

MagIC Control

Johannes Wicht and Thomas Gastine (IPGP)

MagIC Input

Namelists

- 1. &grid for resolution
- 2. &control for control parameters and numerical parameters.
- 3. &phys_param for the physical parameters.
- 4. &B_external for setting up an external field contribution
- &start_field to define the starting fields.
- &output_control for defining the output.
- 7. &mantle for setting mantle parameters.
- 8. &inner_core for setting inner core parameters.

Numerical Grid


```
&grid
 n_r_{max} = 33, radial grid points in outer core
                   degree of Chebychev polynomials in outer core
             =33.
 n_cheb_max
                   max. spherical harmonic order
             =16,
 1_max
 m_m = 16
                   max. spherical harmonic degree
                    radial grid points in inner core
 n_r_{ic_max} = 17.
                   degree of Chebychev polynomials in inner core
n_cheb_ic_max=17,
             =20, dialiazing parameter for spherical harmonics
 nalias
             =1, azimuthal symmetry wave number, number of 'slices'
 minc
```

- Instead of 1_max/m_max we can use n_phi_tot
- Only certain n_phi_tot allowed:
 16,32,48,64,96,128,192,256,288,320,384,400,512,576,640,768,864,1024,...
- Only certain n_r_{max} allowed: 17, 21, 25, 33, 37, 41, 49, 61, 65, 73, 81, 97, 101, 109, 121, 129, 145, 161, ...

Numerics Control


```
&control
                        tells MagIC which problem this is (dynamo/convection ...)
 mode
             =0,
                        run identifyer, tag of all output files
             ="test",
 tag
                        number of time step to be run
 n_time_steps=1000,
 courfac =2.5D0,
                        factors for Courant-Friedrich-Levy criterion
 alffac =1.0D0,
                        max allowed value of time step
             =1.0D-4
 dtmax
                       weight for time stepping scheme
 alpha =0.6D0,
 runHours
          =12 ,
                        run time in hours and minutes when MagIC will shut down
 runMinutes =00,
 anelastic_flavour='SINGLEMAT',
```

Modes

This namelist defines the numerical parameters of the problem plus the variables that control and organize the run.

• mode (default mode=0) is an integer which controls the type of calculation performed.

mode=1 Convection mode=2 Kinematic dynamo mode=3 Magnetic decay modes mode=4 Magneto convection mode=5 Linear onset of convection mode=6 Self-consistent dynamo, but with no Lorentz force mode=7 Super-rotating inner core or mantle, no convection and no magnetic field mode=8 Super-rotating inner core or mantle, no convection mode=9 Super-rotating inner core or mantle, no convection and no Lorentz force	mode=0	Self-consistent dynamo
mode=3 Magnetic decay modes mode=4 Magneto convection mode=5 Linear onset of convection mode=6 Self-consistent dynamo, but with no Lorentz force mode=7 Super-rotating inner core or mantle, no convection and no magnetic field mode=8 Super-rotating inner core or mantle, no convection	mode=1	Convection
mode=4 Magneto convection mode=5 Linear onset of convection mode=6 Self-consistent dynamo, but with no Lorentz force mode=7 Super-rotating inner core or mantle, no convection and no magnetic field mode=8 Super-rotating inner core or mantle, no convection	mode=2	Kinematic dynamo
mode=5 Linear onset of convection mode=6 Self-consistent dynamo, but with no Lorentz force mode=7 Super-rotating inner core or mantle, no convection and no magnetic field mode=8 Super-rotating inner core or mantle, no convection	mode=3	Magnetic decay modes
mode=6 Self-consistent dynamo, but with no Lorentz force mode=7 Super-rotating inner core or mantle, no convection and no magnetic field mode=8 Super-rotating inner core or mantle, no convection	mode=4	Magneto convection
mode=7 Super-rotating inner core or mantle, no convection and no magnetic field mode=8 Super-rotating inner core or mantle, no convection	mode=5	Linear onset of convection
mode=8 Super-rotating inner core or mantle, no convection	mode=6	Self-consistent dynamo, but with no Lorentz force
	mode=7	Super-rotating inner core or mantle, no convection and no magnetic field
mode=9 Super-rotating inner core or mantle, no convection and no Lorentz force	mode=8	Super-rotating inner core or mantle, no convection
mode-5 Caper-rotating lines core of martie, no convection and no coretizatore	mode=9	Super-rotating inner core or mantle, no convection and no Lorentz force
mode=10 Super-rotating inner core or mantle, no convection, no magnetic field, no Lorentz force and no advect	mode=10	Super-rotating inner core or mantle, no convection, no magnetic field, no Lorentz force and no advection

