

# Sustainability Science in Practice: From Global Challenges to Interdisciplinary Collaboration in a Research Center

Alejandro Espinosa-Rada\*

\* Assistant Professor, Institute of Sociology, Pontificia Universidad Católica de Chile

October 29, 2025

# Solving Sustainability Challenges Requires Collaboration



Figure: <https://sna-ses.shinyapps.io/SSMviewer/>

**Complex societal problems cannot be solved by a single discipline.  
Interdisciplinary collaboration is key to innovative solutions.**



*While interdisciplinary collaboration is essential, how do researchers actually connect across disciplines? Who collaborates with whom, and what patterns facilitate or hinder these collaborations?*

## Motivation

- ▶ **Macro:** Much of the social network literature on scientific networks tends to focus on **academic papers** as a means to explore scientific collaborations (Bellotti and Espinosa-Rada, 2025).
- ▶ **Micro:** Early studies in the sociology of science and knowledge have highlighted the importance of **social interactions** in the diffusion and production of knowledge (Coleman et al., 1957; Crane, 1972; Mullins, 1972; Collins, 1998; White et al., 2004; Bellotti and Espinosa-Rada, 2025)

## Motivation

- ▶ **Multilayers:** The multiple ties of scientific networks have been classified by distinguishing between social and cognitive ties, which are often **difficult to disentangle** into more precise layers or to separate due to the intrinsic overlap between these dimensions (Mullins, 1972; White et al., 2004; Espinosa-Rada et al., 2024, 2025)
- ▶ **Mechanisms:** To better understand the complexities of social relationships in scientific settings, this study examines how factors such as **informal communication, scientific interests, specialization, and structural opportunities influence and constrain interdisciplinary scientific collaboration.**

# What is Scientific Collaboration?



*The collaboration of scientists in research activity has become the norm.*

(Beaver and Rosen, 1979)

*There are five connotations always associated with the term collaboration: sharing, partnership, interdependency, power, and process*

(D'amour et al., 2005)

*Scientific collaboration can be defined as interaction taking place within a social context among two or more scientists that facilitates the sharing of meaning and completion of tasks with respect to a mutually shared, superordinate goal. Scientists who collaborate may also bring additional, individual goals to a collaboration.*

(Sonnenwald, 2007)

# Why Interdisciplinarity Matters



- ▶ Many sustainability and societal challenges span multiple domains of knowledge (Lowe and Phillipson, 2006).
- ▶ Integrating perspectives and methods from different disciplines fosters innovation and novel solutions (Gibbons et al., 1994; Hollingsworth and Hollingsworth, 2000).
- ▶ Research funding and institutional priorities increasingly favor interdisciplinary approaches (Abramo, 2018; D'Este and Robinson-García, 2023).

## Interdisciplinary Research (IDR)

- ▶ Science often works in the “**chaos of disciplines**” (Abbott, 2010)
- ▶ IDR enhances collaboration and societal relevance
- ▶ Recognised for:
  - ▶ **Scientific breakthroughs**
  - ▶ Addressing **complex societal problems** (Lowe and Phillipson, 2006)
  - ▶ **Fostering innovation** (Gibbons et al., 1994)
  - ▶ **Integrating knowledge to solve problems beyond single disciplines** (Jacobs and Frickel, 2009)
- ▶ To address complex problems, researchers often associate within scientific research centers that allowed them to work on common topics of interest.

# Research question



*How do shared expertise, disciplinary distance, and affective social ties influence interdisciplinary collaboration within a sustainability-focused research center?*

## Interdisciplinary collaboration:

- ▶  $H1$  : Individuals who have the same specialty are more likely to form collaborations.
- ▶  $H2$  : Greater disciplinary distance between researchers decreases their likelihood of collaboration.
- ▶  $H3$  : Non-work social ties (e.g., friendship, leisure activities) are positively associated with collaboration.
- ▶  $H4$  : The effect of sharing similar specialty ties on collaboration is positive when researchers also share affective ties.

