mathbf{\Omega} \times \mathbf{U} + \alpha_C g_o \left( r/r_o \right) \rho \hat{\mathbf{r}} + \frac{1}{\widetilde{\rho}\mu} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} + \nu \nabla^2 \mathbf{U}$$

Relative viscous force

$$\frac{\text{viscous}}{\text{Coriolis}} = \frac{\nu \nabla^2 \mathbf{U}}{2\mathbf{\Omega} \times \mathbf{U}} \approx \mathbf{E} \frac{D^2}{\ell^2}$$

Ekman number

$$\mathrm{E}=rac{
u}{\Omega D^2}$$
 Earth 10<sup>-15</sup> Jupiter 10<sup>-18</sup> DNS 10<sup>-7</sup>

Depends on length scale, beware for example boundary layers

### 3.5 Relative Advective Force

$$\frac{\partial \mathbf{U}}{\partial t} = -\nabla p - \mathbf{U} \cdot \nabla \mathbf{U} + 2\mathbf{\Omega} \times \mathbf{U} + \alpha_C g_o \left( r/r_o \right) \rho \hat{\mathbf{r}} + \frac{1}{\widetilde{\rho}\mu} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} + \nu \nabla^2 \mathbf{U}$$

Relative advective force

$$\frac{\text{advection}}{\text{Coriolis}} = \frac{\mathbf{U} \cdot \nabla \mathbf{U}}{2\mathbf{\Omega} \times \mathbf{U}} \approx \frac{U}{\ell' \Omega} = \text{Ro} \frac{D}{\ell'}$$

Rossby number

$${
m Ro} = rac{U}{D\Omega} = {
m Re} \; {
m E}$$
 Earth 10-6 (10-2 for jets) 10-3 (10-2 for jets)

Transfers energy between different length scales

### 3.6 Relative Lorentz Force

$$\frac{\partial \mathbf{U}}{\partial t} = -\nabla p \ - \mathbf{U} \cdot \nabla \mathbf{U} + 2\mathbf{\Omega} \times \mathbf{U} + \alpha_C g_o \left( r/r_o \right) \ \rho \ \hat{\mathbf{r}} + \frac{1}{\widetilde{\rho}\mu} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} + \nu \nabla^2 \mathbf{U}$$

Relative Lorentz force

$$\frac{\text{Lorentz}}{\text{Coriolis}} = \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{2\rho\mu\mathbf{\Omega} \times \mathbf{U}} \approx \frac{B^2}{\widetilde{\rho}\mu\Omega\ell U} = \Lambda_T \frac{\lambda}{\ell U} = \frac{\Lambda_T}{\text{Rm}} \frac{D}{\ell} = \Lambda$$

Traditional Elsasser number

$$\Lambda_T = rac{B^2}{\widetilde{
ho}\mu\lambda\Omega} egin{array}{cccc} {
m Earth} & {
m 1} & {
m Jupiter} & {
m 10^2} & {
m DNS} & {
m 10^{ ext{-}1} ext{-}10^2} & {
m The second of the second o$$

- Hard to estimate for planets!
- See for example Soderlund et al. 2012, 2015; Calkins 2018

### 3.7 Proxy for Lorentz Force

- Elsasser number of order 1 reasonable to achieve magnetic field saturation!
- Traditional Elsasser number often not a good estimate

$$\Lambda_T = \frac{B^2}{\widetilde{\rho}\mu\lambda\Omega}$$

Dynamic Elsasser number works better (in simulations)

$$\Lambda = \frac{\Lambda_T}{\mathrm{Rm}} \frac{D}{\ell}$$

Alfven Mach number <1</p>

$$M_A = rac{\mathrm{U}}{\mathrm{U}_A} \qquad \qquad \mathbf{U}_A = rac{\mathbf{B}}{\sqrt{\widetilde{
ho}\mu}}$$

Energy ratio >>1

$$M = \frac{\mathrm{U}_A^2}{\mathrm{U}^2}$$

### 3.8 Buoyancy

$$\frac{\partial \mathbf{U}}{\partial t} = -\nabla p' - \mathbf{U} \cdot \nabla \mathbf{U} + 2\mathbf{\Omega} \times \mathbf{U} + \alpha_C g_o \left( r/r_o \right) \rho \hat{\mathbf{r}} + \frac{1}{\widetilde{\rho}\mu} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} + \nu \nabla^2 \mathbf{U}$$

Rayleigh number

$$Ra = \frac{\alpha g_o D^4 \Delta C}{\nu \kappa}$$

Hard to estimate for planets!

# 3.8 Heat Equation

In the Boussinesq limit the heat equation simplifies to

$$\frac{\partial T}{\partial t} + \mathbf{U} \cdot \nabla T = \kappa \nabla^2 T + q$$

with the thermal diffusivity

$$\kappa = \frac{k}{c_p \widetilde{\rho}}$$

lacksquare Drivers are heat through the boundaries and internal sources/sinks  $\,q\,$  .