Physics Parameters

&phys_param		
ra	=1.0D5,	Rayleigh number
ek	=1.0D-3,	Ekman number
pr	=1.000,	Prandtl number
prmag	=5.000,	magnetic Prandtl number
radratio	=0.35D0,	aspect ratio
ktops	=1,	outer thermal boundary condition
kbots	=1,	inner thermal boundary condition
ktopv	=2,	outer flow boundary condition
kbotv	=2,	inner flow boundary condition
	,	

Thermal Boundary Conditions

Boundary conditions

Thermal boundary conditions

• ktops (default ktops=1) is an integer to specify the outer boundary entropy (or temperature) boundary condition:

```
ktops=1 Fixed temperature (Boussinesq) or entropy (anelastic) at outer boundary: s(r_o) = s_{top}
ktops=2 Fixed temperature gradient (Boussinesq) or entropy gradient at outer boundary: \partial s(r_o)/\partial r = q_t
ktops=3 Only use it in anelastic models: fixed temperature at outer boundary: T(r_o) = T_{top}
ktops=4 Only use it in anelastic models: fixed temperature gradient at outer boundary: \partial T(r_o)/\partial r = q_t
```

- **kbots** (default ktops=1) is an integer to specify the inner boundary entropy (or temperature) boundary condition.
- **s_top** (default s_top= 0 0 0.0 0.0) is a real array of lateraly varying outer heat boundary conditions. Each four consecutive numbers are interpreted as follows:
 - 1. Spherical harmonic degree ℓ
 - 2. Spherical harmonic order m
 - 3. Real amplitude (cos contribution)
 - 4. Imaginary amplitude (sin contribution)

For example, if the boundary condition should be a combination of an $(\ell = 1, m = 0)$ sherical harmonic with the amplitude 1 and an $(\ell = 2, m = 1)$ spherical harmonic with the amplitude (0.5,0.5) the respective namelist entry could read:

s_top = 1, 0, 1.0, 0.0, 2, 1, 0.5, 0.5, ! The comas could be left away.

Flow Boundary Conditions

Mechanical boundary conditions ¶

• **ktopv** (default ktopv=2) is an integer, which corresponds to the mechanical boundary condition for $r=r_o$.

Stress-free outer boundary for $r = r_o$:

$$W_{\ell m}(r=r_o)=0, \quad rac{\partial}{\partial r}igg(rac{1}{r^2 ilde
ho}rac{\partial W_{\ell m}}{\partial r}igg)=0 \ rac{\partial}{\partial r}igg(rac{1}{r^2 ilde
ho}Z_{\ell m}igg)=0$$

Rigid outer boundary for $r = r_o$:

ktopv=2
$$W_{\ell m}=0, \quad rac{\partial W_{\ell m}}{\partial r}=0, \ Z_{\ell m}=0$$

• **kbotv** (default kbotv=2) is an integer, which corresponds to the mechanical boundary condition for $r=r_i$.

Magnetic Boundary Conditions

Magnetic boundary conditions

• **ktopb** (default ktopb=1) is an integer, which corresponds to the magnetic boundary condition for $r=r_o$.

Insulating outer boundary:

$$rac{\partial g_{\ell m}}{\partial r} + rac{\ell}{r}\,g_{\ell m} = 0, \quad rac{\partial h_{\ell m}}{\partial r} = 0$$

Perfect condutor:

$$g_{\ell m}=rac{\partial^2 g_{\ell m}}{\partial r^2}=0, \quad rac{\partial h_{\ell m}}{\partial r}=0$$

Finitely conducting mantle

Pseudo-vacuum outer boundary:

$$rac{\partial g_{\ell m}}{\partial r}=0, \quad h_{\ell m}=0$$

Initial Condition


```
&start_field l_start_file=.false., Use a checkpoint file? start_file = "None", name of checkpoint file init_b1 = 3, parameter for analytical initial magnetic field amp_b1 = 5, amplitude of initial magnetic field init_s1 = 0404, initial entropy field with degree 4 and order 4 amp_s1 = 0.1, amplitude of initial entropy field
```

Output Control


```
&output_control
                               steps between log output
 n_log_step
                               number of graphic output files
 n_graphs
              =1,
                               number of restart/checkpoint files
 n_rsts
              =1,
              =0,
 n_stores
                               number of checkpoint stores
              ="Benchmark 1", id (name) of run on system
 runid
 1_movie
              =.true.,
                               produce movie output?
movie(1)
              = "Bp AX",
                               produce movie files for axisymm. azimuthal field
              =.false.,
 1_RMS
```