# Case study: Sustainability Science



**Sustainability science** seeks to address sustainable development challenges by understanding interactions between nature and society. It aims to unify evidence on (un)sustainability patterns (“science of sustainability”) and deliver practical solutions (“science for sustainability”) (Clark and Harley, 2019; Kates et al., 2001; Spangenberg, 2011; Kates, 2011; Vanhulst et al., 2025).

- ▶ Interdisciplinary approach to complex socio-ecological problems.

**Sustainability science** seeks to address sustainable development challenges by understanding interactions between nature and society. It aims to unify evidence on (un)sustainability patterns (“science of sustainability”) and deliver practical solutions (“science for sustainability”) (Clark and Harley, 2019; Kates et al., 2001; Spangenberg, 2011; Kates, 2011; Vanhulst et al., 2025).

- ▶ Interdisciplinary approach to complex socio-ecological problems.
- ▶ Roots in:
  - ▶ *World Conservation Strategy* (IUCN, 1980)
  - ▶ *Brundtland Report* (1987)
  - ▶ *Earth Summit*, Rio de Janeiro (1992)
  - ▶ *Budapest World Conference on Science* (1999)
  - ▶ Term formalised in *Our Common Journey* (NRC, 1999)
  - ▶ Recognised at:
    - ▶ 2001 *Challenges of a Changing Earth Congress*
    - ▶ 2002 *Johannesburg World Summit*

- ▶ The Social Networks and Socio-ecological Sustainability Project (SNA-SES) was conducted by the Universidad Católica del Maule and the Social Networks Lab at ETH Zürich between 2022 and 2025 (Vanhulst & Espinosa-Rada, 2021).
- ▶ The original project was funded by the ANID/FONDECYT program (No. 1220560, 2022–2025). PI: Julien Vanhulst.
- ▶ The study collected bibliometric data from the Web of Science and investigated a research center located in Chile ( $N = 66$ ) dedicated to study topics related to sustainability.
- ▶ We administered a survey and collected secondary data from public sources.
- ▶ An additional bibliometric dataset is available at:  
<https://sna-ses.shinyapps.io/SSMviewer/>

# Multilayers (multiplex) (1/2)



| Layer             | Type      | Question                                                                                         |
|-------------------|-----------|--------------------------------------------------------------------------------------------------|
| DV: collaborators | knowledge | Who at your centre have been your closest research collaborators in the past two academic years? |
| co-authorship     | knowledge | Bibliometric co-authorship from the last five years                                              |
| friendship        | affective | Who are your friends among your colleagues?                                                      |
| communication     | knowledge | With whom do you usually talk about your research or professional work?                          |
| lazy              | affective | With whom do you spend more leisure time inside or outside academic working hours?               |
| interaction       | unclear   | Which researchers do you communicate with most frequently on a daily basis?                      |
| inspiration       | knowledge | Which researchers have most inspired your own work?                                              |

Table: Description of network layers, types, and corresponding survey questions.

# Multilayers (multimodal) (2/2)



| Layer                          | Type      | Question                                                                                                                                          |
|--------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| DV: university<br>(multilevel) | knowledge | What is your principal academic unit? Are there other units in your institution with which you collaborate (e.g., seminars, workshops, projects)? |
| disciplines                    | knowledge | What scientific discipline do you identify with? (OECD classification)                                                                            |
| speciality                     | knowledge | Please specify your specialty (e.g., entomology within biology). Are there others in your organisation working in this specialty?                 |
| degrees                        | knowledge | Please specify your undergraduate degree.                                                                                                         |

Table: Network layers, types, and corresponding survey questions.

