

Grundlagen der physischen Geographie / Übung

Einführung in die Physische Geographie (P1.2)

Dozent

Dr. Christoph Heinzeller Dr. Elisabeth Probst M. Sc. Benedikt Hartweg M. Sc. Alexander Sasse

Zielgruppe

☑ B.Sc. ☐ M.Sc. ☒ LA

Leistungsnachweis

Klausur

Organisatorisches

Zeit

Parallelkurse an Mo, Di, Mi, Do

Vorlesung

Ort:

Sitzung

15

Luisenstraße 37 Richard-Wagner-Straße 10

ECTS: 3 (+3 Übung)

Zielsetzung. Die Übung begleitet die gleichnamige Vorlesung und empfängt die Studierenden der Geographie (Bachelor, Nebenfach und Lehramt) im ersten Fachsemester. Die in der Vorlesung vorgestellten naturwissenschaftlichen Prinzipien der physischen Geographie werden in der Übung anhand von physisch geographischen Beispielen vertieft. Mit Hilfe von einfachen physikalischen Beispielrechnungen Hydrologie, Klimatologie, Bodenkunde, aus Vegetationsgeographie wird der quantitative Umgang etc. Umweltinformationen nachvollzogen und ein für die Physische Geographie entscheidendes Verständnis der zugrundeliegenden Prozesse Schwerpunkte bilden dabei zum Beispiel Berechnungen zur Energie im Erdsystem, wie z.B. die Umwandlung verschiedener Energieformen (potenzielle Energie, kinetische Energie, Wärmeenergie, chemische Energie etc.). Die Übung nivelliert dabei auch eventuell unterschiedliches Vorwissen in dem Bereichen Mathematik, Physik, Chemie und Biologie und baut ggf. vorhandene Hemmungen gegenüber der Verwendung der Mathematik als global gültige Sprache der Naturwissenschaften ab. Grundlagen des wissenschaftlichen Arbeitens werden ebenfalls vermittelt. Ziel der Veranstaltung ist, dass Absolventen des Moduls über die notwendigen naturwissenschaftlichen Grundlagen verfügen, die für eine erfolgreiche Teilnahme an den tiefergehenden Fachveranstaltungen im folgenden Studienverlauf erforderlich sind. Sie sind in der Lage einfache physikalische Gleichungen zur Beantwortung quantitativer Fragen in natürlichen Systemen anzuwenden. Als Leistungsnachweis dient eine Klausur (Grundlagen- und Orientierungsprüfung)

am Ende des Semesters, welche die erworbenen Kenntnisse aus Vorlesung und

Übung

01 Einführung in die Universität Was bedeutet ein Studium der Geographie? 02 Die Erde als System Einführung in das wissenschaftliche Arbeiten 03 Potenzielle und kinetische Energie Umwandlung von potenzieller Energie 04 Mechanische Energie Reibung & Sedimentfracht 05 Wärmeenergie Berechnung der Wärmeleitung im Boden 06 Atome & Elemente Strahlungsbilanz der Erdoberfläche 07 Radioaktivität Kreislauf der Gesteine, Gesteinsbestimmung 80 Die Vielfalt natürlicher Substanzen Bodenentstehung und Bodenaufbau 09 Materie und Kreisläufe im Erdsystem Berechnung der Wasserbilanz 10 Leben im Erdsystem I: Was sind Pflanzen? Berechnung von Abfluss im Gerinne 11 Leben im Erdsystem II: Pflanzenzellen Berechnung der potenziellen Verdunstung 12 Wie funktioniert Leben? Ökologie, Standortfaktoren Wovon leben die Menschen? 13 Ökologie, Ökosystemleistungen 14 Physisch Geographische Integration Klausurvorbereitung

Klausur (Multiple Choice, 90 Min.) 50% Vorlesung + 50% Übung / GOP (nicht benotet)

begleitender Übung einschließt.

Empfohlene Literatur (weitere Empfehlungen in der Übung)

Physical Geography & Complex Environmental Systems Group

Marsh, W. & Kaufman, M. (2013): **Physical Geography: Great Systems and Global Environments**. Cambridge University Press, pp. 720.

Glawion, R., Glaser, R., Saurer, H., Gaede, M. & Weiler, M. (2019): Physische Geographie. Westermann, pp. 448.