### 4.1 Go Dimensionless

Chose appropriate scales:

$$[\tilde{\rho}] = \tilde{\rho}(r = r_o); \quad [\tilde{T}] = \tilde{T}(r = r_o); \quad [r] = r_o - r_i;$$
 $[t] = \frac{d^2}{\nu}; \quad [u] = \frac{\nu}{d}; \quad [B] = \sqrt{\mu_0 \lambda \tilde{\rho} \Omega}; \quad [p'] = \tilde{\rho}(r = r_o) \frac{\nu^2}{d^2}$ 

- Outer boundary reference density and temperature
- Shell thickness as length scale
- Viscous diffusion time as time scale
- Elsasser number scaling for magnetic field
- Velocity expressed as Reynolds number

# 4.1 Why Going Dimensionless?

- Reduces the number of parameters.
- Highlights the essential non-dimensional parameters.
- Highlights the essential physics.
- Highlights the essential regimes.
- Improves understanding.
- Allows for wider applicability.
- Scientific rather than engineer approach.

### **Dimensionless NS-Equation**

$$\tilde{\rho} \left( \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \, \boldsymbol{u} \right) = -\boldsymbol{\nabla} p' - 2\rho \boldsymbol{\Omega} \times \boldsymbol{u} + \alpha g_o T' \frac{\boldsymbol{r}}{r_o}$$

$$+\frac{1}{\mu_0}(\mathbf{\nabla}\times\mathbf{B})\times\mathbf{B}+\tilde{\rho}\nu\Delta\mathbf{u}$$

Rescaling and reordering:

$$\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \,\boldsymbol{u}\right) = -\boldsymbol{\nabla} p' - \frac{2}{E} \boldsymbol{e}_{\boldsymbol{z}} \times \boldsymbol{u} + \frac{Ra}{Pr} T' \frac{\boldsymbol{r}}{r_o}$$

$$+\frac{1}{EPm}(\boldsymbol{\nabla}\times\boldsymbol{B})\times\boldsymbol{B}+\Delta\boldsymbol{u}$$

Dimensionless NS-equation with dimensionless parameters

# **Other Dimensionless Equations**

Induction equation

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) + \frac{1}{Pm} \Delta \boldsymbol{B}.$$

Temperature equation

$$\frac{\partial T}{\partial t} + \mathbf{U} \cdot \nabla T = \frac{1}{\Pr} \nabla^2 T + q$$

Continuity equations

$$\nabla \cdot \boldsymbol{u} = 0, \quad \nabla \cdot \boldsymbol{B} = 0$$

### **Dimensionless Parameter**

| symbol         | definition                                   | standard                              | high end           | Earth      |
|----------------|----------------------------------------------|---------------------------------------|--------------------|------------|
| ${ m E}$       | $ u/(\Omega\ell^2)$                          | $3 \times 10^{-5}$                    | $10^{-7}$          | $10^{-15}$ |
| Pm             | $ u/\lambda$                                 | 1                                     | 0.1                | $10^{-6}$  |
| Pr             | $ u/\kappa$                                  | 0.1 - 1                               | 1                  | 1??        |
| ${\cal P}$     | $P/(\ell^2\Omega^3)$                         | $10^{-5}$                             | $10^{-7}$          | $10^{-12}$ |
| $\Lambda$      | $\mathrm{B}^2\sigma/(\rho\Omega)$            | 1 - 10                                | 10                 | 10         |
| Le             | $\mathrm{B}/(\rho^{1/2}\mu^{1/2}\Omega\ell)$ | $5 \times 10^{-3} - 3 \times 10^{-2}$ | $3 \times 10^{-3}$ | $10^{-4}$  |
| Rm             | $\mathrm{U}\ell/\lambda$                     | $10^2 - 10^3$                         | $10^{3}$           | $10^{3}$   |
| Re             | $\mathrm{U}\ell/ u$                          | $10^2 - 10^3$                         | $10^{4}$           | $10^{9}$   |
| Ro             | $\mathrm{U}/(\ell\Omega)$                    | $3 \times 10^{-3} - 3 \times 10^{-2}$ | $10^{-3}$          | $10^{-6}$  |
| $\mathrm{M}_A$ | $\mathrm{U}(\rho\mu)^{1/2}/\mathrm{B}$       | 0.2 - 2                               | $10^{-1}$          | $10^{-2}$  |

- All simulations are too viscous!
- Rayleigh number chosen to yield the desired regime.

### **Take-Home Messages**

- Study of the dynamo generated geomagnetic field has a long history.
- Dynamos rely on magnetic induction.
- They need fluid that is conducting enough and moves fast enough in a complex enough fashion.
- The mathematical formulations describes disturbances around an adiabatic, hydrostatic background state.
- For Earth we can use the Boussinesq approximation where the background temperature and density are assumed to be homogeneous.
- A dimensionless formulation is used where all physical properties ar collapsed into a few dimensionless parameters.
- Not all parameters can have realistic values in numerical simulations.