# Methodology I: Stochastic Actor-Oriented Models (SAOMs)



- ▶ SAOMs model the evolution of a network  $X(t)$  over continuous time  $t$ .
- ▶ Each actor  $i$  can change outgoing ties to maximize a **objective function**:

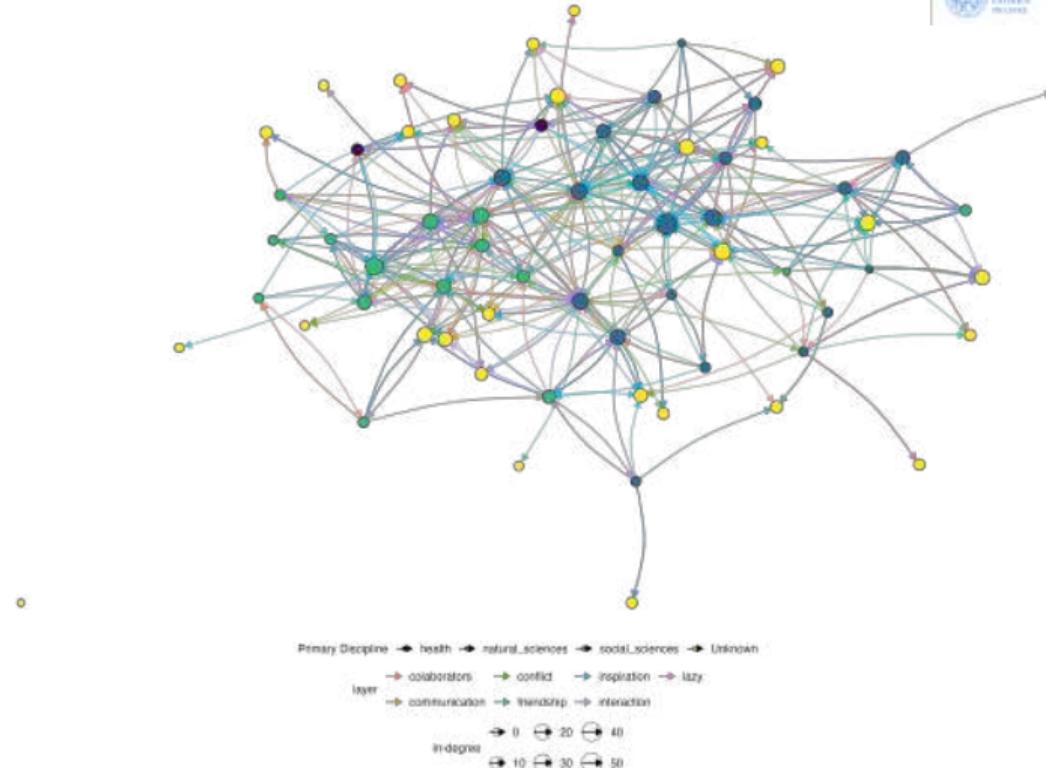
$$f_i(\mathbf{x}) = \sum_k \beta_k s_{ik}(\mathbf{x})$$

where  $s_{ik}(\mathbf{x})$  are network statistics (e.g., reciprocity, transitivity, homophily) and  $\beta_k$  are parameters.

- ▶ Changes occur according to a **rate function**  $\lambda_i(\mathbf{x})$ , specifying the expected number of opportunities actor  $i$  has to modify ties.
- ▶ The probability of a tie change follows a multinomial logit:

$$P(X_{ij} \text{ changes} \mid \mathbf{x}) = \frac{\exp(f_i(\mathbf{x}_{\text{new}}))}{\sum_{\mathbf{x}'} \exp(f_i(\mathbf{x}'))}$$

- ▶ Parameters are estimated using **simulation-based methods** (e.g., Method of Moments), implemented in **RSiena**.


- ▶ For the analysis we used stationary stochastic actor-oriented models (SAOMs) (Snijders and Steglich, 2015)
- ▶ We also consider the interdependency between two different levels (Snijders et al., 2013)
- ▶ Parameters are estimated by the method of moments using a stochastic approximation.

Directed Multilayer Network Colored by Primary Discipline



Instituto de Sociología

División de Estudios y Investigaciones e Investigaciones Sociales



# Network and Discipline Descriptive Statistics

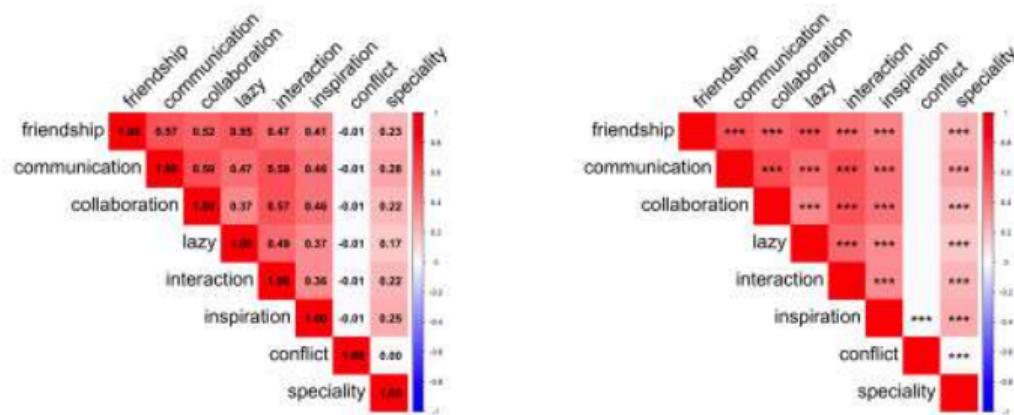


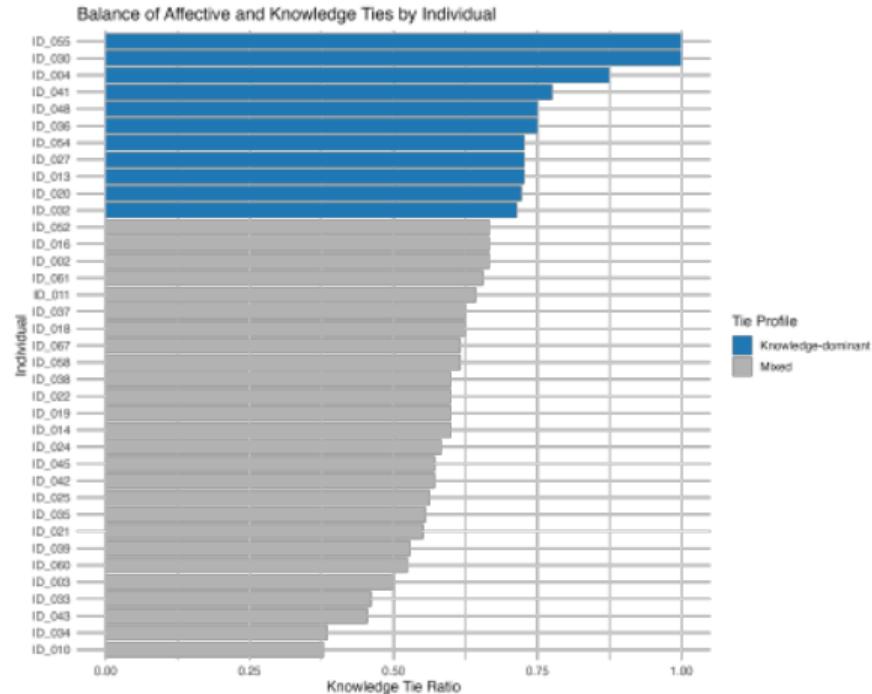
| Network       | Avg Deg | SD Deg | Density | Components | % Largest Comp | % 2nd Largest Comp | Avg Path Len | Clustering Coef |
|---------------|---------|--------|---------|------------|----------------|--------------------|--------------|-----------------|
| Friendship    | 4.776   | 4.441  | 0.036   | 10         | 86.57%         | 1.49%              | 3.505        | 0.320           |
| Communication | 4.567   | 4.563  | 0.035   | 7          | 91.04%         | 1.49%              | 3.011        | 0.255           |
| Collaboration | 4.000   | 3.219  | 0.030   | 6          | 92.54%         | 1.49%              | 3.574        | 0.205           |
| Lazy          | 1.851   | 2.084  | 0.014   | 26         | 49.25%         | 8.96%              | 1.733        | 0.215           |
| Interaction   | 2.836   | 2.739  | 0.021   | 15         | 79.10%         | 1.49%              | 2.809        | 0.200           |
| Inspiration   | 3.045   | 2.956  | 0.023   | 15         | 79.10%         | 1.49%              | 1.967        | 0.255           |

*Note:* Multilayer network of informal communication in science.

| Discipline       | Count | Percent |
|------------------|-------|---------|
| Natural Sciences | 35    | 52%     |
| Social Sciences  | 19    | 28%     |
| Humanities       | 5     | 8%      |
| Health           | 3     | 4%      |
| Computer Science | 1     | 2%      |

*Note:* Based on declared primary and secondary disciplinary affiliations.





Figure: Pearson correlations among multilayer networks of scientific ties with significance levels according to quadratic assignment procedure, where \*\*\*  $p < 0.001$ , \*\*  $p < 0.01$ , and \*  $p < 0.05$ .

# Balance of Affective and Knowledge Ties by Individual



Instituto de Sociología

Dirección de Estudios, Formación y Investigación en Investigación Social



| Tie Profile        | Count | Percent |
|--------------------|-------|---------|
| Knowledge-dominant | 15    | 40.5%   |
| Mixed              | 22    | 59.5%   |

**Note:** Classification based on ratio of knowledge-oriented ties.

**Figure:** Knowledge Tie Ratio per Individual, colored by tie profile

(threshold = 0.7).

### Distribution of Knowledge Tie Ratios by Discipline

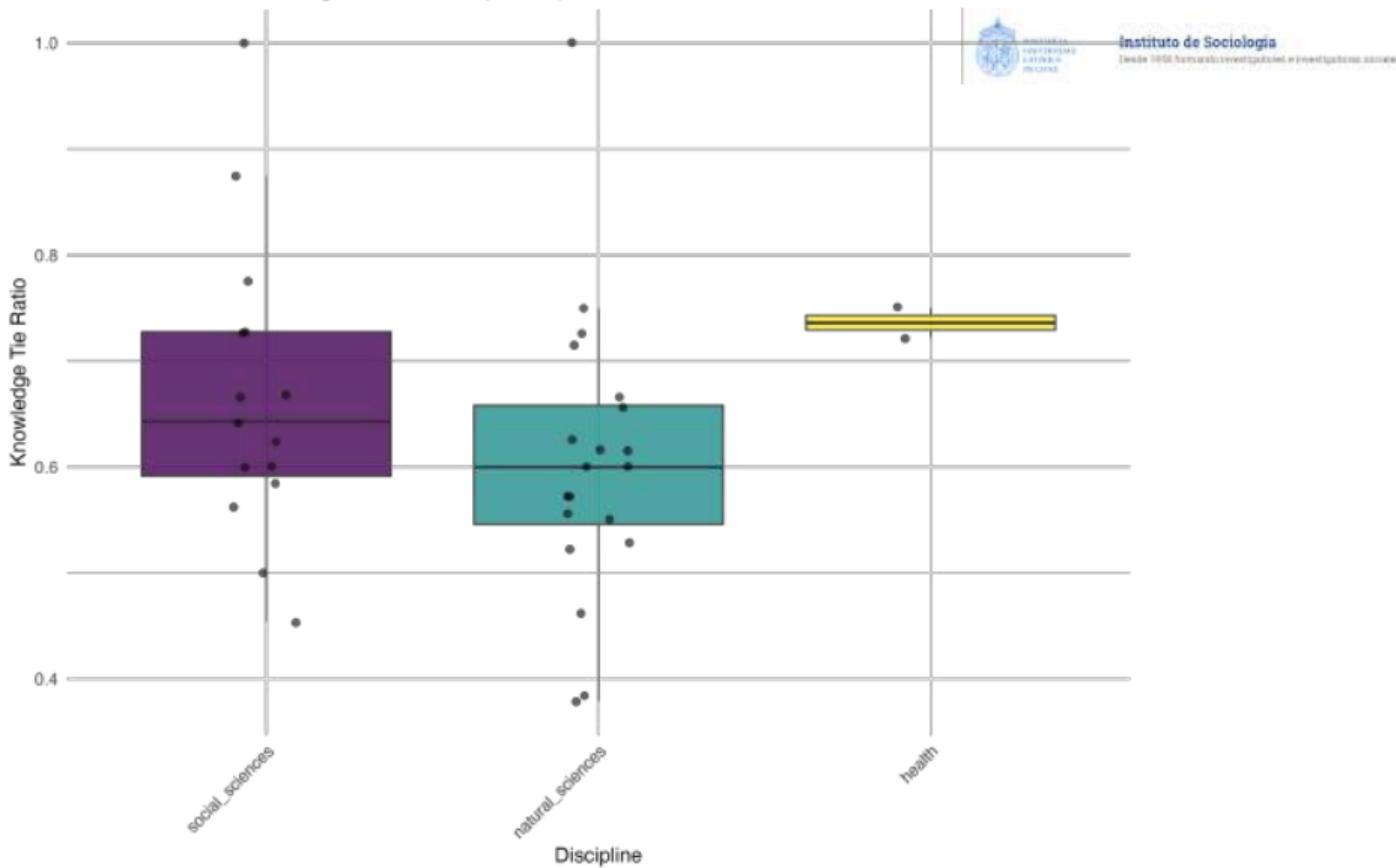



Figure: "Do individuals from some disciplines rely more on affective vs. knowledge-based informal ties?"

# Stationary SAOM (1/3)



| Effect                                   | par.               | (s.e.)  |
|------------------------------------------|--------------------|---------|
| basic rate parameter coll                | 30.000             | (N.A.)  |
| coll: outdegree (density)                | -1.634**           | (0.584) |
| coll: reciprocity                        | 1.174 <sup>†</sup> | (0.606) |
| coll: GWESP I → K → J (69)               | 0.965*             | (0.394) |
| coll: indegree - popularity              | -0.045             | (0.059) |
| coll: outdegree - activity ( $\sqrt{}$ ) | -0.247             | (0.176) |
| coll: age alter                          | 0.057              | (0.087) |
| coll: age ego                            | -0.245*            | (0.097) |
| coll: age ego x age alter                | 0.077              | (0.067) |
| coll: same belongs-department            | 0.016              | (0.165) |
| coll: same belongs-center                | -0.471*            | (0.183) |
| coll: reciprocity x GWESP I → K → J (69) | -1.079             | (1.358) |

# Stationary SAOM (2/3)



| Effect                            | par.     | (s.e.)  |
|-----------------------------------|----------|---------|
| coll: $H_1$ specialties           | 0.878**  | (0.327) |
| coll: $H_2$ sim-degrees           | 0.544**  | (0.207) |
| coll: $H_2$ main-discipline       | -0.690** | (0.267) |
| coll: $H_3$ friends               | 1.518*** | (0.239) |
| coll: $H_3$ lazy                  | -0.704*  | (0.305) |
| coll: interaction                 | 1.896*** | (0.265) |
| coll: inspiration                 | 0.973*** | (0.249) |
| coll: coll-bib                    | 0.251*   | (0.104) |
| coll: author-network-position     | 3.513**  | (1.276) |
| coll: $H_4$ friends x specialties | -1.533** | (0.486) |

# Stationary SAOM (3/3)



| Effect                                        | par.     | (s.e.)  |
|-----------------------------------------------|----------|---------|
| basic rate parameter university               | 10.000   | (N.A.)  |
| university: outdegree (density)               | 1.401    | (3.224) |
| university: GWDSP I → K ← J (69)              | 0.859    | (0.785) |
| university: indegree - popularity ( $\sqrt$ ) | -4.750   | (2.911) |
| university: outdegree - activity              | 0.636**  | (0.211) |
| university: age ego                           | -0.161   | (0.111) |
| university: prime-uni alter                   | 0.682*   | (0.328) |
| university: non-department alter              | -0.289   | (0.301) |
| university: coll to agreement                 | 2.040*** | (0.527) |

<sup>†</sup>  $p < 0.1$ ; \*  $p < 0.05$ ; \*\*  $p < 0.01$ ; \*\*\*  $p < 0.001$ ;

convergence  $t$  ratios all  $< 0.04$ .

Overall maximum convergence ratio 0.1.

# Summary of Hypotheses Testing



- ▶ **H1:** Supported. Having the same scientific specialty is positively related to collaborative ties.
- ▶ **H2:** Partially supported. Having a bachelor's degree in the same discipline is positively related to collaborative ties. However, if two individuals identify with the same discipline, the effect is negative.
- ▶ **H3:** Supported. Affective ties are positively related to collaborative ties in friendship, but not in leisure time.
- ▶ **H4:** Supported. A significant interaction between friendship ties and same specialty is associated with less collaboration.

# Discussion



- ▶ **Disciplinary** background (specialty, degrees) still shapes scientific collaboration.
- ▶ **Interdisciplinarity** is related to research conducted by individuals who identify with different disciplines, as sharing the same disciplinary identification can negatively affect collaboration.
- ▶ **Informal ties** moderate collaboration, suggesting that emotional or social ties can facilitate scientific work, but only in certain relational contexts.
- ▶ Interdisciplinary collaboration may be facilitated when **affective ties connect researchers across different specialties**, rather than being concentrated within the same specialty.

# Conclusion



- ▶ Scientific collaboration is shaped by more than formal outputs like publications; it is deeply embedded in **social relations and informal communication**.
- ▶ **Interdisciplinary research** emerges not just from shared expertise, but through daily interaction, inspiration, and the trust fostered by friendship and communication.
- ▶ These results reinforce classic insights from the sociology of science, emphasizing that the **invisible college** remains vital in structuring scientific work.

# Next steps



- ▶ Refine the model specification and theory, and adjust details or any remaining unconsidered dimensions.
- ▶ We are considering exploring the interdependency of all layers within a common framework. As this task is likely very complex, we are evaluating the necessity of developing a new statistical model for complex multilayer networks.

# Main takeaway



Instituto de Sociología

División de Estudios y Investigaciones e Investigaciones Sociales

*Understanding the **informal dynamics of collaboration** is essential for supporting meaningful and sustained interdisciplinary efforts, particularly in research centers addressing complex societal challenges such as sustainability.*

# Project Collaborators: Seed Fund UC-UNSW 2024 (2025-2026)



**PI: Alejandro Espinosa-Rada**  
Pontificia Universidad Católica de Chile



**PI: Pavel Krivitsky**  
University of South Wales



**co-PI: Julien Vanhulst**  
Universidad Católica del Maule



**RA: María Guadalupe Barrera**  
Pontificia Universidad Católica de Chile



# Thank you!

*Email:*

[anespinosa@uc.cl](mailto:anespinosa@uc.cl)

# References I



Abbott, A. (2010). Chaos of disciplines. University of Chicago Press.

Abramo, G. (2018). Revisiting the scientometric conceptualization of impact and its measurement. Journal of Informetrics, 12(3):590–597.

Beaver, D. and Rosen, R. (1979). Studies in scientific collaboration part iii. professionalization and the natural history of modern scientific co-authorship. Scientometrics, 1(3):231–245.

Bellotti, E. and Espinosa-Rada, A. (2025). Scientific networks. In Handbook of Culture and Social Networks, pages 154–167. Edward Elgar Publishing.

Clark, W. and Harley, A. (2019). Sustainability science: Towards a synthesis. Sustainability Science Program Working Papers.

Coleman, J., Katz, E., and Menzel, H. (1957). The diffusion of an innovation among physicians. Sociometry, 20(4):253–270.

Collins, R. (1998). The sociology of philosophies: A global theory of intellectual change. Harvard University Press.

Crane, D. (1972). Invisible colleges; diffusion of knowledge in scientific communities. University of Chicago Press.

## References II



D'amour, D., Ferrada-Videla, M., San Martin Rodriguez, L., and Beaulieu, M.-D. (2005). The conceptual basis for interprofessional collaboration: Core concepts and theoretical frameworks. *Journal of interprofessional care*, 19(sup1):116–131.

D'Este, P. and Robinson-García, N. (2023). Interdisciplinary research and the societal visibility of science: The advantages of spanning multiple and distant scientific fields. *Research Policy*, 52(2):104609.

Espinosa-Rada, A., Bellotti, E., Everett, M. G., and Stadtfeld, C. (2024). Co-evolution of a socio-cognitive scientific network: A case study of citation dynamics among astronomers. *Social Networks*, 78:92–108.

Espinosa-Rada, A., Lerner, J., and Fritz, C. (2025). Socio-cognitive networks between researchers: Investigating scientific dualities with the group-oriented relational hyperevent model. *Social Networks*, 83:1–13.

Gibbons, M., Limoges, C., Scott, P., Schwartzman, S., and Nowotny, H. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. SAGE Publications Ltd.

## References III



Hollingsworth, R. and Hollingsworth, E. J. (2000). Major discoveries and biomedical research organizations: perspectives on interdisciplinarity, nurturing leadership, and integrated structure and cultures. *Practising interdisciplinarity*, pages 215–244.

Jacobs, J. A. and Frickel, S. (2009). Interdisciplinarity: A critical assessment. *Annual review of Sociology*, 35(1):43–65.

Kates, R. W. (2011). What kind of a science is sustainability science? *Proceedings of the National Academy of Sciences*, 108(49):19449–19450.

Kates, R. W., Clark, W. C., Corell, R., Hall, J. M., Jaeger, C. C., Lowe, I., McCarthy, J. J., Schellnhuber, H. J., Bolin, B., Dickson, N. M., et al. (2001). Sustainability science. *Science*, 292(5517):641–642.

Lowe, P. and Phillipson, J. (2006). Reflexive interdisciplinary research: the making of a research programme on the rural economy and land use. *Journal of Agricultural Economics*, 57(2):165–184.

Mullins, N. C. (1972). The development of a scientific specialty: The phage group and the origins of molecular biology. *Minerva*, pages 51–82.

## References IV



Snijders, T. A., Lomi, A., and Torló, V. J. (2013). A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice. *Social networks*, 35(2):265–276.

Snijders, T. A. and Steglich, C. E. (2015). Representing micro–macro linkages by actor-based dynamic network models. *Sociological methods & research*, 44(2):222–271.

Sonnenwald, D. H. (2007). Scientific collaboration. *Annu. Rev. Inf. Sci. Technol.*, 41(1):643–681.

Spangenberg, J. H. (2011). Sustainability science: a review, an analysis and some empirical lessons. *Environmental Conservation*, 38(3):275–287.

Vanhulst, J., Padilla, P., Espinosa-Rada, A., Cantillán, R., Velásquez, R., and Karla González, T. (2025). The reflexive process in "sustainability science": A short critical review. *Environmental Science and Policy*, 272:1–10.

White, H. D., Wellman, B., and Nazer, N. (2004). Does citation reflect social structure?: Longitudinal evidence from the “globenet” interdisciplinary research group. *Journal of the American Society for information Science and Technology*, 55(2):111–126.